首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sox3/SOX3 gene is considered to be one of the earliest neural markers in vertebrates and it is implicated in the genetic cascades that direct brain formation. We have previously shown that early phases of differentiation and neural induction of NT2/D1 embryonal carcinoma cells by retinoic acid (RA) involve up-regulation of the SOX3 gene expression. Here, we present identification of a novel positive regulatory promoter element involved in RA-dependent activation of the SOX3 gene expression in NT2/D1 cells. This element represents a direct repeat 3-like motif that directly interacts with retinoid X receptor (RXR) alpha in a sequence-specific manner. It is capable of independently mediating the RA effect in a heterologous promoter context and its disruption caused significant reduction of RA/RXR transactivation of the SOX3 promoter. Furthermore, by using synthetic antagonists of retinoid receptors, we have shown for the first time, that RA-induced SOX3 gene expression could be significantly down-regulated by the synthetic antagonist of RXR. Also, this data showed that RXRs, but not RA receptors, are mediators of RA effect on the SOX3 gene up-regulation in NT2/D1 cells. Presented data will be valuable for future investigation of SOX3 gene expression, not only in NT2/D1 model system, but also in diverse developmental, physiological and pathological settings.  相似文献   

2.
Mesenchymal stem cells (MSCs) can differentiate into neurons in an appropriate cellular environment. Retinoid signaling pathway is required in neural development. However, the effect and mechanism through retinoid signaling regulates neuronal differentiation of MSCs are still poorly understood. Here, we report that all‐trans‐retinoic acid (ATRA) pre‐induction improved neuronal differentiation of rat MSCs. We found that, when MSCs were exposed to different concentrations of ATRA (0.01–100 μmol/L) for 24 h and then cultured with modified neuronal induction medium (MNM), 1 μmol/L ATRA pre‐induction significantly improved neuronal differentiation efficiency and neural‐cell survival. Compared with MNM alone induced neural‐like cells, ATRA/MNM induced cells expressed higher levels of Nestin, neuron specific enolase (NSE), microtubule‐associated protein‐2 (MAP‐2), but lower levels of CD68, glial fibrillary acidic protein (GFAP), and glial cell line‐derived neurotrophic factor(GDNF), also exhibited higher resting membrane potential and intracellular calcium concentration, supporting that ATRA pre‐induction promotes maturation and function of derived neurons but not neuroglia cells from MSCs. Endogenous retinoid X receptors (RXR) RXRα and RXRγ (and to a lesser extent, RXRβ) were weakly expressed in MSCs. But the expression of RARα and RARγ was readily detectable, whereas RARβ was undetectable. However, at 24 h after ATRA treatment, the expression of RARβ, not RARα or RARγ, increased significantly. We further found the subnuclear redistribution of RARβ in differentiated neurons, suggesting that RARβ may function as a major mediator of retinoid signaling during neuronal differentiation from MSCs. ATRA treatment upregulated the expression of Vimentin and Stra13, while it downregulated the expression of Brachyury in MSCs. Thus, our results demonstrate that pre‐activation of retinoid signaling by ATRA facilitates neuronal differentiation of MSCs.  相似文献   

