首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to explore the role of the mitochondrial alternative oxidase (AOX) in the protection of photosynthesis during drought in wheat leaves. The relative water contents of water-replete and drought-exposed wheat plants were 97.2+/-0.3 and 75+/-2, respectively. Drought increased the amount of leaf AOX protein and also enhanced the rate of AOX-dependent O(2) uptake by the respiratory electron transport chain. The amount of the reduced, active form of the AOX protein was specifically increased by drought. The AOX inhibitor salicylhydroxamic acid (1 mM; SHAM) inhibited 70% of AOX activity in vivo in both water-replete and drought-exposed plants. Plants treated with SHAM were then exposed to low (100), high (350), or excess light (800 mumol photons m(-2) s(-1)) for 90 min. SHAM did not modify chlorophyll a fluorescence quenching parameters in water-replete controls after any of these treatments. However, while the maximal quantum yield of photosystem II (PSII) electron transport (F(v)/F(m)) was not affected by SHAM, the immediate quantum yield of PSII electron transport (Phi(PSII)) and photochemical quenching (qP) were gradually reduced by increasing irradiance in SHAM-treated drought-exposed plants, the decrease being most pronounced at the highest irradiance. Non-photochemical quenching (NPQ) reached near maximum levels in plants subjected to drought at high irradiance. However, a combination of drought and low light caused an intermediate increase in NPQ, which attained higher values when AOX was inhibited. Taken together, these results show that up-regulation of the respiratory AOX pathway protects the photosynthetic electron transport chain from the harmful effects of excess light.  相似文献   

2.
Two cultivars of common buckwheat (Fagopyrum esculentum), Pyra and Siva, were exposed to three treatments: water deficit (WD), foliar spraying by selenium (as Na2SeO4) (Se), and the combination of both. In WD-plants the stomatal conductance (g s) was significantly lower, while WD+Se-plants of Siva had significantly higher g s. None of the treatments resulted in significant differences of potential photochemical efficiency of photosystem 2 (PS2). A significantly higher actual photochemical efficiency of PS2 was obtained in Siva WD-plants and in Pyra Se-and WD-plants which was possibly due to improvement of plant water management during treatment. A significant interaction was observed between the effects of WD and Se on respiratory potential in Pyra. WD, Se, and the WD+Se combination resulted in shorter Pyra and Siva plants, with a reduced number of nodes. WD slightly negatively affected the yield per plant. The yield was highest in plants exposed to Se only. In Siva the number of seeds was triple while the average seed mass remained unchanged.  相似文献   

3.
Light interception, stomatal conductance and chlorophyll fluorescence were measured in potato ( Solanum tuberosum L.) grown either irrigated, or droughted from the time of plant emergence. Compared with the irrigated treatment, drought reduced both light interception and stomatal conductance. In both treatments, the yields of variable fluorescence in the dark- and light-adapted states (Fy/Fm and F'v/F'm, respectively) were negatively correlated with photosynthetic photon flux density (PPFD) and mirrored daytime changes in PPFD. Photochemical quenching was positively correlated with PPFD, but the dominant effect of F'v/F'm resulted in a decrease in the quantum yield of photosystem II (PSII) electron transport with increasing PPFD.
Drought had no significant effect on the functioning of PSII and the balance between photochemical and non-photochemical quenching was unaffected. Non-photochemical quenching was not increased by drought and the quantum yield of PSII electron transport was unaffected. It is concluded that, in leaves of droughted plants, excess energy, resultant of stomatal limitation of photosynthesis, was dissipated by photochemical quenching such as increased photorespiration.  相似文献   

4.
This study investigated whether uniconazole confers drought tolerance to soybean and if such tolerance is correlated with changes in photosynthesis, hormones and antioxidant system of leaves. Soybean plants were foliar treated with uniconazole at 50 mg L-1 at the beginning of bloom and then exposed to water deficit stress at pod initiation for 7 d. Uniconazole promoted biomass accumulation and seed yield under both water conditions. Plants treated with uniconazole showed higher leaf water potential only in water-stressed condition. Water stress decreased the chlorophyll content and photosynthetic rate, but those of uniconazole-treated plants were higher than the stressed control. Uniconazole increased the maximum quantum yield of photosystemand ribulose-1,5-bisphosphate carboxylase/oxygenase activity of water-stressed plants. Water stress decreased partitioning of assimilated 14C from labeled leaf to the other parts of the plant. In contrast, uniconazole enhanced translocation of assimilated 14C from labeled leaves to the other parts, except stems, regardless of water treatment. Uniconazole-treated plants contained less GA3, GA4 and ABA under well-watered condition than untreated plants, while the IAA and zeatin levels were increased substantially under both water conditions, and ABA concentration was also increased under water stressed condition. Under water-stressed conditions, uniconazole increased the content of proline and soluble sugars, and the activities of superoxide dismutase and peroxidase in soybean leaves but not the malondialdehyde content or electrical conductivity. These results suggest that uniconazole-induced tolerance to water deficit stress in soybean was related to the changes of photosynthesis, hormones and antioxidant system of leaves.  相似文献   

