首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of various nutritional and environmental factors on the accumulation of organic acids (mainly L-malic acid) by the filamentous fungus Aspergillus flavus were studied in a 16-L stirred fermentor. Improvement of the molar yield (moles acid produced per moles glucose consumed) of L-malic acid was obtained mainly by increasing the agitation rate (to 350 rpm) and the Fe(z+) ion concentration (to 12 mg/L) and by lowering the nitrogen (to 271 mg/L) and phosphate concentrations (to 1.5 mM) in the medium. These changes resulted in molar yields for L-malic acid and total C(4) acids (L-malic, succinic, and fumaric acids) of 128 and 155%, respectively. The high molar yields obtained (above 100%) are additional evidence for the operation of part of the reductive branch of the tricarboxylic acid cycle in L-malic acid accumulation by A. flavus. The fermentation conditions developed using the above mentioned factors and 9% CaCO(3) in the medium resulted in a high concentration (113 g/L L-malic acid from 120 g/L glucose utilized) and a high overall productivity (0.59 g/L h) of L-malic acid. These changes in acid accumulation coincide with increases in the activities of NAD(+)-malate dehydrogenase, fumarase, and citrate synthase.  相似文献   

2.
Of various yeasts tested in the conversion of fumaric to L-malic acid, Saccharomyces bayanus had the highest activity of fumarase. Cells permeabilized with 0.2% (w/v) CTAB for 5 min gave maximum enzyme activity. Under non-growth conditions, fumarase activity in the permeabilized cells was four times higher (271 U/g) than that of the intact cells (67 U/g). The proposed mathematical model for the batch production of L-malic acid was validated at different initial fumaric acid concentrations. The average conversion of fumaric acid was up to 82% and gave 21, 40, 83 and 175 mM L-malic acid from respectively, 25, 50, 100 and 210 mM: fumaric acid.  相似文献   

3.
Optimal conditions were chosen for cultivation of Escherichia coli 85 cells with a rather high fumarate-hydratase activity on a cheap medium containing no edible raw material. An active biocatalyst for the synthesis of L-malic acid from fumaric acid was obtained based on E. coli 85 cells immobilized in carrageenan. The enzymatic synthesis of L-malic acid from potassium fumarate was kinetically studied and optimized. Some thermodynamic parameters of fumaric acid hydration into malic acid were determined. A technique for assaying the reaction mixture was developed that involved high performance liquid chromatography.  相似文献   

4.
Malic enzyme [L-malate: NAD(P)(+) oxidoreductase (EC 1.1.1.39)] catalyzes the oxidative decarboxylation of L-malic acid to produce pyruvic acid using the oxidized form of NAD(P) (NAD(P)(+)). We used a reverse reaction of the malic enzyme of Pseudomonas diminuta IFO 13182 for HCO(3)(-) fixation into pyruvic acid to produce L-malic acid with coenzyme (NADH) generation. Glucose-6-phosphate dehydrogenase (EC1.1.1.49) of Leuconostoc mesenteroides was suitable for coenzyme regeneration. Optimum conditions for the carboxylation of pyruvic acid were examined, including pyruvic acid, NAD(+), and both malic enzyme and glucose-6-phosphate dehydrogenase concentrations. Under optimal conditions, the ratio of HCO(3)(-) and pyruvic acid to malic acid was about 38% after 24 h of incubation at 30 degrees C, and the concentration of the accumulated L-malic acid in the reaction mixture was 38 mM. The malic enzyme reverse reaction was also carried out by the conjugated redox enzyme reaction with water-soluble polymer-bound NAD(+).  相似文献   

5.
黄曲霉发酵薯干粉水解液生产L-苹果酸   总被引:1,自引:0,他引:1  
经选育和诱变得到一株产苹果酸的黄曲霉菌TH5007,通过发酵条件的优化,以薯干粉的水解液为主要原料,发酵5dL-苹果酸可达到6%左右。在总酸中苹果酸含量平均达72%以上,杂有机酸主要是柠檬酸,延胡索酸的含量在0.02%以下。补糖发酵比分批发酵产酸性能更佳。  相似文献   

