首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prediction of interaction energies between ligands and their receptors remains a major challenge for structure-based inhibitor discovery. Much effort has been devoted to developing scoring schemes that can successfully rank the affinities of a diverse set of possible ligands to a binding site for which the structure is known. To test these scoring functions, well-characterized experimental systems can be very useful. Here, mutation-created binding sites in T4 lysozyme were used to investigate how the quality of atomic charges and solvation energies affects molecular docking. Atomic charges and solvation energies were calculated for 172,118 molecules in the Available Chemicals Directory using a semi-empirical quantum mechanical approach by the program AMSOL. The database was first screened against the apolar cavity site created by the mutation Leu99Ala (L99A). Compared to the electronegativity-based charges that are widely used, the new charges and desolvation energies improved ranking of known apolar ligands, and better distinguished them from more polar isosteres that are not observed to bind. To investigate whether the new charges had predictive value, the non-polar residue Met102, which forms part of the binding site, was changed to the polar residue glutamine. The structure of the resulting Leu99Ala and Met102Gln double mutant of T4 lysozyme (L99A/M102Q) was determined and the docking calculation was repeated for the new site. Seven representative polar molecules that preferentially docked to the polar versus the apolar binding site were tested experimentally. All seven bind to the polar cavity (L99A/M102Q) but do not detectably bind to the apolar cavity (L99A). Five ligand-bound structures of L99A/M102Q were determined by X-ray crystallography. Docking predictions corresponded to the crystallographic results to within 0.4A RMSD. Improved treatment of partial atomic charges and desolvation energies in database docking appears feasible and leads to better distinction of true ligands. Simple model binding sites, such as L99A and its more polar variants, may find broad use in the development and testing of docking algorithms.  相似文献   

2.
Sampling receptor flexibility is challenging for database docking. We consider a method that treats multiple flexible regions of the binding site independently, recombining them to generate different discrete conformations. This algorithm scales linearly rather than exponentially with the receptor's degrees of freedom. The method was first evaluated for its ability to identify known ligands of a hydrophobic cavity mutant of T4 lysozyme (L99A). Some 200000 molecules of the Available Chemical Directory (ACD) were docked against an ensemble of cavity conformations. Surprisingly, the enrichment of known ligands from among a much larger number of decoys in the ACD was worse than simply docking to the apo conformation alone. Large decoys, accommodated in the larger cavity conformations sampled in the ensemble, were ranked better than known small ligands. The calculation was redone with an energy correction term that considered the cost of forming the larger cavity conformations. Enrichment improved, as did the balance between high-ranking large and small ligands. In a second retrospective test, the ACD was docked against a conformational ensemble of thymidylate synthase. Compared to docking against individual enzyme conformations, the flexible receptor docking approach improved enrichment of known ligands. Including a receptor conformational energy weighting term improved enrichment further. To test the method prospectively, the ACD database was docked against another cavity mutant of lysozyme (L99A/M102Q). A total of 18 new compounds predicted to bind this polar cavity and to change its conformation were tested experimentally; 14 were found to bind. The bound structures for seven ligands were determined by X-ray crystallography. The predicted geometries of these ligands all corresponded to the observed geometries to within 0.7A RMSD or better. Significant conformational changes of the cavity were observed in all seven complexes. In five structures, part of the observed accommodations were correctly predicted; in two structures, the receptor conformational changes were unanticipated and thus never sampled. These results suggest that although sampling receptor flexibility can lead to novel ligands that would have been missed when docking a rigid structure, it is also important to consider receptor conformational energy.  相似文献   

3.
Kang X  Shafer RH  Kuntz ID 《Biopolymers》2004,73(2):192-204
The calculation of ligand-nucleic acid binding free energies is investigated by including solvation effects computed with the generalized-Born model. Modifications of the solvation module in DOCK, including introduction of all-atom parameters and revision of coefficients in front of different terms, are shown to improve calculations involving nucleic acids. This computing scheme is capable of calculating binding energies, with reasonable accuracy, for a wide variety of DNA-ligand complexes, RNA-ligand complexes, and even for the formation of double-stranded DNA. This implementation of GB/SA is also shown to be capable of discriminating strong ligands from poor ligands for a series of RNA aptamers without sacrificing the high efficiency of the previous implementation. These results validate this approach to screening large databases against nucleic acid targets.  相似文献   