5.
外源钙对干旱胁迫下烤烟幼苗光系统Ⅱ功能的影响   总被引:8,自引:0,他引:8  
Zhang HH  Zhang XL  Xu N  He GQ  Jin WW  Yue BB  Li X  Sun GY 《应用生态学报》2011,22(5):1195-1200
以叶绿素快相荧光动力学曲线(OJIP)为探针,研究了外源钙对干旱胁迫下烤烟幼苗光系统Ⅱ(PSⅡ)功能的影响.结果表明:干旱胁迫降低了烤烟幼苗PSⅡ原初光能转换效率(Fv/Fm)和电子传递速率(ETR),抑制了光合作用的原初过程,烤烟幼苗叶片发生了明显的光抑制.叶面喷施10.0 mmol·L-1CaCl2溶液后烤烟叶片的光合电子传递能量比例(ФEo)在干旱胁迫下的降低幅度明显小于对照(喷施清水),电子转运效率(ET0/RC)在干旱胁迫下明显高于对照.叶面喷施CaC12溶液增加了PSⅡ捕获光能用于光合电子传递的比例、剩余有活性反应中心的效率和电子传递链中的能量传递,使烤烟叶片的光系统Ⅱ在干旱胁迫下保持相对较高的活性,从而提高了烤烟幼苗的抗旱能力.  相似文献   

6.
Oat (Avena sativa) plants were grown in the field near the urban area of Valencia, Eastern Spain. The data on air quality showed that ozone was the main phytotoxic pollutant present in ambient air reaching a 7-h mean of 46 nl l(-1) and a maximum hourly peak of 322 nl l(-1). The effect of ambient ozone on PSII activity was examined by measurements of chlorophyll (Chl) a fluorescence. In leaves with visible symptoms, the function of PSII was changed at high actinic irradiances. Nonphotochemical quenching (NPQ) was higher and quantum efficiency of PSII (Phi(PSII)), photochemical quenching (q(p)), quantum efficiency of excitation capture and PSII electron flow (F(v)'/F(m)') were lower. An enhanced susceptibility to photoinhibition was observed for symptom-exhibiting leaves compared to leaves that remain free of visible symptoms. Both the lowering of photosynthesis efficiency and the increased sensitivity to photoinhibition probably contribute to reduced crop yield in the field, to different extents, depending on growth conditions. To our knowledge, this is the first report that demonstrates that quantum efficiency of exciton trapping in PSII is associated with foliar injury in oat leaves in response to ambient concentration of ozone.  相似文献   

7.
在新疆气候生态条件下, 采用膜下滴灌植棉技术, 设置不同滴灌水分处理, 研究了不同滴灌量条件下棉花(Gossypium hirsutum)苞叶和叶片碳同化、光呼吸作用、光系统II (PSII)热耗散作用及其光破坏防御机制的差异, 以揭示滴灌节水条件下棉花苞叶缓解光抑制的机理及与棉花抗旱特性的关系。结果表明: 棉花开花后苞叶及叶片在高温强光下实际光化学效率(ΦPSII)显著降低, 发生明显的光抑制现象, 但苞叶的光抑制程度较叶片轻; 与正常滴灌量处理相比, 节水滴灌条件下棉花水分亏缺, 叶片净光合速率(Pn)、ΦPSII、光呼吸(Pr)、光化学猝灭系数(qP)降低, 非光化学猝灭系数(NPQ)升高, 叶片光抑制程度加重, 而苞叶Pn、ΦPSII、Pr、qP、NPQ变化不大, 与正常滴灌量处理相比, 光抑制程度无显著差异。苞叶光呼吸速率与光合速率的比值(Pr/Pn)显著高于叶片; 滴灌节水条件下棉花适度水分亏缺对苞叶光呼吸及Pr/Pn无显著影响。高温强光下, 棉花节水滴灌对叶片PSII量子产量的转化与分配影响显著, 但对苞叶的影响不显著; 苞叶非调节性能量耗散的量子产量(Y(NPQ))高于叶片, 因此能有效地将PSII的过剩光能以热的形式耗散。综上所述, 与叶片相比, 苞叶对轻度水分亏缺不敏感, 是棉花适应干旱逆境较强的器官, 苞叶光呼吸和热耗散作用对光破坏防御具有重要意义。  相似文献   

