首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a novel system of reduced complexity for analysing molecular plant-fungus interactions. The system consists of suspension-cultured parsley (Petroselinum crispum) cells infected with a phytopathogenic fungus (Phytophthora infestans) which adheres to a coated glass plate and thus immobilizes the plant cells for live microscopy. Conventional light and electron microscopy as well as time-lapse video microscopy confirmed the virtual identity of fungal infection structures and of several characteristic early plant defence reactions in the cultured cells and whole-plant tissue. Using this new system to approach previously unresolved questions, we made four major discoveries: (i) rapid translocation of plant cell cytoplasm and nucleus to the fungal penetration site was associated with local depolymerization of the microtubular network; (ii) the directed translocation was dependent on intact actin filaments; (iii) a typical plant defence-related gene was activated in the fungus-invaded cell; and (iv) simultaneous activation of this gene in adjacent, non-invaded cells did not require hypersensitive death of the directly affected cell.  相似文献   

2.
3.
4.
5.
The cytoskeleton in plant cells is a dynamic structure that can rapidly respond to extracellular stimuli. Alteration of the organization of microtubules and actin microfilaments was examined in mesophyll cells of flax, Linum usitatissimum L., during attempted infection by the flax rust fungus, Melampsora lini (Ehrenb.) Lev. Flax leaves that had been inoculated with either a compatible (yielding a susceptible reaction) or an incompatible (yielding a resistant reaction) strain of M. lini were embedded in butyl-methylmethacrylate resin; sections of this material were immunofluorescently labelled with anti-tubulin or anti-actin and examined using confocal laser scanning microscopy. In uninfected leaves, microtubules in the mesophyll cells formed a transverse array in the cell cortex. Microfilaments radiated through the cytoplasm from the nucleus. In an incompatible interaction, microtubules and microfilaments were extensively reorganized in mesophyll cells that were in contact with fungal infection hyphae or haustorial mother cells before penetration of the cell by the infection peg. After the initiation of haustorium development, microtubules disappeared from the infected cells, and growth of the haustoria ceased. In an incompatible interaction, hypersensitive cell death occurred in more than 70% of infected cells but occurred in less than 20% of cells in compatible interactions. After the infected cell had undergone hypersensitive cell death, the cytoskeleton in neighbouring cells became focused on the walls shared with the necrotic cell. In compatible interactions, reorganization of the cytoskeleton was either not observed at all or was observed much less frequently up to 48 h after inoculation.Abbreviations FITC fluorescein isothiocyanate - WGA wheatgerm agglutinin We thank Dr. G.J. Lawrence for providing valuable discussions and materials.  相似文献   

6.
Wheat cultivar Xingzi 9104 (XZ) possesses adult plant resistance (APR) to stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). In this study, histological and cytological experiments were conducted to elucidate the mechanisms of APR in XZ. The results of leaf inoculation experiments indicated that APR was initiated at the tillering stage, gradually increased as the plant aged and highly expressed after boot stage. The histology and oxidative burst in infected leaves of plants at seedling, tillering and boot stages were examined using light microscopic and histochemical methods. Subcellular changes in the host–pathogen interactions during the seedling and boot stages were analyzed by transmission electron microscopy. The results showed that haustorium formation was retarded in the adult plants and that the differentiation of secondary intercellular hyphae was significantly inhibited, which decreased the development of microcolonies in the adult plants, especially in plants of boot stage. The expression of APR to stipe rust during wheat development was clearly associated with extensive hypersensitive cell death of host cells and localized production of reactive oxygen species, which coincided with the restriction of fungal growth in infection sites in adult plants. At the same time, cell wall-related resistance in adult plants prevented ingression of haustorial mother cells into plant cells. Haustorium encasement was coincident with malformation or death of haustoria. The results provide useful information for further determination of mechanisms of wheat APR to stripe rust. Key message The expression of APR to stipe rust in wheat cultivar Xingzi 9104 (XZ) was clearly associated with extensive hypersensitive cell death of host cells and the localized production of reactive oxygen species.  相似文献   

7.
The hypersensitive reaction is a type of programmed cell death in plants. Cryptogein is a proteinaceous elicitor secreted from Phythophthora cryptogea. In one current model, active oxygen species (AOS) trigger programmed cell death in plants. In this study, we examined a variety of AOS scavengers to elucidate the function of AOS in the death program. Most of these AOS scavengers, including tiron, a scavenger for superoxide radical, catalase for hydrogen peroxide, and hydroquinone, sodium ascorbate and propyl gallate for free radicals, almost completely removed extracellular AOS. However, none of the reagents completely blocked the cell death process. Other reagents, such as histidine and dimethylfuran, scavengers for singlet oxygen, and diphenyleneiodonium chloride, an inhibitor of NADPH oxidase, showed significant toxicity in BY-2 cells. These results indicate that AOS produced in the extracellular space do not play a role in hypersensitive cell death.  相似文献   