6.
In Saccharomyces cerevisiae, L-malic acid transport is not carrier mediated and is limited to slow, simple diffusion of the undissociated acid. Expression in S. cerevisiae of the MAE1 gene, encoding Schizosaccharomyces pombe malate permease, markedly increased L-malic acid uptake in this yeast. In this strain, at pH 3.5 (encountered in industrial processes), L-malic acid uptake involves Mae1p-mediated transport of the monoanionic form of the acid (apparent kinetic parameters: Vmax = 8.7 nmol/mg/min; Km = 1.6 mM) and some simple diffusion of the undissociated L-malic acid (Kd = 0.057 min(-1)). As total L-malic acid transport involved only low levels of diffusion, the Mae1p permease was further characterized in the recombinant strain. L-Malic acid transport was reversible and accumulative and depended on both the transmembrane gradient of the monoanionic acid form and the DeltapH component of the proton motive force. Dicarboxylic acids with stearic occupation closely related to L-malic acid, such as maleic, oxaloacetic, malonic, succinic and fumaric acids, inhibited L-malic acid uptake, suggesting that these compounds use the same carrier. We found that increasing external pH directly inhibited malate uptake, resulting in a lower initial rate of uptake and a lower level of substrate accumulation. In S. pombe, proton movements, as shown by internal acidification, accompanied malate uptake, consistent with the proton/dicarboxylate mechanism previously proposed. Surprisingly, no proton fluxes were observed during Mae1p-mediated L-malic acid import in S. cerevisiae, and intracellular pH remained constant. This suggests that, in S. cerevisiae, either there is a proton counterflow or the Mae1p permease functions differently from a proton/dicarboxylate symport.  相似文献   

7.
从大量霉菌中选育到一株具有较高富马酸酶活性的温特曲霉(Aspergillus wentii) A5-61。在摇瓶培养条件下,32℃ 96小时,产L-苹果酸达10.49g/100ml,对富马酸的转化率达90.80%。利用菌体细胞,进行酶转化试验,结果表明:1.6g湿菌体接入25ml含富马酸10.0%(用NaOH中和至pH7.0)的转化液中,35℃16~24小时,连续转化三次,分别产生L—苹果酸9.61g/100ml、9.73g/100ml、6.93g/100ml。对菌体整体细胞酶学性质的研究表明,其最适反应温度35℃,最适反应pH7.0,Cu2+对该酶有明显的抑制作用,该酶的Km=0.154mol/L,Vmax=0.0571mol/L·h。  相似文献   

8.
Conversion of fumaric acid (FA) to L-malic acid (LMA) was carried out in a bioreactor divided by two supported liquid membranes (SLMs) into three compartments: Feed, Reaction, and Product. The Feed/Reaction SLM, made of tri-n-octylphosphine oxide (vol 10%) in ethyl acetate, was selective toward the substrate, fumaric acid (S(FA/LMA) = 10). The Reaction/Product SLM, made of di(2-ethylhexyl) phosphate (vol 10%) in dichloromethane, was selective toward the product, L-malic acid (S(LMA/FA) = 680). Immobilized yeast engineered to overproduce the enzyme fumarase [E.C. 4.2.1.2] was placed in the Reaction compartment and served as the catalyst. The yeast was immobilized in small glasslike beads of alginate-silicate sol-gel matrix. The construction of the bioreactor ensured unidirectional flow of the substrate from the Feed to the Reaction and of the product from the Reaction to the Product compartments, with the inorganic counterion traveling in the opposite direction. The conversion of almost 100%, above the equilibrium value of ca. 84% and higher than that for the industrial process, 70%, was achieved. In contrast to the existing industrial biocatalytic process resulting in L-malic acid salts, direct production of the free acid is described.  相似文献   

9.
Utilization of the tricarboxylic acid (TCA) cycle intermediates, L-malic acid and succinic acid, by the yeast Pachysolen tannophilus is repressed in the presence of glucose. Strains of P. tannophilus containing mutations in two hexokinases and a glucokinase were characterized for growth on glucose plus L-malic acid or succinic acid. Increased specific utilization rates of malic acid and succinic acid in the presence of glucose were observed in mutants containing a lesion in hexokinase A, an enzyme associated with catabolite repression. Such derepressed mutants may have application in winemaking in which utilization of a major grape acid, L-malic acid, is often desirable for acidity reduction. Received 04 October 1996/ Accepted in revised form 13 March 1997  相似文献   

10.
The study of permeation of L-malic acid in cells of Saccharomyces cerevisiae at pH 3.0 was carried out with (U-14C)-labelled L-malic acid. Resting cells were used in these experiments. They were previously anaerobically grown on glucose. This study showed that this transport is the result of two competitive mechanisms, one for the uptake and one for the efflux. The uptake mechanism seems to be a simple diffusion of the L-malic acid in a non-dissociated form. The efflux mechanism seems to be an active transport of L-malic acid that is very dependent on the temperature. At the steady state, the result of uptake and efflux mechanisms leads to an intracellular concentration which is twice or three times the extracellular concentration.  相似文献   