8.
Brassinolide (BR) is a relatively new plant growth regulator. To test whether BR could be used to increase tolerance to water deficits in soybean, the effects of BR application on photosynthesis, assimilate distribution, antioxidant enzymes and seed yield were studied. BR at 0.1 mg l−1 was foliar applied at the beginning of bloom. Two levels of soil moisture (80% field capacity for well-watered control and 35% for drought-stressed treatment) were applied at pod initiation. BR treatment increased biomass accumulation and seed yield for both treatments. Drought stress inhibited translocation of assimilated 14C from the labeled leaf, but BR increased the translocation for both treatments. Drought stress depressed chlorophyll content and assimilation rate (A), while chlorophyll content and A of BR-treated plants were greater than that of drought-stressed plants. BR treatment increased maximum quantum yield of PS II, the activity of ribulose-1,5-bisphosphate carboxylase, and the leaf water potential of drought-stressed plants. Treatment with BR also increased the concentration of soluble sugars and proline, and the activities of peroxidase and superoxide dismutase of soybean leaves when drought-stressed. However, it decreased the malondialdehyde concentration and electrical conductivity of leaves under drought stress. This study show that BR can be used as a plant growth regulator to enhance drought tolerance and minimize the yield loss of soybean caused by water deficits.  相似文献   

9.
Relationship between photosystem II activity and CO2 fixation in leaves   总被引:9,自引:2,他引:7  
There is now potential to estimate photosystem II (PSII) activity in vivo from chlorophyll fluorescence measurements and thus gauge PSII activity per CO2 fixed. A measure of the quantum yield of photosystem II, ΦII (electron/photon absorbed by PSII), can be obtained in leaves under steady-state conditions in the light using a modulated fluorescence system. The rate of electron transport from PSII equals ΦII times incident light intensity times the fraction of incident light absorbed by PSII. In C4 plants, there is a linear relationship between PSII activity and CO2 fixation, since there are no other major sinks for electrons; thus measurements of quantum yield of PSII may be used to estimate rates of photosynthesis in C4 species. In C3 plants, both CO2 fixation and photorespiration are major sinks for electrons from PSII (a minimum of 4 electrons are required per CO2, or per O2 reacting with RuBP). The rates of PSII activity associated with photosynthesis in C3 plants, based on estimates of the rates of carboxylation (vo) and oxygenation (vo) at various levels of CO2 and O2, largely account for the PSII activity determined from fluorescence measurements. Thus, in C3 plants, the partitioning of electron flow between photosynthesis and photorespiration can be evaluated from analysis of fluorescence and CO2 fixation.  相似文献   

10.
Drought is one of the most serious environmental limitations for poplar growth. Although the ways in which plants deal with water stress and the effects of arbuscular mycorrhizal (AM) formation have been well documented, little is known about how the male and female plants of Populus cathayana respond to drought and AM formation. We also aimed to investigate the potential role of AM fungi in maintaining gender balance. We tested the impact of drought and AM formation on water status and photosynthesis. The results suggested that both sexes showed similar responses to water stress: drought decreased the growth of stem length (GSL), growth of ground diameter (GGD), relative water content (RWC), increased the relative electrolyte leakage (REL), and limited the photosynthesis and chlorophyll fluorescence indexes. However, the responses of the two sexes to drought and AM formation differed to some extent. AM formation had positive effects on RWC, photosynthesis and the intrinsic water use efficiency (WUEi) but negative effects on the REL of males and females, especially under drought. AM formation enhanced the maximum quantum yield of photosystem II (PSII) (Fv/Fm), the actual quantum yield of PSII (ΦPSII), non‐photochemical quenching (qN) and photochemical quenching (qP) under drought conditions, and had no significant effects under well‐watered conditions except on the qP of males. Principal component analysis showed that males were significantly more drought tolerant than females, and AM formation enhanced drought tolerance, particularly among males, which suggested that AM fungi are beneficial for ecological stability and for P. cathayana survival under drought conditions.  相似文献   

