首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmodium falciparum var genes encode a diverse family of proteins, located on the surfaces of infected erythrocytes, which are implicated in the pathology of human malaria through antigenic variation and adhesion of infected erythrocytes to the microvasculature. We have constructed a complete representative telomere-to-telomere yeast artificial chromosome (YAC) contig map of the P. falciparum chromosome 8 for studies on the chromosomal organization, distribution, and expression of var genes. Three var gene loci were identified on chromosome 8, two of which map close to the telomeres at either end of the chromosome. Analysis of the previously described chromosome 2 contig map and random P. falciparum telomeric YAC clones revealed that most, if not all, 14 P. falciparum chromosomes contain var genes in a subtelomeric location. Mapping the chromosomal location of var genes expressed in a long-term culture of the P. falciparum isolate Dd2 revealed that four of the five different expressed var genes identified map within subtelomeric locations. Expression of var genes from a chromosomal domain known for frequent rearrangements has important implications for the mechanism of var gene switching and the generation of novel antigenic and adhesive phenotypes.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Plasmodium falciparum origin recognition complex 1 (ORC1) protein has been implicated in DNA replication and silencing var gene family. However, the mechanism and the domain structure of ORC1 related to the regulation of var gene family are unknown. Here we show that the unique N-terminus of PfORC1 (PfORC1N(1-238)) is targeted to the nuclear periphery in vivo and this region binds to the telomeric DNA in vitro due to the presence of a leucine heptad repeats. Like PfORC1N(1-238), endogenous full length ORC1, was found to be associated with sub telomeric repeat regions and promoters of various var genes. Additionally, binding and propagation of ORC1 to telomeric and subtelomeric regions was severely compromised in PfSir2 deficient parasites suggesting the dependence of endogenous ORC1 on Sir2 for var gene regulation. This feature is not previously described for Plasmodium ORC1 and contrary to yeast Saccharomyces cerevisiae where ORC function as a landing pad for Sir proteins. Interestingly, the overexpression of ORC1N(1-238) compromises the binding of Sir2 at the subtelomeric loci and var gene promoters consistent with de-repression of some var genes. These results establish role of the N-terminus of PfORC1 in heterochromatin formation and regulation of var gene expression in co-ordination with Sir2 in P. falciparum.  相似文献   

13.
The Plasmodium falciparum multigene var family codes for approximately 50 variant adhesive proteins expressed in a mutually exclusive manner at the surface of infected red blood cells (iRBCs). Switching expression of var genes can lead to fundamental changes in the adhesive and antigenic properties of iRBCs. For example, a specific phenotypic switch in adhesion from CD36 to chondroitin sulphate A (CSA) is associated with malaria pathogenesis in pregnant women. The factors and DNA elements that control the expression of a particular member of the var gene family during gestational malaria remains enigmatic. Here, we report that the subtelomeric FCR3 varCSA is expressed under the control of a unique DNA element of 1.8 kb, whereas the other members of the var multigene family are flanked by common regulatory elements. The 5' varCSA-type element is conserved as a single copy in laboratory strains and clinical isolates from Brazil and West Africa and contains two distinct repetitive elements of 150 bp and 60 bp respectively. The 5' varCSA-type sequence tags a var gene in the 3D7 genome that is homologous to the FCR3 varCSA gene. A recombinant DBL gamma domain of this var gene showed specific binding to CSA. This subtelomeric varCSA gene is transcribed in the opposite sense when compared with the usual orientation of telomere-adjacent var genes. This unique arrangement might explain why the varCSA gene is relatively conserved in genetically distinct parasites despite being located in a highly recombinogenic chromosome compartment. The 5' untranslated region (UTR) of the varCSA-type sequence is also transcribed in placental isolates that bind to CSA, illustrating an important role for the unique 5' varCSA-type sequence in the regulation of var genes involved in malaria pathogenesis in pregnant women. However, this promoter is not always found to be transcribing var genes selected for expression of products that bind to CSA in vitro. Our work identifies a sequence tag for the identification of varCSA genes in placental isolates for the first time.  相似文献   

14.
15.
16.
17.
Parasite adhesion and immune evasion in placental malaria.   总被引:6,自引:0,他引:6  
Parasite sequestration in the placenta is a key feature of infection by Plasmodium falciparum during pregnancy and is associated with severe adverse outcomes for both mother and baby. Here, James Beeson and colleagues draw together the findings of recent studies on parasite mechanisms that mediate this process. They review evidence for novel parasite variants that appear able to evade pre-existing immunity, for the adhesion of P. falciparum-infected erythrocytes to placental glycosaminoglycans (and the molecular basis of these parasite properties) and for the expression of var genes encoding the variant antigen and adhesive ligand P. falciparum-erythrocyte membrane protein 1 (PfEMP1).  相似文献   

18.
A fundamental yet poorly understood aspect of gene regulation in eukaryotic organisms is the mechanisms that control allelic exclusion and mutually exclusive gene expression. In the malaria parasite Plasmodium falciparum, this process regulates expression of the var gene family--a large, hypervariable repertoire of genes that are responsible for the ability of the parasite to evade the host immune system and for pathogenesis of the disease. A central problem in understanding this process concerns the mechanisms that limit expression to a single gene at a time. Here, we describe results that provide information on the mechanisms that control silencing and single gene expression and differentiate between several models that have recently been proposed. The results provide the first evidence, to our knowledge, supporting the existence of a postulated var-specific, subnuclear expression site and also reinforce the conclusion that var gene regulation is based on cooperative interactions between the two promoters of each var gene.  相似文献   

19.
Human globin locus activation region (LAR): role in temporal control   总被引:24,自引:0,他引:24  
A region of DNA located far upstream of the human beta-globin locus is critically involved in the regulation of the beta-globin gene family. Recent experiments in transgenic mice suggest that switching from fetal to adult globin gene expression during human development results from competition among individual globin gene family members for interaction with sequences in this region. The phenotypes of patients with defined hemoglobinopathies support this hypothesis.  相似文献   

20.
Molecular mechanisms of Plasmodium falciparum placental adhesion   总被引:2,自引:0,他引:2  
In natural Plasmodium falciparum infections, parasitized erythrocytes (PEs) circulate in the peripheral blood for a period corresponding roughly to the first part of the erythrocytic life cycle (ring stage). Later, in blood-stage development, parasite-encoded adhesion molecules are inserted into the erythrocyte membrane, preventing the circulation of the PEs. The principal molecule mediating PE adhesion is P. falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by the polymorphic var gene family. The population of parasites is subject to clonal antigenic variation through changes in var expression, and a single PfEMP1 variant is expressed at the PE surface in a mutually exclusive manner. In addition to its role in immune evasion, switches in PfEMP1 expression may be associated with fundamental changes in parasite tissue tropism in malaria patients. A switch from CD36 binding to chondroitin sulphate A (CSA) binding may lead to extensive sequestration of PEs in placenta syncytiotrophoblasts. This is probably a key event in malaria pathogenesis during pregnancy. The CSA-binding phenotype of mature PEs is linked to another distinct adhesive phenotype: the recently described CSA-independent cytoadhesion of ring-stage PEs. Thus, a subpopulation of PEs that sequentially displays these two different phenotypes may bind to an individual endothelial cell or syncytiotrophoblast throughout the asexual blood-stage cycle. This suggests that non-circulating (cryptic) parasite subpopulations are present in malaria patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号