首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli mutants which secreted thymidine, thymine, uracil, cytosine, and guanine into the culture medium were isolated. The isolation strategy was based on the combination of a sensitive screening method and a mutant-generating system. The screening method made use of a thyA mutant of E. coli. These cells, when spread on the agar surface with the 3-galactosidase indicator X-gal, will grow into bule colonies if a minute amount of thymidine is supplied to them from a nearby secretor colony. A chemostat was used as a mutant-generating system to select for E. coli mutants that were resistant to inhibitors of the pyrimidine biosynthetic pathway. Although many mutants were selected based on their secretion of thymidine, other kinds of nucleosides and nucleobases, such as cytosine, uracil, guanine, and thymine, were also present in larger quantities. This rational selection strategy should be applicable to other species of micro-organisms for the isolation of better producers of nucleosides. The production of nucleosides and nucleobases by fermentation could then become a possibility.  相似文献   

2.
S P Salowe  M A Ator  J Stubbe 《Biochemistry》1987,26(12):3408-3416
Ribonucleoside diphosphate reductase (RDPR) from Escherichia coli was completely inactivated by 1 equiv of the mechanism-based inhibitor 2'-azido-2'-deoxyuridine 5'-diphosphate (N3UDP). Incubation of RDPR with [3'-3H]N3UDP resulted in 0.2 mol of 3H released to solvent per mole of enzyme inactivated, indicating that cleavage of the 3' carbon-hydrogen bond occurred in the reaction. Incubation of RDPR with [beta-32P]N3UDP resulted in stoichiometric production of inorganic pyrophosphate. One equivalent of uracil was eliminated from N3UDP, but no azide release was detected. Analysis of the reaction of RDPR with [15N3]N3UDP by mass spectrometry revealed that the azide moiety was converted to 0.9 mol of nitrogen gas per mole of enzyme inactivated. The tyrosyl radical of the B2 subunit was destroyed during the inactivation by N3UDP as reported previously [Sj?berg, B.-M., Gr?slund, A., & Eckstein, F. (1983) J. Biol. Chem. 258, 8060-8067], while the specific activity of the B1 subunit was reduced by half. Incubation of [5'-3H]N3UDP with RDPR resulted in stoichiometric covalent radiolabeling of the enzyme. Separation of the enzyme's subunits by chromatofocusing revealed that the modification was specific for the B1 subunit.  相似文献   

3.
5-Formyluracil (fU) is one of the thymine lesions produced by reactive oxygen radicals in DNA and its constituents. In this work, 5-formyl-2'-deoxyuridine 5'-triphosphate (fdUTP) was chemically synthesized and extensively purified by HPLC. The electron withdrawing 5-formyl group facilitated ionization of fU. Thus, p K a of the base unit of fdUTP was 8.6, significantly lower than that of parent thymine (p K a = 10.0 as dTMP). fdUTP efficiently replaced dTTP during DNA replication catalyzed by Escherichia coli DNA polymerase I (Klenow fragment), T7 DNA polymerase (3'-5'exonuclease free) and Taq DNA polymerase. fU-specific cleavage of the replication products by piperidine revealed that when incorporated as T, incorporation of fU was virtually uniform, suggesting minor sequence context effects on the incorporation frequency of fdUTP. fdUTP also replaced dCTP, but with much lower efficiency than that for dTTP. The substitution efficiency for dCTP increased with increasing pH from 7.2 to 9.0. The parallel correlation between ionization of the base unit of fdUTP (p K a = 8.6) and the substitution efficiency for dCTP strongly suggests that the base-ionized form of fdUTP is involved in mispairing with template G. These data indicate that fU can be specifically introduced into DNA as unique lesions by in vitro DNA polymerase reactions. In addition, fU is potentially mutagenic since this lesion is much more prone to form mispairing with G than parent thymine.  相似文献   