11.
The functioning of the photosynthetic apparatus of cotton (Gossypium hirsutum) grown during the onset of water limitation was studied by gas-exchange and chlorophyll fluorescence to better understand the adaptation mechanisms of the photosynthetic apparatus to drought conditions. For this, cotton was grown in the field in Central Asia under well-irrigated and moderately drought-stressed conditions. The light and CO(2) responses of photosynthesis (A(G)), stomatal conductance (g(s)) and various chlorophyll fluorescence parameters were determined simultaneously. Furthermore, chlorophyll fluorescence images were taken from leaves to study the spatial pattern of photosystem II (PSII) efficiency and non-photochemical quenching parameters. Under low and moderate light intensity, the onset of drought stress caused an increase in the operating quantum efficiency of PSII photochemistry (varphi(PSII)) which indicated increased photorespiration since photosynthesis was hardly affected by water limitation. The increase in varphi(PSII) was caused by an increase of the efficiency of open PSII reaction centers (F(v)'/F(m)') and by a decrease of the basal non-photochemical quenching (varphi(NO)). Using a chlorophyll fluorescence imaging system a low spatial heterogeneity of varphi(PSII) was revealed under both irrigation treatments. The increased rate of photorespiration in plants during the onset of drought stress can be seen as an acclimation process to avoid an over-excitation of PSII under more severe drought conditions.  相似文献   

12.
In this paper, photosynthetic characteristics of green leaves (GL) and green pseudobulbs (GPSB) of C3 orchid Oncidium Golden Wish were first studied. Light saturation for photosynthesis and maximum photosynthetic rates (P max) were significantly higher in GL than in GPSB. The results of the optimal PSII quantum yield (Fv/Fm ratio), electron transport rate (ETR), the effective photochemical quantum yield (ΔF/Fm′) and nonphotochemical quenching (NPQ) of Chl fluorescence revealed that GPSB had lower light utilization than that of GL. Significantly higher photosynthetic pigments were found in GL than in GPSB. Alteration of source/sink ratio had no impact on all photosynthetic parameters for both GL and GPSB after a short term of 3 days or even a long term of 2 weeks of treatments although there were significant decreases in GL carbohydrate concentration of GL-darkened plants by the end of the day. However, decreases of all photosynthetic parameters of GL were observed in GL-darkened plants after 4 weeks of treatment compared to those of fully illuminated (FI) and GPSB-darkened plants. These results indicate that the level of carbohydrates in GL plays an important role in regulating their photosynthesis. Due to their lower photosynthetic capacities, GPSB function mainly as sinks. Darkening GPSB up to 2 weeks did not affect their own P max and the P max of GL and thus, did not result in significant decreases of total carbohydrate concentration of GPSB. As GPSB store a large amount of carbohydrates, it could also act as a source when the level of carbohydrates decreased. Thus, GL could depend on GPSB carbohydrates to regulate their photosynthesis when their source capacity was removed. However, 4 weeks after treatments, photosynthetic capacities of GL were significantly lower in GL- and GPSB-darkened plants than in FI plants, which could be due to the lower total soluble and insoluble sugar concentrations of both GL and GPSB in these plants.  相似文献   

13.
谭伟  梁婷  翟衡 《应用生态学报》2012,23(8):2185-2190
以沙培1年生巨峰葡萄为材料,研究土施乙草胺对葡萄叶片光合、叶绿素荧光特性和叶绿体结构的影响.结果表明:喷施初期(处理后第13天),上部叶片净光合速率和气孔导度显著下降,PSII最大光化学效率和实际光化学效率显著低于对照,快速叶绿素荧光诱导动力学曲线中J点和K点荧光显著上升,性能指数PIABS显著下降,其PSII反应中心和放氧复合体受损伤程度显著高于中部叶片,但随着处理时间的延长,受损伤的程度减轻.在喷施后期(处理后第60天),上部叶片与中部叶片各指标之间的差距变小;下部叶片对除草剂的响应滞后,PSII反应中心和放氧复合体受到较大损伤,J点和K点荧光上升及PIABS下降的幅度高于中、上部叶片.乙草胺处理后第60天,葡萄叶片可溶性糖和淀粉含量增加,中、上部叶片色素含量显著下降,叶绿体膜受损,叶绿体变小,片层结构模糊或间隙增大.表明土施乙草胺可传导至葡萄地上部,导致叶片光合机构损伤、PSII活性下降和光合速率降低.  相似文献   