8.
Zhang HK  Zhang X  Mao BZ  Li Q  He ZH 《Cell research》2004,14(1):27-33
Alpha-picolinic acid (PA), a metabolite of tryptophan and an inducer of apoptosis in the animal cell, has been reported to be a toxin produced by some of plant fungal pathogens and used in screening for disease resistant mutants. Here, we report that PA is an efficient apoptosis agent triggering cell death of hypersensitive-like response in planta. Confirmed by Fluorescence Activated Cell Sorter (FACS), rice suspension cells and leaves exhibited programmed cell death induced by PA. The PA-induced cell death was associated with the accumulation of reactive oxygen species that could be blocked by diphenylene iodonium chloride, indicating that the generation of reactive oxygen species was NADPHoxidase dependent. We also demonstrated the induction of rice defense-related genes and subsequent resistant enhancement by PA against the rice blast fungus Magnaporthe grisea. Hence, it was concluded that the PA-stimulated defense response likely involves the onset of the hypersensitive response in rice, which also provides a simple eliciting tool for studying apoptosis in the plant cell.  相似文献   

9.
There is growing evidence that multivesicular bodies and cell wall-associated paramural bodies participate in the enhanced vesicle trafficking induced by pathogen attack. Here, we performed transmission electron microscopy in combination with cytochemical localization of H2O2 to investigate multivesicular compartments during establishment of compatible interaction in susceptible barley (Hordeum vulgare) and during hypersensitive response in resistant MLA12-barley infected by the barley powdery mildew fungus (Blumeria graminis f. sp. hordei). Multivesicular bodies, intravacuolar vesicle aggregates and paramural bodies proliferated in the penetrated epidermal cell during development of the fungal haustorium. These vesicular structures also proliferated at the periphery of intact cells, which were adjacent to the hypersensitive dying cells and deposited cell wall appositions associated with H2O2 accumulation. All plasmodesmata between intact cells and hypersensitive cells were constricted or blocked by cell wall appositions. These results suggest that multivesicular compartments participate in secretion of building blocks for cell wall appositions not only to arrest fungal penetration but also to contain hypersensitive cell death through blocking plasmodesmata. They may also participate in internalization of damaged membranes, deleterious materials, nutrients, elicitors and elicitor receptors.  相似文献   

10.
Cell polarization,a crucial process in fungal defence   总被引:1,自引:0,他引:1  
Plant cells responding to fungal attack undergo large morphological alterations, along with rapid and extensive metabolic reprogramming. Cytological analysis of single infected plant cells revealed a large complexity of interdependent, rapid and dynamic changes of a multitude of cellular components. Among these changes are major rearrangements of the cytoskeleton, translocation of cytoplasm and of the cell nucleus to the fungal penetration site, and local apposition of barrier material around this site, which results in massive cell-wall reinforcement. If this first line of defence is overcome by the pathogen, in many cases, it is followed by hypersensitive plant cell death, which stops growth of the penetrating fungus and finally leads to its death. The speed and magnitude of the initial defence response appear to be crucial to plant disease resistance.  相似文献   

11.
To examine the role of reactive oxygen species (ROS) in the signal transduction that leads to hypersensitive cell death, we used a previously established system in which a xylanase from Trichoderma viride (TvX) induces an oxidative burst and cell death in a culture of tobacco cells. Diphenylene iodonium and N-Acetyl-L-cysteine known as an inhibitor of NADPH oxidase and a scavenger of superoxides, respectively, and catalase inhibited the oxidative burst but did not inhibit the induction of cell death. We also found that inhibitors of serine proteases inhibited TvX-induced cell death. These results suggest that there is a signaling pathway in which a serine protease might be responsible for the signal transduction, which is independent of the oxidative burst, that leads to the hypersensitive cell death of tobacco cells.  相似文献   

12.
Treatment of cultured parsley (Petroselinum crispum L.) cells with a structurally defined peptide elicitor (Pep25) of fungal origin has previously been shown to cause rapid and large changes in the levels of various desaturated fatty acids. We isolated two distinct parsley cDNAs sharing high sequence similarity with microsomal omega-6 fatty acid desaturases (FADs). One of them was functionally identified as a delta 12 FAD by expression in the yeast Saccharomyces cerevisiae. Two dienoic fatty acids, hexadecadienoic and linoleic, which were not detectable in control cells, together constituted up to 12% of the total fatty acids in the transformed yeast cells. delta 12 FAD mRNA accumulated rapidly and transiently in elicitor-treated parsley cells, protoplasts, and leaves. These and previous results indicate that fatty acid desaturation is an important early component of the complex defense response of parsley to attempted fungal infection.  相似文献   