4.
5.
Solvation plays an important role in ligand‐protein association and has a strong impact on comparisons of binding energies for dissimilar molecules. When databases of such molecules are screened for complementarity to receptors of known structure, as often occurs in structure‐based inhibitor discovery, failure to consider ligand solvation often leads to putative ligands that are too highly charged or too large. To correct for the different charge states and sizes of the ligands, we calculated electrostatic and non‐polar solvation free energies for molecules in a widely used molecular database, the Available Chemicals Directory (ACD). A modified Born equation treatment was used to calculate the electrostatic component of ligand solvation. The non‐polar component of ligand solvation was calculated based on the surface area of the ligand and parameters derived from the hydration energies of apolar ligands. These solvation energies were subtracted from the ligand‐receptor interaction energies. We tested the usefulness of these corrections by screening the ACD for molecules that complemented three proteins of known structure, using a molecular docking program. Correcting for ligand solvation improved the rankings of known ligands and discriminated against molecules with inappropriate charge states and sizes. Proteins 1999;34:4–16. © 1999 Wiley‐Liss, Inc.  相似文献   

6.
Invulnerability of Mycobacterium tuberculosis to various drugs and its persistency has stood as a hurdle in the race against eradication of the pathogenecity of the bacteria. Identification of novel antituberculosis compounds is highly demanding as the available drugs are resistant. The ability of the bacteria to surpass the body''s defenses and adapt itself to survive for disease reactivation is contributed by secreted proteins called resuscitating promoting factors (Rpfs). These factors aid in virulence and resuscitation from dormancy of the bacteria. Sequence analysis of RpfB was performed and compounds were first screened for toxicity and high-throughput virtual screening eliminating the toxic compounds. To understand the mechanism of ligand binding and interaction, molecular docking was performed for the compounds passing through the filter resulting with better docking studies predicting the possible binding mode of the inhibitors to the protein. Of all the active residues the binding conformation shows that residues Arg194, Arg196, Glu242, and Asn244 of the RpfB protein play vital role in the enzyme activity and interacts with the ligands. Promising compounds have been identified in the current study, thus holding promise for design of antituberculosis drugs.  相似文献   

7.
The 3-dimensional structure of human carbonic anhydrase II (HCAII; EC 4.2.1.1) complexed with 3 structurally related inhibitors, 1a, 1b, and 1c, has been determined by X-ray crystallographic methods. The 3 inhibitors (1a = C8H12N2O4S3) vary only in the length of the substituent on the 4-amino group: 1a, proton; 1b, methyl; and 1c, ethyl. The binding constants (Ki's) for 1a, 1b, and 1c to HCAII are 1.52, 1.88, and 0.37 nM, respectively. These structures were solved to learn if any structural cause could be found for the difference in binding. In the complex with inhibitors 1a and 1b, electron density can be observed for His-64 and a bound water molecule in the native positions. When inhibitor 1c is bound, the side chain attached to the 4-amino group is positioned so that His-64 can only occupy the alternate position and the bound water is absent. While a variety of factors contribute to the observed binding constants, the major reason 1c binds tighter to HCAII than does 1a or 1b appears to be entropy: the increase in entropy when the bound water molecule is released contributes to the increase in binding and overcomes the small penalty for putting the His-64 side chain in a higher energy state.  相似文献   

8.
Binding‐site water molecules play a crucial role in protein‐ligand recognition, either being displaced upon ligand binding or forming water bridges to stabilize the complex. However, rigorously treating explicit binding‐site waters is challenging in molecular docking, which requires to fully sample ensembles of waters and to consider the free energy cost of replacing waters. Here, we describe a method to incorporate structural and energetic properties of binding‐site waters into molecular docking. We first developed a solvent property analysis (SPA) program to compute the replacement free energies of binding‐site water molecules by post‐processing molecular dynamics trajectories obtained from ligand‐free protein structure simulation in explicit water. Next, we implemented a distance‐dependent scoring term into DOCK scoring function to take account of the water replacement free energy cost upon ligand binding. We assessed this approach in protein targets containing important binding‐site waters, and we demonstrated that our approach is reliable in reproducing the crystal binding geometries of protein‐ligand‐water complexes, as well as moderately improving the ligand docking enrichment performance. In addition, SPA program (free available to academic users upon request) may be applied in identifying hot‐spot binding‐site residues and structure‐based lead optimization. Proteins 2014; 82:1765–1776. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Li W  Tang Y  Liu H  Cheng J  Zhu W  Jiang H 《Proteins》2008,71(2):938-949
Cytochrome P450 (P450) 2J2 catalyzes epoxidation of arachidonic acid to eicosatrienoic acids, which are related to a variety of diseases such as coronary artery disease, hypertension, and carcinogenesis. Recent experimental data also suggest that P450 2J2 could be a novel biomarker and a potential target for cancer therapy. However, the active site topology and substrate specificity of this enzyme remain unclear. In this study, a three-dimensional model of human P450 2J2 was first constructed on the basis of the crystal structure of human P450 2C9 in complex with a substrate using homology modeling method, and refined by molecular dynamics simulation. Flexible docking approaches were then employed to dock four ligands into the active site of P450 2J2 in order to probe the ligand-binding modes. By analyzing the results, active site architecture and certain key residues responsible for substrate specificity were identified on the enzyme, which might be very helpful for understanding the enzyme's biological role and providing insights for designing novel inhibitors of P450 2J2.  相似文献   