11.
12.
Rossi  J.  Clementi  F. 《Biotechnology letters》1985,7(5):329-334
Summary The production of L-malic acid from fumaric acid has been achieved byPichia membraneafaciens cells entrapped in a polyacrylamide gel lattice. The reaction rate was found to be 0.15 mmoles/h/g of immobilized cells. The optimum pH for fumarase activity of immobilized cells was stable after repeated uses it increased after storing the gel pellets at 5°C. A good yield of L-malic acid production (up to 3.77 g/l) was also observed in wine added with Na fumarate.  相似文献   

13.
A stable immobilized preparation of fumarase (EC 4.2.1.2) was obtained by entrapment of rat liver mitochondria in acrylamide polymerized by using gamma irradiation (100 kR). The enhanced stability and the efficiency of the entrapped enzyme have shown potential for repeated use for the production of L-malic acid from fumaric acid. The possible formation of succinic acid in the system could be controlled by incorporating malonate along with detergents such as sodium deoxycholate or sodium dodecylsulfate in the reactor system.  相似文献   

14.
Fumaric acid, a dicarboxylic acid used as a food acidulant and in manufacturing synthetic resins, can be produced from glucose in fermentation by Rhizopus oryzae. However, the fumaric acid yield is limited by the co-production of ethanol and other byproducts. To increase fumaric acid production, overexpressing endogenous pyruvate carboxylase (PYC) and exogenous phosphoenolpyruvate carboxylase (PEPC) to increase the carbon flux toward oxaloacetate were investigated. Compared to the wild type, the PYC activity in the pyc transformants increased 56%-83%, whereas pepc transformants exhibited significant PEPC activity (3-6mU/mg) that was absent in the wild type. Fumaric acid production by the pepc transformant increased 26% (0.78g/g glucose vs. 0.62g/g for the wild type). However, the pyc transformants grew poorly and had low fumaric acid yields (<0.05g/g glucose) due to the formation of large cell pellets that limited oxygen supply and resulted in the accumulation of ethanol with a high yield of 0.13-0.36g/g glucose. This study is the first attempt to use metabolic engineering to modify the fumaric acid biosynthesis pathway to increase fumaric acid production in R. oryzae.  相似文献   

15.
Cloning of the Saccharomyces cerevisiae FUM1 gene downstream of the strong GAL10 promoter resulted in inducible overexpression of fumarase in the yeast. The overproducing strain exhibited efficient bioconversion of fumaric acid to L-malic acid with an apparent conversion value of 88% and a conversion rate of 80.4 mmol of fumaric acid/h per g of cell wet weight, both of which are much higher than parameters known for industrial bacterial strains. The only product of the conversion reaction was L-malic acid, which was essentially free of the unwanted by-product succinic acid. The GAL10 promoter situated upstream of a promoterless FUM1 gene led to production and correct distribution of the two fumarase isoenzyme activities between cytosolic and mitochondrial subcellular fractions. The amino-terminal sequence of fumarase contains the mitochondrial signal sequence since (i) 92 of 463 amino acid residues from the amino terminus of fumarase are sufficient to localize fumarase-lacZ fusions to mitochondria and (ii) fumarase and fumarase-lacZ fusions lacking the amino-terminal sequence are localized exclusively in the cytosol. The possibility that both mitochondrial and cytosolic fumarases are derived from the same initial translation product is discussed.  相似文献   

16.
Cloning of the Saccharomyces cerevisiae FUM1 gene downstream of the strong GAL10 promoter resulted in inducible overexpression of fumarase in the yeast. The overproducing strain exhibited efficient bioconversion of fumaric acid to L-malic acid with an apparent conversion value of 88% and a conversion rate of 80.4 mmol of fumaric acid/h per g of cell wet weight, both of which are much higher than parameters known for industrial bacterial strains. The only product of the conversion reaction was L-malic acid, which was essentially free of the unwanted by-product succinic acid. The GAL10 promoter situated upstream of a promoterless FUM1 gene led to production and correct distribution of the two fumarase isoenzyme activities between cytosolic and mitochondrial subcellular fractions. The amino-terminal sequence of fumarase contains the mitochondrial signal sequence since (i) 92 of 463 amino acid residues from the amino terminus of fumarase are sufficient to localize fumarase-lacZ fusions to mitochondria and (ii) fumarase and fumarase-lacZ fusions lacking the amino-terminal sequence are localized exclusively in the cytosol. The possibility that both mitochondrial and cytosolic fumarases are derived from the same initial translation product is discussed.  相似文献   

17.
The yeast strains of the genus Dipodascus were used for the bioconversion of fumaric acid to L-malic acid. Under nongrowth conditions, the fumarase activity in the intact cells or in the cell-free extract of Dipodascus was 10 times higher than that of Saccharomyces cerevisiae cells. Pretreatment of the Dipodascus with malonate was not necessary because succinate was not detected as a by-product. The fumarase activity in Dipodascus magnusii CCM 8235 was increased approximately 100% when Triton X-305 (0.1%) was added to the reaction mixture.  相似文献   