4.
5-Formyluracil (5-foU) is a potentially mutagenic lesion of thymine produced in DNA by ionizing radiation and various chemical oxidants. Although 5-foU has been reported to be removed from DNA by Escherichia coli AlkA protein in vitro, its repair mechanisms are not fully understood. In this study, we used the borohydride trapping assay to detect and characterize repair activities for 5-foU in E. coli extracts with site-specifically designed oligonucleotides containing a 5-foU at defined sites. The trapping assay revealed that there are three kinds of proteins that form covalent complexes with the 5-foU-containing oligonucleotides. Extracts from strains defective in the nth, nei, or mutM gene lacked one of the proteins. All of the trapped complexes were completely lost in extracts from the nth nei mutM triple mutant. The introduction of a plasmid carrying the nth, nei, or mutM gene into the E. coli triple mutant restored the formation of the corresponding protein-DNA complex. Purified Nth, Nei, and MutM proteins were trapped by the 5-foU-containing oligonucleotide to form the complex in the presence of NaBH(4). Furthermore, the purified Nth, Nei, and MutM proteins efficiently cleaved the oligonucleotide at the 5-foU site. In addition, 5-foU was site-specifically incorporated into plasmid pSVK3, and the resulting plasmid was replicated in E. coli. The mutation frequency of the plasmid was significantly increased in the E. coli nth nei mutM alkA mutant, compared with the wild-type and alkA strains. From these results it is concluded that the Nth, Nei, and MutM proteins are involved in the repair pathways for 5-foU that serve to avoid mutations in E. coli.  相似文献   

5.
The spectrum of DNA damage caused by reactive oxygen species includes a wide variety of modifications of purine and pyrimidine bases. Among these modified bases, 7,8-dihydro-8-oxoguanine (8-oxoG) is an important mutagenic lesion. Base excision repair is a critical mechanism for preventing mutations by removing the oxidative lesion from the DNA. That the spontaneous mutation frequency of the Escherichia coli mutT mutant is much higher than that of the mutM or mutY mutant indicates a significant potential for mutation due to 8-oxoG incorporation opposite A and G during DNA replication. In fact, the removal of A and G in such a situation by MutY protein would fix rather than prevent mutation. This suggests the need for differential removal of 8-oxoG when incorporated into DNA, versus being generated in situ. In this study we demonstrate that E.coli Nth protein (endonuclease III) has an 8-oxoG DNA glycosylase/AP lyase activity which removes 8-oxoG preferentially from 8-oxoG/G mispairs. The MutM and Nei proteins are also capable of removing 8-oxoG from mispairs. The frequency of spontaneous G:C→C:G transversions was significantly increased in E.coli CC103mutMnthnei mutants compared with wild-type, mutM, nth, nei, mutMnei, mutMnth and nthnei strains. From these results it is concluded that Nth protein, together with the MutM and Nei proteins, is involved in the repair of 8-oxoG when it is incorporated opposite G. Furthermore, we found that human hNTH1 protein, a homolog of E.coli Nth protein, has similar DNA glycosylase/AP lyase activity that removes 8-oxoG from 8-oxoG/G mispairs.  相似文献   

6.
It has been previously reported that a neutral DNA equilibrium binding agent based on an N-methylpyrrolecarboxamide dipeptide (lex) and modified with an O-methyl sulfonate ester functionality (MeOSO(2)-lex) selectively affords N3-methyladenine lesions. To study the interaction of the neutral lex dipeptide with calf thymus DNA, we have prepared stable, nonmethylating sulfone analogues of MeOSO(2)-lex that are neutral and cationic. Thermodynamic studies show that both the neutral and monocationic sulfone compounds bind to DNA with K(b)'s of 10(5) in primarily entropy-driven reactions. To determine how the cytotoxic N3-methyladenine adduct generated from MeOSO(2)-lex is repaired in E. coli, MeOSO(2)-lex was tested for toxicity in wild-type E. coli and in mutant strains defective in base excision repair (tag and/or alkA glycosylases or apn endonuclease), nucleotide excision repair (uvrA), and both base and nucleotide excision repair (tag/alkA/uvrA). The results clearly demonstrate the cellular toxicity of the N3-methyladenine lesion, and the protective role of base excision glycosylase proteins. A novel finding is that in the absence of functional base excision glycosylases, nucleotide excision repair can also protect cells from this cytotoxic minor groove lesion. Interaction between base and nucleotide excision repair systems is also seen in the protection of cells treated with cis-diamminedichloroplatinum(II) but not with anti-(+/-)-r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene.  相似文献   