14.
A study was conducted, using rapid time course of chlorophyll (Chl) fluorescence parameters, and light-response curves of Chl fluorescence parameters, to determine the induction requirements and response of photosystem II (PSII) photochemistry and non-photochemical reactions after changes in irradiance in greenhouse mulberry plants. The induction of PSII photochemistry rapidly approached to steady state after leaves were treated from darkness to low irradiance (LI). When irradiance of leaves changed from darkness to high irradiance (HI), a biphasic induction was observed. A slight photoinhibition occurred in the leaves exposed to sunlight coming to the greenhouse, whereas a chronic photoinhibition occurred in the leaves fully exposed to sunlight outside the greenhouse. The chronic photoinhibition was demonstrated by sustained reduction of maximal quantum yield of PSII photochemistry (Fv/Fm). Moreover, the leaves of mulberry plants in greenhouse were sensitive to abrupt changes in irradiance and the sensitivity of leaves suffered in a short-term (1h) high light treatment was reduced, based on the changes in photosynthetic quantum conversion. These results demonstrated an inducible response of photosynthetic quantum conversion to changes in irradiance in mulberry.  相似文献   

15.
The effect of iron solid particulate matter (SPMFe) deposited onto soil and leaves on photosynthesis and oxidative stress was evaluated in Clusia hilariana, a CAM tropical tree of high occurrence in Brazilian restingas. Significant increases in iron content were found in plants exposed to SPMFe applied onto leaf and soil surfaces. However, only the application of SPMFe on leaves of C. hilariana caused significant reductions in some evaluated characteristics such as photosynthetic rate, stomatal conductance, transpiration, organic acid accumulation, potential quantum yield of PSII, and changes in daily CAM photosynthesis pattern. Increase in relative membrane permeability and reduction in catalase and superoxide dismutase activities in the leaves of plants exposed to SPMFe also were observed; however, lipid peroxidation did not change. These responses seem to be due to the combination of physical effects such as increase of leaf temperature, reduction in light absorption, obstruction of stomatal pores, and biochemical effects triggered by oxidative stress.  相似文献   

16.
The effects of drought on chlorophyll fluorescence characteristics of PSII, photosynthetic pigments, thylakoid membrane protein (D1), and proline content in different varieties of mung bean plants were studied. Drought stress inhibits PSII activity and induces alterations in D1 protein. We observed a greater decline in the effective quantum yield of PSII, electron transport rate, and saturating photosynthetically active photon flux density (PPFDsat) under drought stress in var. Anand than var. K-851 and var. RMG 268. This may possibly be due to either downregulation of photosynthesis or photoinhibition process. Withholding irrigation resulted in gradual diminution in total Chl content at Day 4 of stress. HPLC analysis revealed that the quantity of β-carotene in stressed plants was always higher reaching maxima at Day 4. Photoinactivation of PSII in var. Anand includes the loss of the D1 protein, probably from greater photosynthetic damage caused by drought stress than the other two varieties.  相似文献   

17.
Pistachio (Pistacia vera L.) has a high tolerance to drought and soil salinity. Although adult pistachio trees are well known to be drought tolerant, the studies on physiological adaptation of pistachio cultivars to drought are limited. Therefore, three pistachio cultivars, i.e., Akbari, Kaleghochi, and Ohadi were subjected to three osmotic drought stress treatments: control (?0.1 MPa), moderate (?0.75 MPa) and severe drought (?1.5 MPa) stress using PEG 6000 for a 14-day period. All drought stress treatments decreased net photosynthesis (P n), stomatal conductance (g s), intercellular CO2 concentration (C i), and transpiration rate (E), but Ohadi maintained better its photosynthetic capacity compared to Akbari and Kaleghochi. Maximum quantum yield of PSII photochemistry (F v /F m), effective PSII quantum yield (ΦPSII) and photochemical quenching (qP) were also reduced. The chlorophyll fluorescence parameters indicated that Akbari was more susceptible to the applied drought stress. Drought stress levels decreased chlorophyll pigments, fresh weight, stem elongation, leaf nitrogen content (N), leaf water potential and increased water use efficiency (WUE). Proline increased strongly under drought stress for Akbari. After 2 weeks of stress a recovery of 2 weeks was applied. This period was insufficient to fully restore the negative effects of the applied stress on the studied cultivars. Based on the reduction of photosynthesis and the increase of the proline content Akbari seems more sensitive to the applied drought stress.  相似文献   