18.
Leuconostoc oenos M isolated from wine did not grow in the absence of glucose and it was clearly stimulated by the presence of L-malic and citric acids in synthetic medium with different glucose concentrations. In basal medium, D-glucose and L-malic and citric acids were simultaneously consumed. L-Malic acid was metabolized at a higher rate than glucose and citric acid. When the organic acids were completely consumed only 50% of the glucose was utilized. In basal medium 1 mmol of D-lactic acid was produced per mmol of glucose consumed and the amount of ethanol formed was higher with acetate present in the medium. L-Malic acid was completely recovered as L-lactic acid, and in the presence of L-malic acid a carbon imbalance from glucose to D-lactic acid was observed. In the presence of citric acid the amount of D-lactic acid formed was directly proportional to glucose-citrate utilization and acetic acid and ethanol were produced.  相似文献   

19.
G J Ruijter  J Visser 《Biochimie》1999,81(3):267-272
Phosphoglucose isomerase (PGI) was purified from Aspergillus niger and the in vitro kinetic properties of the enzyme were related to its functioning in vivo. A new assay method was developed to study the forward reaction making use of mannitol 1-P dehydrogenase as the coupling enzyme. In this simple assay system mannitol 1-P dehydrogenase converts fructose 6-P and NADH to mannitol 1-P and NAD+, respectively. At pH 7.5 the Km for glucose 6-P was 0.48 mM, whereas the Km for fructose 6-P was 0.32 mM. The pentose phosphate pathway intermediates 6-phosphogluconate and erythrose 4-P (E4P) were competitive inhibitors of PGI with Ki values of approximately 0.2 mM and 1 microM respectively. In citric acid producing A. niger mycelium inhibition by 6-phosphogluconate is of minor physiological significance (10% inhibition). Since E4P could not be detected by an existing procedure, a novel assay was developed based on the strong inhibition of PGI by E4P. Although the new assay is very sensitive (detection limit 25 pmol), E4P could still not be detected in metabolite extracts indicating that a very low level of E4P is present in the cells. Using in vitro kinetics and concentrations of intracellular metabolites the in vivo activity of PGI was calculated and closely matched the steady state glycolytic flux observed during citric acid production.  相似文献   

20.
Glucose dehydrogenase from rat liver microsomes was found to react not only with glucose as a substrate but also with glucose 6-phosphate, 2-deoxyglucose 6-phosphate and galactose 6-phosphate. The relative maximum activity of this enzyme was 29% for glucose 6-phosphate, 99% for 2-deoxyglucose 6-phosphate, and 25% for galactose 6-phosphate, compared with 100% for glucose with NADP. The enzyme could utilize either NAD or NADP as a coenzyme. Using polyacrylamide gradient gel electrophoresis, we were able to detect several enzymatically active bands by incubation of the gels in a tetrazolium assay mixture. Each band had different Km values for the substrates (3.0 x 10(-5)M glucose 6-phosphate with NADP to 2.4M glucose with NAD) and for coenzymes (1.3 x 10(-6)M NAD with galactose 6-phosphate to 5.9 x 10(-5)M NAD with glucose). Though glucose 6-phosphate and galactose 6-phosphate reacted with glucose dehydrogenase, they inhibited the reaction of this enzyme only when either glucose or 2-deoxyglucose 6-phosphate was used as a substrate. The Ki values for glucose 6-phosphate with glucose as substrate were 4.0 x 10(-6)M with NAD, and 8.4 x 10(-6)M with NADP; for galactose 6-phosphate they were 6.7 x10(-6)M with NAD and 6.0 x 10(-6)M with NADP. The Ki values for glucose 6-phosphate with 2-deoxyglucose 6-phosphate as substrate were 6.3 x 10(-6)M with NAD and 8.9 x 10(-6)M with NADP; and for galactose 6-phosphate, 8.0 x 10(-6)M with NAD and 3.5 x 10(-6)M with NADP. Both NADH and NADPH inhibited glucose dehydrogenase when the corresponding oxidized coenzymes were used (Ki values: 8.0 x 10(-5)M by NADH and 9.1 x 10(-5)M by NADPH), while only NADPH inhibited cytoplasmic glucose 6-phosphate dehydrogenase (Ki: 2.4 x 10(-5)M). The results indicate that glucose dehydrogenase cannot directly oxidize glucose in vivo, but it might play a similar role to glucose 6-phosphate dehydrogenase. The differences in the kinetics of glucose dehydrogenase and glucose 6-phosphate dehydrogenase show that glucose 6-phosphate and galactose 6-phosphate could be metabolized in quite different ways in the microsomes and cytoplasm of rat liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号