7.
Mutant strains resistant to neomycin or to kanamycin sulfate were isolated from Escherichia coli K-12. Nine mutants were analyzed; all were resistant to both antibiotics (about 150 and 100 mug/ml, respectively), and were designated nek. In the mutant strains, the ribosomes are changed from those of the parental strain; for when they were used in assays for polypeptide formation directed by polyadenylic acid or polycytidylic acid, coding fidelity in presence of the drugs was increased and inhibition of synthesis by the drugs was lessened. Mating experiments and transduction tests showed that all of the nine nek mutants are either closely linked or allelic, and the nek locus is closely linked to two genes-str (streptomycin) and spc (spectinomycin)-known to affect the 30S ribosome. The two nek mutants tested were recessive to the sensitive, wild-type allele. When the nek mutants were compared to the parental strain, pleiotropic effects of the nek mutations were observed. Resistance to low levels of streptomycin and spectinomycin was increased, whereas resistance to chloramphenicol was decreased. Also, the mutants were less able to adapt to high concentrations of lincomycin, and could no longer show phenotypic suppression of an arginine requirement by neomycin or kanamycin. Such pleiotropic effects are suggested to be the rule for mutations in genes that participate in the biosynthesis of a cellular organelle.  相似文献   

8.
5-Formyluracil (fU), a major methyl oxidation product of thymine, forms correct (fU:A) and incorrect (fU:G) base pairs during DNA replication. In the accompanying paper (Masaoka, A., Terato, H., Kobayashi, M., Honsho, A., Ohyama, Y., and Ide, H. (1999) J. Biol. Chem. 274, 25136-25143), it has been shown that fU correctly paired with A is recognized by AlkA protein (Escherichia coli 3-methyladenine DNA glycosylase II). In the present work, mispairing frequency of fU with G and cellular repair protein that specifically recognized fU:G mispairs were studied using defined oligonucleotide substrates. Mispairing frequency of fU was determined by incorporation of 2'-deoxyribonucleoside 5'-triphosphate of fU opposite template G using DNA polymerase I Klenow fragment deficient in 3'-5' exonuclease. Mispairing frequency of fU was dependent on the nearest neighbor base pair in the primer terminus and 2-12 times higher than that of thymine at pH 7.8 and 2.6-6.7 times higher at pH 9.0 with an exception of the nearest neighbor T(template):A(primer). AlkA catalyzed the excision of fU placed opposite G, as well as A, and the excision efficiencies of fU for fU:G and fU:A pairs were comparable. In addition, MutS protein involved in methyl-directed mismatch repair also recognized fU:G mispairs and bound them with an efficiency comparable to T:G mispairs, but it did not recognize fU:A pairs. Prior complex formation between MutS and a heteroduplex containing an fU:G mispair inhibited the activity of AlkA to fU. These results suggest that fU present in DNA can be restored by two independent repair pathways, i.e. the base excision repair pathway initiated by AlkA and the methyl-directed mismatch repair pathway initiated by MutS. Biological relevance of the present results is discussed in light of DNA replication and repair in cells.  相似文献   

9.
Escherichia coli treated with nontoxic levels of the superoxide-generating redox-cycling agents menadione and paraquat showed dramatic changes in protein composition as monitored by two-dimensional gel analysis. The distribution of proteins synthesized after treatment with these agents overlapped significantly with that seen after hydrogen peroxide treatment, and it included all the proteins in the oxyR regulon. The redox-cycling agents also elicited the synthesis of at least 33 other proteins that were not seen with hydrogen peroxide, including three heat shock proteins, the Mn-containing superoxide dismutase, the DNA repair protein endonuclease IV, and glucose-6-phosphate dehydrogenase. At least some of these redox-inducible proteins appear to be part of a specific response to intracellular superoxide. E. coli is thus equipped with a network of inducible responses against oxidative damage, controlled in multiple regulatory pathways.  相似文献   

10.
K Fujikawa  H Kamiya    H Kasai 《Nucleic acids research》1998,26(20):4582-4587
The mutational properties of 5-formyl-2'-deoxyuridine 5'-triphosphate (5-CHO-dUTP) and 5-hydroxy-2'-deoxycytidine 5'-triphosphate (5-OH-dCTP), the major oxidatively damaged pyrimidine nucleotides derived from dTTP and dCTP, respectively, were analyzed by an in vivo assay. 5-CHO-dUTP and 5-OH-dCTP were directly incorporated into Escherichia coli , and their mutagenicities were evaluated by the chromosomal lacI forward mutation assay. The mutation frequencies increased, depending on the dose of these damaged nucleotides, indicating that these nucleotides were incorporated into E.coli and acted as mutagens in vivo . The mutagenicities of 5-CHO-dUTP and 5-OH-dCTP were comparable to that of 8-hydroxy-2'-deoxyguanosine 5'-triphosphate, a major form of dGTP oxidative damage. 5-CHO-dUTP induced G.C to A.T, A.T to G.C and G.C to T.A mutations, and 5-OH-dCTP elicited G.C to A.T, A.T to C.G and G.C to T.A mutations.  相似文献   