3.
We investigated the expression of protein disulfide isomerase family proteins (PDI, ERp61, and ERp72) in mouse F9 teratocarcinoma cells during differentiation induced by treatment with retinoic acid and dibutyryl cAMP. Each member of this family was expressed at a constitutive level in undifferentiated F9 cells. During differentiation of F9 cells to parietal or visceral endodermal cells the protein level of all these enzymes increased, although the extent of this increase in both protein and mRNA levels varied among the enzymes. Certain proteins were found to be co-immunoprecipitated with PDI, ERp61, and ERp72 in the presence of a chemical crosslinker. Type IV collagen was significantly coprecipitated with PDI whereas laminin was equally coprecipitated with the three proteins. Furthermore, 210 kDa protein characteristically coprecipitated with ERp72. Thus, the induction of PDI family proteins during the differentiation of F9 cells and their association with different proteins may implicate specific functions of each member of this family despite the common redox activity capable of catalyzing the disulfide bond formation. J. Cell. Biochem. 68:436–445, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
When rat liver epithelial cells were exposed to retinoic acid or retinol for 24 hr, the levels of transforming growth factor-β (TGF-β) receptors were reduced in a dose-dependent way. The decrease appeared after 12 hr of incubation with the retinoids and binding levels remained low until 24 hr after the removal of the molecules. Retinoid treatment induced a fourfold enhancement of transglutaminase (TGase) activity in the cell membranes, and cystamine, an inhibitor of TGase, prevented the decrease of the receptors. Neutralization of TGF-β by a monoclonal antibody did not suppress the decrease of the binding levels, indicating that decreased TGF-β binding capacity was not due merely to the internalization of ligand-bound receptors promoted by a stimulation of TGF-β synthesis. Thus, retinoid treatment resulted in an intense disappearance of the functional receptors from the membranes that seemed to be mediated by increased TGase activity. This phenomenon can represent a strong signal attenuation for TGF-β following retinoid exposure. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Changes in expression of the proto-oncogene Bcl-2 are well known in the developing brain, with a high expression level in young post-mitotic neurons that are beginning the outgrowth of processes. The physiological significance of the Bcl-2 up-regulation in these neurons is not fully understood. We used a differentiation model for human CNS neurons to study the expression and function of Bcl-2. NT2/D1 human neuronal precursor cells differentiated into a neuronal phenotype in the presence of 10 microM retinoic acid for 3-5 weeks. This concentration of retinoic acid was not toxic to undifferentiated NT2/D1 cells but was sufficient to up-regulate the BCL-2 protein in 6 days. The BCL-2 levels increased further after 3 weeks, i.e. when the cells started to show neuronal morphology. Inhibition of the accumulation of endogenous BCL-2 with vectors expressing the antisense mRNA of Bcl-2 caused extensive apoptosis after 3 weeks of the retinoic acid treatment. The loss of neuron-like cells from differentiating cultures indicated that the dead cells were those committed to neuronal differentiation. Death was related to the presence of retinoic acid since withdrawal of retinoic acid after 16 days of treatment dramatically increased cell surviving. The ability of BCL-2 to prevent retinoic acid-induced cell death was also confirmed in undifferentiated NT2/D1 cells that were transfected with a vector containing Bcl-2 cDNA in sense orientation and exposed to toxic doses (40-80 microM) of retinoic acid. Furthermore, down-regulation of BCL-2 levels by an antisense oligonucleotide in neuronally differentiated NT2/D1 cells increased their susceptibility to retinoic acid-induced apoptosis. These results indicate that one function of the up-regulation of endogenous BCL-2 during neuronal differentiation is to regulate the sensitivity of young post-mitotic neurons to retinoic acid-mediated apoptosis.  相似文献   

6.
7.
Cellular retinoic acid binding protein 2 (CRABP2) is essential for myoblast differentiation, however, little is known about its role in osteogenic differentiation. This study mainly aims to explore the biological functions and the underlying molecular mechanisms of CRABP2 in osteogenesis. Using quantitative polymerase chain reaction and western blot assays, we found that the expression of CRABP2 at both mRNA and protein levels were downregulated during osteogenesis. Furthermore, CRABP2 knockdown displayed significant changes in the cell phenotype and the actin filaments (F‐actin) polymerization in C2C12 cells treated with BMP2. Moreover, the western blotting of osteogenic differentiation biomarkers, alkaline phosphatase (ALP) staining and Alizarin red staining showed that CRABP2 dramatically inhibited osteogenic differentiation. The following investigation of molecular mechanisms implicated that CARBP2 specifically interacted with LIMK1, a key factor in acin cytoskeletal rearrangements in osteogenesis, to interrupt its activity and stability in an ubiquitin‐proteasome pathway to prevent C2C12 cells from osteogenic differentiation in response to BMP2. Above all, our data suggest a novel function of CRABP2 in regulating actin remodeling and osteogenic differentiation via LIMK1, thus presenting a possible molecular target for promoting the osteogenic differentiation in bone degenerative diseases.  相似文献   