13.
14.
Reactive oxygen species (ROS) play fundamental roles in plant responses to pathogen infection, including modulation of cell death processes and defense‐related gene expression. Cell death triggered as part of the hypersensitive response enhances resistance to biotrophic pathogens, but favors the virulence of necrotrophs. Even though the involvement of ROS in the orchestration of defense responses is well established, the relative contribution of specific subcellular ROS sources to plant resistance against microorganisms with different pathogenesis strategies is not completely known. The aim of this work was to investigate the role of chloroplastic ROS in plant defense against a typical necrotrophic fungus, Botrytis cinerea. For this purpose, we used transgenic Nicotiana tabacum (tobacco) lines expressing a plastid‐targeted cyanobacterial flavodoxin (pfld lines), which accumulate lower chloroplastic ROS in response to different stresses. Tissue damage and fungal growth were significantly reduced in infected leaves of pfld plants, as compared with infected wild‐type (WT) counterparts. ROS build‐up triggered by Botrytis infection and associated with chloroplasts was significantly decreased (70–80%) in pfld leaves relative to the wild type. Phytoalexin accumulation and expression of pathogenesis‐related genes were induced to a lower degree in pfld plants than in WT siblings. The impact of fungal infection on photosynthetic activity was also lower in pfld leaves. The results indicate that chloroplast‐generated ROS play a major role in lesion development during Botrytis infection. This work demonstrates that the modulation of chloroplastic ROS levels by the expression of a heterologous antioxidant protein can provide a significant degree of protection against a canonical necrotrophic fungus.  相似文献   

15.
16.
Suzuki K  Yano A  Shinshi H 《Plant physiology》1999,119(4):1465-1472
To investigate the involvement of protein kinases in the signaling cascade that leads to hypersensitive cell death, we used a previously established system in which a fungal elicitor, xylanase from Trichoderma viride (TvX), induces a hypersensitive reaction in tobacco (Nicotiana tabacum) cells in culture (line XD6S). The elicitor induced the slow and prolonged activation of a p47 protein kinase, which has the characteristics of a family member of the mitogen-activated protein kinases. An inhibitor of protein kinases, staurosporine, and a blocker of Ca channels, Gd3+ ions, both of which blocked the TvX-induced hypersensitive cell death, inhibited the TvX-induced activation of p47 protein kinase. Moreover, an inhibitor of serine/threonine protein phosphatase alone induced both rapid cell death and the persistent activation of the p47 protein kinase. Thus, the p47 protein kinase might be a component of the signal transduction pathway that leads to hypersensitive cell death, and the regulation of the duration of activation of the p47 protein kinase might be important in determining the destiny of tobacco cells.  相似文献   

17.
Transgenic tobacco (Nicotiana tabacum L. cv. Wisconsin 38) lines expressing a mutant calmodulin (VU-3) that hyperactivates NAD kinase exhibit an enhanced elicitor-stimulated oxidative-burst reaction (S.A. Harding et al., 1997, EMBO J. 16: 1137–1144). VU-3 transgenic tobacco was used in the present study to investigate the relationship between calmodulin signalling, the production of active oxygen species and cell death in response to infection with an incompatible pathogen. Following P. syringae pv. syringae 61 infection, suspension cells derived from VU-3 transgenic plants exhibited a stronger oxidative burst (3- to 4-fold higher primary and secondary burst reactions), greater media alkalinization (3-fold) and more rapid cell death (4-fold greater mortality at 20 h post infection) than did infected control tobacco cells. Infection of leaf tissues with P. syringae pv. syringae 61 also resulted in an enhanced cell death response compared to control tobacco tissues. This cell death response of VU-3 leaf tissues, but not control leaf tissues, was further enhanced by the presence of 50 μM salicylic acid, suggesting that this transgenic line is more sensitive to the effects of this agent. Overall, the data support the model that calmodulin signalling pathways are involved in the plant oxidative burst and contribute to the regulation of cell death in infected plant tissues undergoing the hypersensitive response. Received: 6 January 1998 / Accepted: 7 March 1998  相似文献   

18.
19.
Remarkable changes in the cellular response and oxygen uptake in the wax moth Galleria mellonella were observed when larvae were infected with the entomopathogenic fungus Metarhizium anisopliae . The number of haemocytes increased 48, 72 and 96 h after infection with fungal conidiospores. Extensive blebbing of the cell membrane in the haemocytes and large numbers of vacuoles were noticed as a result of fungal infection. The study showed a significant difference in oxygen uptake between healthy and infected larvae and the greatest uptake was recorded 72 h after fungal infection. The results suggested that the rate of cellular reaction and oxygen uptake were associated with the development of fungal infection.  相似文献   

20.
H Xu  MC Heath 《The Plant cell》1998,10(4):585-598
The hypersensitive response (HR) of disease-resistant plant cells to fungal invasion is a rapid cell death that has some features in common with programmed cell death (apoptosis) in animals. We investigated the role of cytosolic free calcium ([Ca2+]i) in the HR of cowpea to the cowpea rust fungus. By using confocal laser scanning microscopy in conjunction with a calcium reporter dye, we found a slow, prolonged elevation of [Ca2+]i in epidermal cells of resistant but not susceptible plants as the fungus grew through the cell wall. [Ca2+]i levels declined to normal levels as the fungus entered and grew within the cell lumen. This elevation was related to the stage of fungal growth and not to the speed of initiation of subsequent cell death. Elevated [Ca2+]i levels also represent the first sign of the HR detectable in this cowpea-cowpea rust fungus system. The increase in [Ca2+]i was prevented by calcium channnel inhibitors. This effect was consistent with pharmacological tests in which these inhibitors delayed the HR. The data suggest that elevation of [Ca2+]i is involved in signal transduction leading to the HR during rust fungal infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号