11.
It was found that nonenzymatic DNA methylation proceeds in water solution in the presence of S-adenosylmethionine (AdoMet). The main reaction products are thymine and 5-methylcytosine residues. It was shown that labelled thymine residues are formed also upon DNA incubation in the presence of [methyl-14C]methionine as well as [methyl-14C]cobalamine. Only cytosine reacts with AdoMet resulting in thymine production. AdoMet may be a potential mutagen that induces GC----AT transitions during DNA replication in the cell.  相似文献   

12.
13.
Complexes of f2 phage RNA and its A protein, or maturation protein, transfect Escherichia coli cells much better than does protein-free RNA. We used these complexes to introduce the bacteriophage f2 lysis gene into cells. The A protein-RNA complex was found to kill cells, probably by causing them to leak large macromolecules. Previously induced beta-galactosidase leaked from cells treated either with the A protein-RNA complex or with lethal but noninfectious complexes that had been treated with formaldehyde. This observation was consistent with an earlier finding that formaldehyde-treated f2 RNA stimulates the in vitro synthesis of a lysis protein. The complexes did not stimulate the rate of leakage of beta-galactosidase from a streptomycin-resistant mutant known to be lysis defective. On the other hand, the rate of leakage was increased in a double mutant resistant to both streptomycin and rifampin and which is lysed normally by f2 bacteriophage.  相似文献   

14.
5-methyl-2'-deoxycytidine (5-Me-dC) is formed by the enzymatic methylation of dC, primarily in CpG sequences in DNA, and is involved in the regulation of gene expression. In the present study, 5-Me-dC and double-stranded DNA fragments containing 5-Me-dC were either gamma-irradiated or aerobically treated with Fenton-type reagents, Fe(II)-EDTA, Fe(II)-nitrilotriacetic acid, Fe(III)-EDTA-H(2)O(2)-catechol or ascorbic acid-H(2)O(2) under neutral conditions. The formation of 5-formyl-2'-deoxycytidine (5-CHO-dC) was observed upon treatment of both 5-Me-dC and DNA fragments containing 5-Me-dC. The yields of 5-CHO-dC from 5-Me-dC and those of 5-formyl-2'-deoxyuridine from dT were comparable. These results suggest that 5-Me-dC in DNA is as susceptible to oxidation as dT in cells, and raise the possibility that 5-CHO-dC may contribute to the high mutagenic rate observed in CpG sequences in genomic DNA.  相似文献   

15.
5-Bromo-2'-deoxyuridine (BrdU) and 5-chloro-2'-deoxyuridine (CldU) were sequentially administered intraperitoneally into mice at 1-hr intervals. After one additional hr, the small intestines were resected, fixed, and embedded in paraffin. In histological sections stained with monoclonal antibody Br-3 reactive to both BrdU and CldU, and CldU antibody reactive only to CldU, three types of staining could be identified in the proliferating zone. Cells with nuclei stained only with Br-3 antibody were estimated to have completed DNA replication during the first 1 hr and were fixed in G(2)/M-phase. Those nuclei were frequently found in apical areas of the simple columnar epithelium of the intestine, whereas other nuclei were located basally in the cells. This observation suggested intracellular movement of cell nuclei in G(2)/M-phase. Identification of cells in early S-phase became possible using these antibodies in combination with DAB and fluorescence stainings. Replication sites in early S-phase nuclei were found to be numerous, whereas in late S-phase they were larger in size and much smaller in number.  相似文献   

16.
The extent of base pairing in Escherichia coli and Bacillus stearothermophilus 5S RNAs was determined by infrared spectroscopy. From the infrared spectra taken at 20 degrees and 52 degrees C it is concluded that E. coli and B. stearothermophlius 5S RNAs possess a large number of base pairs (Table I). Comparison of our results with those previously published using other methods leads to the conclusion that the structures of prokaryotic 5S RNAs involve a large number of tertiary interactions, in which the base pairing is not necessarily solely of the Watson-Crick type.  相似文献   