8.
To investigate the alteration of nuclear matrix proteins (NMPs) during the differentiation of neuroblastoma SK‐N‐SH cells induced by retinoic acid (RA), differentiation markers were detected by immunocytochemistry and NMPs were selectively extracted and subjected to two‐dimensional gel electrophoresis analysis. Immunocytochemical observation demonstrated that the expression of neuronal markers was up‐regulated in SK‐N‐SH cells following RA treatment. Meanwhile, 52 NMPs (41 of which were identified) changed significantly during SK‐N‐SH differentiation; four of these NMPs were further confirmed by immunoblotting. This study suggests that the differentiation of neuroblastoma cells was accompanied by the altered expression of neuronal markers and NMPs. The presence of some differentially expressed NMPs was related to the proliferation and differentiation of neuroblastomas. Our results may help to reveal the relationship between NMPs and neuroblastoma carcinogenesis and reversion, as well as elucidate the regulatory principals driving neural cell proliferation and differentiation. J. Cell. Biochem. 106: 849–857, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Of the mammalian topoisomerase (Topo)-2 isozymes (α and β), Topo-2β protein has been reported to regulate neuronal development and differentiation. However, the status of Topo-2β in all-trans retinoic acid (ATRA)-treated human neuroblastoma (SK-N-SH) cells is not understood. More information about the effects of ATRA on SK-N-SH cells is needed to reveal the role of ATRA in the regulation of Topo-2β levels and spontaneous regression of SK-N-SH cells to predict the clinical activity. This study was proposed to investigate the status and role of Topo-2β protein in ATRA-induced survival and neuronal differentiation of SK-N-SH cells. Microscopic, sodium dodecyl sulfate polyacrylamide gel electrophoresis after immunoprecipitations and Western blot analysis were used to study and compare Topo-2β protein among 10 µM ATRA-treated SK-N-SH cells and controls at different time points. The level of Topo-2β protein increased in the initial days of treatment but markedly decreased upon induction of differentiation by ATRA in later stages. Upon ATRA treatment, SK-N-SH cells stretched, exhibited neurite extensions, and acquired a neuronal phenotype. Both treated and untreated SK-N-SH cells were able to migrate, occupy the scratched area, and completely recolonized 24 hours later. These results suggest an indirect role of Topo-2β protein in regulation of genes involved in cell migration and differentiation of ATRA-treated SK-N-SH cells. This study suggests that Topo-2β may be part of activation/repression of protein complexes activated by epigenetic modifying agents, differentiating signals, and inducible locus. However, detailed studies are needed to explore the ATRA-downstream genes leading to Topo-2β regulation and regulatory proteins of neuronal differentiation.  相似文献   

10.
Human teratocarcinoma cells (Tera-2) deprived of serum undergo programmed cell death which can be counteracted by simultaneous addition of IGF-I or IGF-II. This protective effect of IGFs was specific in the sense that both addition of IGF-binding protein-2, and blocking of the IGF-type I receptor by a specific antibody, both resulted in an increased apoptotic rate.  相似文献   

11.
12.
Diverse actions of retinoid receptors in cancer prevention and treatment   总被引:1,自引:0,他引:1  
Retinoids (retinol [vitamin A] and its biologically active metabolites) are essential signaling molecules that control various developmental pathways and influence the proliferation and differentiation of a variety of cell types. The physiological actions of retinoids are mediated primarily by the retinoic acid receptors alpha, beta, and gamma (RARs) and rexinoid receptors alpha, beta, and gamma. Although mutations in RARalpha, via the PML-RARalpha fusion proteins, result in acute promyelocytic leukemia, RARs have generally not been reported to be mutated or part of fusion proteins in carcinomas. However, the retinoid signaling pathway is often compromised in carcinomas. Altered retinol metabolism, including low levels of lecithin:retinol acyl trasferase and retinaldehyde dehydrogenase 2, and higher levels of CYP26A1, has been observed in various tumors. RARbeta(2) expression is also reduced or is absent in many types of cancer. A greater understanding of the molecular mechanisms by which retinoids induce cell differentiation, and in particular stem cell differentiation, is required in order to solve the issue of retinoid resistance in tumors, and thereby to utilize RA and synthetic retinoids more effectively in combination therapies for human cancer.  相似文献   