18.
A field experiment was conducted to investigate the effects of foliar application of a synthetic cytokinin (BAP) on source and sink strength of four different six-rowed barley (Hordeum vulgare L.) cultivars. Different spraying treatments consisting of spraying on whole plant, spraying only on leaves and spraying only on ears started at anthesis and continued for 7 days. One additional spraying was carried out on late period of grain filling. Results showed that spraying only on leaves did not affect ear weight, grain yield and 1,000-grain weight, while the two other treatments increased all above mentioned traits. Neither of treatments affected stem weight, biological yield and contribution of stem reserves in grain filling. Exogenous cytokinin did not increase photosynthetic rate and chlorophyll content in treated leaves until late period of grain filling, although there was no significant increase in final grain weight due to late application of BAP. Our results suggested that effects of foliar application of BAP were mostly due to increased sink size soon after anthesis and increased sink demand probably met by current photosynthesis of organs other than leaves, like ear green tissues. An erratum to this article is available at .  相似文献   

19.
Reaumuria soongorica (Pall.) Maxim., a perennial semi-shrub, is widely found in semi-arid areas in northwestern China and can survive severe desiccation of its vegetative organs. In order to study the protective mechanism of desiccation tolerance in R. soongorica, diurnal patterns of net photosynthetic rate (Pn), water use efficiency (WUE) and chlorophyll fluorescence parameters of Photosystem II (PSII), and sugar content in the source leaf and stem were investigated in 6-year-old plants during progressive soil drought imposed by the cessation of watering. The results showed that R. soongorica was characterized by very low leaf water potential, high WUE, photosynthesis and high accumulation of sucrose in the stem and leaf abscission under desiccation. The maximum Pn increased at first and then declined during drought, but intrinsic WUE increased remarkably in the morning with increasing drought stress. The maximal photochemical efficiency of PSII (Fv/Fm) and the quantum efficiency of noncyclic electric transport of PSII(ΦPSII) decreased significantly under water stress and exhibited an obvious phenomenon of photoinhibition at noon. Drought stressed plants maintained a higher capacity of dissipation of the excitation energy (measured as NPQ) with the increasing intensity of stress. Conditions of progressive drought promoted sucrose and starch accumulation in the stems but not in the leaves. However, when leaf water potential was less than −21.3 MPa, the plant leaves died and then abscised. But the stem photosynthesis remained and, afterward the plants entered the dormant state. Upon rewatering, the shoots reactivated and the plants developed new leaves. Therefore, R. soongorica has the ability to reduce water loss through leaf abscission and maintain the vigor of the stem cells to survive desiccation.  相似文献   

20.
The effects of exogenous applied proline (Pro), on photosystem II (PSII) photochemistry of drought stressed (DS) 4-week old Arabidopsis thaliana plants, was studied by using chlorophyll (chl) fluorescence imaging. The maximum quantum yield of PSII photochemistry (F v /F m) in DS plants decreased significantly to 77% of that of the control value, suggesting that DS plants could not maintain PSII function, possibly due to accelerated photoinhibition of PSII. Free Pro and total soluble sugars (SS) increased, in response to DS. Exogenous foliar application of Pro by spraying, led to a remarkable increase in the accumulation of Pro and surprisingly also of SS. Both of them served to scavenge reactive oxygen species (ROS), as it was evident by the decreased lipid peroxidation level measured as malondialdehyde (MDA). DS plants sprayed with Pro showed a tolerance to photoinhibition, this indicated by F v/F m being close to values typical of healthy leaves by maintaining more than 98% of PSII function. Also the higher quantum efficiency of PSII photochemistry (Φ PSΙΙ ) and the decreased excitation pressure (1 ? q p ) recorded for stressed leaves with Pro, lead us to conclude that Pro appears to be involved in the protection of chloroplast structures by quenching ROS. The enhanced dissipation of excess light energy of PSII, in part accounts for the observed increased resistance to DS in A. thaliana leaves with Pro. Our data pointed out that Pro signalling interacts with SS signaling pathway and provided a new insight in Pro metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号