17.
Shah D  Gold B 《Biochemistry》2003,42(43):12610-12616
The use of DNA equilibrium binding molecules to transfer alkyl groups to specific positions on DNA is an approach to generating cytotoxic DNA damage while avoiding the formation of promutagenic lesions that increase the risk for the development of secondary cancer. We have previously reported that in vitro a neutral DNA equilibrium binding agent based on an N-methylpyrrolecarboxamide dipeptide (lex) and modified with an O-methyl sulfonate ester functionality (Me-lex) selectively affords N3-methyladenine lesions in >90% yield relative to the formation of other adducts. While in vitro interactions between the lex dipeptide and DNA have been thoroughly studied, in vivo interactions are more difficult to elucidate. We report herein the relationship between the in vivo formation of N3-methyladenine and toxicity in wild-type and base excision repair defective mutant Escherichia coli. In addition, it is demonstrated that both N3-methyladenine adduction and cytotoxicity can be inhibited in vivo with netropsin, a potent competitive inhibitor of binding of lex to DNA. The results show a clear relationship between the levels of N3-methyladenine and toxicity in an alkA/tag glycosylase mutant that cannot remove the adduct from its genome. For methyl methanesulfonate, which does not sequence selectively methylate DNA, a relationship between the formation of N3-methyladenine and toxicity is also observed. However, netropsin affects neither the level of N3-methyladenine nor the toxicity of methyl methanesulfonate in E. coli.  相似文献   

18.
We report that anticancer 5-fluoro-2 '-deoxyuridine (FUdR) shows cytotoxicity against mouse cancer cell line FM3A, using a progeny clone F28-7 and its variant F28-7-A. In this process, the cell-death morphology is different between F28-7 and F28-7-A cells, that is, necrosis in F28-7 but apoptosis in F28-7-A cells. In the proteomic analysis of these cells before their exposure to FUdR, the nuclear inner-membrane protein lamin B1 is up-regulated in F28-7 but not in F28-7-A, suggesting that lamin B1 may possess a function to regulate the morphology of cell-death. A knockdown of lamin B1 expression in F28-7 cells was performed by use of the small interfering RNA technique, resulting in a decrease of the lamin B1-expression level down to the level in F28-7-A. Remarkably, the FUdR-induced death morphology of this knocked-down F28-7 was apoptosis, definitely different from the necrosis that occurs in the FUdR-treated original F28-7. Thus, the swelling feature for the necrosis was no longer observable, and instead cell shrinkage typical of apoptosis took place in almost all the cells examined. This finding suggests a new role for lamin B1 as a regulator in cell death.  相似文献   

19.
The oxidation and deamination of 5-methylcytosine (5mC) in DNA generates a base-pair between 5-hydroxymethyluracil (5hmU) and guanine. 5hmU normally forms a base-pair with adenine. Therefore, the conversion of 5mC to 5hmU is a potential pathway for the generation of 5mC to T transitions. Mammalian cells have high levels of activity of 5hmU-DNA glycosylase, which excises 5hmU from DNA. However, glycosylases that similarly excise 5hmU have not been observed in yeast or Escherichia coli. Recently, we found that E.coli MutM, Nei and Nth have DNA glycosylase activity for 5-formyluracil, which is another type of oxidation product of the thymine methyl group. In this study, we examined whether or not E.coli MutM, Nei and Nth have also DNA glycosylase activity that acts on 5hmU in vitro. When incubated with synthetic duplex oligonucleotides containing 5hmU:G or 5hmU:A, purified MutM, Nei and Nth cleaved the 5hmU:G oligonucleotide 58, 5 and 37 times, respectively, more efficiently than the 5hmU:A oligonucleotide. In E.coli, the 5hmU-DNA glycosylase activities of MutM, Nei and Nth may play critical roles in the repair of 5hmU:G mispairs to avoid 5mC to T transitions.  相似文献   

20.
Recently, a novel verocytotoxin named VT2y was described which belongs to the STx family and is produced by Escherichia coli isolated from domestic poultry with swollen head syndrome (SHS). The VT2y toxin induced apoptosis in Vero, HeLa, CHO, CEF (primary chicken embryo fibroblast) and PCK (primary chicken kidney) cell lines. Morphological evidence (nuclear shrinkage, chromatin condensation and blebbing of the plasma membrane) of apoptosis could be distinguished in 15 min and was maximal at 1 h after treatment with VT2y. This was confirmed by the terminal dUTP nick-end-labeling (TUNEL) method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号