13.
Dickkopf‐3 (Dkk‐3) and Dkkl‐1 (Soggy) are secreted proteins of poorly understood function that are highly expressed in subsets of neurons in the brain. To explore their potential roles during neuronal development, we examined their expression in Ntera‐2 (NT2) human embryonal carcinoma cells, which differentiate into neurons upon treatment with retinoic acid (RA). RA treatment increased the mRNA and protein levels of Dkk‐3 but not of Dkkl‐1. Ectopic expression of both Dkk‐3 and Dkkl‐1 induced apoptosis in NT2 cells. Gene silencing of Dkk‐3 did not affect NT2 cell growth or differentiation but altered their response to RA in suspension cultures. RA treatment of NT2 cells cultured in suspension resulted in morphological changes that led to cell attachment and flattening out of cell aggregates. Although there were no significant differences in the expression levels of cell adhesion molecules in control and Dkk‐3‐silenced cells, this morphological response was not observed in Dkk‐3‐silenced cells. These findings suggest that Dkk‐3 plays a role in the regulation of cell interactions during RA‐induced neuronal differentiation. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1243–1254, 2014  相似文献   

14.
Retinoic acid (RA), a derivative of vitamin A, is essential for normal patterning and neurogenesis during development. Until recently, studies have been focused on the physiological roles of RA receptors (RARs), one of the two types of nuclear receptors, whereas the functions of the other nuclear receptors, retinoid X receptors (RXRs), have not been explored. Accumulating evidence now suggests that RXRalpha is a critical receptor component mediating the effects of RA during embryonic development. In this study, we have examined the expression profiles of RXRalpha and RARs during the RA-induced neuronal differentiation in a human embryonal carcinoma cell line, NT2. Distinct expression profiles of RXRalpha, RARalpha, RARbeta, and RARgamma were observed following treatment with RA. In particular, we found that RA treatment resulted in a biphasic up-regulation of RXRalpha expression in NT2 cells. The induced RXRalpha was found to bind specifically to the retinoid X response element based on gel mobility retardation assays. Furthermore, immunocytochemical analysis revealed that RXRalpha expression could be localized to the somatoaxonal regions of the NT2 neurons, including the tyrosine hydroxylase- and vasoactive intestinal peptide-positive neurons. Taken together, our findings provide the first demonstration of the cellular localization and regulation of RXRalpha expression in NT2 cells and suggest that RXRalpha might play a crucial role in the cellular functions of human CNS neurons.  相似文献   

15.
KDN (Deaminoneuraminic acid, or deaminated neuraminic acid) is a minor but biosynthetically independent member of the sialic acid. Human occurrence of KDN has already been established, although its level is so little that it is often undetectable by conventional sialic acid analysis. Elevated expression of KDN in fetal cord blood cells and some malignant tumor cells have been reported. However, in mammalian cells and tissues KDN mostly occurs as the free sugar and little occurred conjugated to glycolipids and/or glycoproteins. A positive correlation between the ratio of free KDN/free Neu5Ac in ovarian adenocarcinomas and the stage of malignancy has been noted for diagnostic use. We hypothesized that elevated expression of KDN in mammalian systems may be closely related to elevated activities of enzymes involved in the formation of sialoglycoconjugates and/or aberrant supply of the precursor sugar, mannose, used in the biosynthesis of KDN. In this study we used human ovarian teratocarcinoma cells PA-1 to further analyze KDN expression in human cells. Major findings reported in this paper are, (i) a 30 kDa KDN-glycoprotein immunostainable with monoclonal antibody, mAb.kdn3G, (specific for the KDNα2 → 3Galβ1→ epitope) and sensitive to KDNase was identified in the membrane fraction of the cell: (ii) a 49 kDa KDN-glycoprotein that is not reactive with mAb.kdn3G but is sensitive to KDNase was identified in the soluble fraction: and (iii) PA-1 cells showed unique response to mannose added to the growth medium in that the levels of both free and bound forms of KDN are elevated. This is the first report on the identification of mammalian KDN-glycoproteins by chemical and biochemical methods.  相似文献   

16.
17.
Beinfeld MC  Wang W 《Life sciences》2002,70(11):1251-1258
Human teratocarcinoma Ntera2/c 1.D1 (NT2) cells express very low levels of the prohormone convertase enzyme PC1, moderate levels of PC2 and significant levels of PC5. When infected with an adenovirus which expresses rat CCK mRNA, several glycine-extended forms were secreted that co-eluted with CCK 33, 22 and 12. Amidated CCK is not produced because these cells appear to lack the amidating enzyme. Pituitary GH3 cells express high levels of PC2 and PC5. CCK adenovirus-infected GH3 cells secrete amidated versions of the same peptides as NT2 cells. Differentiation of NT2 cells into hNT cells with retinoic acid and mitotic inhibitors increased expression of PC5 and decreased expression of PCI and PC2. CCK adenovirus-infected differentiated hNT cells also secrete glycine extended CCK products and the major molecular form produced co-eluted with CCK 8 Gly. These experiments demonstrate that the state of differentiation of this neuronal cell line influences its expression of PC 1,2, and 5 and its cleavage of pro CCK and suggests that these cells may make an interesting model to study how differentiation alters prohormone processing. These results also support the hypothesis that PC5 in differentiated neuronal cells is capable of processing pro CCK to glycine-extended CCK 8.  相似文献   

18.
In order to gain a better understanding on the possible role of retinoic acid (RA) on human GH secretion, we have characterized the expression of its nuclear receptors in somatotropic adenoma cell extracts. By immunoblotting with rabbit polyclonal antibodies directed against RARα, β, and γ and RXRα and β, we could only detect the presence of RARα and RXRα proteins. The predominant expression of RXRα was confirmed at the mRNA level by Northern and slot-blot analysis. When then investigated the effect of RA on GH synthesis in cell culture of adenomatous somatotrophs. In cultured cells, RA (1 μM) stimulated GH secretion, increased intracellular GH content and GH mRNA levels within 72 h, suggesting a modulation of GH synthesis by RA. J. Cell. Biochem 65:25–31. © 1997 Wiley-Liss, Inc.  相似文献   

19.
20.
The expression of peroxisome proliferator-activated receptors alpha (PPARalpha) and gamma (PPARgamma) was studied in the human adenocarcinoma Caco-2 cells induced to differentiate by long term culture (15 days). The differentiation of Caco-2 cells was attested by increases in the activities of sucrase-isomaltase and alkaline phosphatase (two brush border enzymes), fatty acyl-CoA oxidase (AOX) and catalase (two peroxisomal enzymes), by an elevation in the protein levels of villin (a brush border molecular marker), AOX, peroxisomal bifunctional enzyme (PBE), catalase and peroxisomal membrane protein of 70 kDa (PMP70). and by the appearance of peroxisomes. The expression of PPARalpha and PPARgamma was investigated by Western blotting, immunocytochemistry, Northern blotting and S1 nuclease protection assay during the differentiation of Caco-2 cells. The protein levels of PPARalpha, PPARgamma, and PPARgamma2 increased gradually during the time-course of Caco-2 cell differentiation. Immunocytochemistry revealed that PPARalpha and gamma were localized in cell nuclei. The PPARgamma1 protein was encoded by PPARgamma3 mRNA because no signal was obtained for PPARgamma1 mRNA using a specific probe in S1 nuclease protection assay. The amount of PPARgamma3 mRNA increased concomitantly to the resulting PPARgamma1 protein. On the other hand, the mRNA of PPARalpha and PPARgamma2 were not significantly changed, suggesting that the increase in their respective protein was due to an elevation of the translational rate. The role played by the PPAR subtypes in Caco-2 cell differentiation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号