10.
Molecular interaction of atenolol, a selective β1 receptor antagonist with the major carrier protein, bovine serum albumin (BSA), was investigated under imitated physiological conditions (pH 7.4) by means of fluorescence spectroscopy, UV absorption spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and molecular modeling studies. The steady-state fluorescence spectra manifested that static type, due to formation of the atenolol-BSA complex, was the dominant mechanism for fluorescence quenching. The characteristic information about the binding interaction of atenolol with BSA in terms of binding constant (Kb) were determined by the UV–vis absorption titration, and were found to be in the order of 103 M?1 at different temperatures, indicating the existence of a weak binding in this system. Thermodynamic analysis revealed that the binding process was primarily mediated by van der Waals force and hydrogen bonds due to the negative sign for enthalpy change (ΔH0), entropy change (ΔS0). The molecular docking results elucidated that atenolol preferred binding on the site II of BSA according to the findings observed in competitive binding experiments. Moreover, via alterations in synchronous fluorescence, three-dimensional fluorescence and FT-IR spectral properties, it was concluded that atenolol could arouse slight configurational and micro-environmental changes of BSA.  相似文献   

11.
Pyrazinamide (PZA) - an important drug in the anti-tuberculosis therapy, activated by an enzyme Pyrazinamidase (PZase). The basis of PZA resistance in Mycobacterium tuberculosis was owing to mutation in pncA gene coding for PZase. Homology modeling of PZase was performed using software Discovery Studio (DS) 2.0 based on the crystal structure of the PZase from Pyrococcus horikoshii (PDB code 1im5), in this study. The model comprises of one sheet with six parallel strands and seven helices with the amino acids Asp8, Asp49, Trp68, Lys96, Ala134, Thr135 and Cys138 at the active site. Five mutants were generated with Gly at position 8, Thr at position 96, Arg at position 104, Tyr and Ser at position 138. The Wild-type (WT) and five mutant models were docked with PZA. The results indicate that the mutants Lys96Thr, Ser104Arg Asp8Gly and Cys138Tyr may contribute to higher level drug resistance than Cys138Ser. These models provide the first in-silico evidence for the binding interaction of PZA with PZase and form the basis for rationalization of PZA resistance in naturally occurring pncA mutant strains of M. tuberculosis.  相似文献   

12.
13.
The active site of acetylcholinesterase (AChE) from Torpedo californica is located 20 A from the enzyme surface at the bottom of a narrow gorge. To understand the role of this gorge in the function of AChE, we have studied simulations of its molecular dynamics. When simulations were conducted with pure water filling the gorge, residues in the vicinity of the active site deviated quickly and markedly from the crystal structure. Further study of the original crystallographic data suggests that a bis-quaternary decamethonium (DECA) ion, acquired during enzyme purification, residues in the gorge. There is additional electron density within the gorge that may represent small bound cations. When DECA and 2 cations are placed within the gorge, the simulation and the crystal structure are dramatically reconciled. The small cations, more so than DECA, appear to stabilize part of the gorge wall through electrostatic interactions. This part of the gorge wall is relatively thin and may regulate substrate, product, and water movement through the active site.  相似文献   

14.
The solution structure of oxidized bovine microsomal cytochrome b(5) mutant (E48, E56/A, D60/A) has been determined through 1524 meaningful nuclear Overhauser effect constraints together with 190 pseudocontact shift constraints. The final family of 35 conformers has rmsd values with respect to the mean structure of 0.045+/-0.009 nm and 0.088+/-0.011 nm for backbone and heavy atoms, respectively. A characteristic of this mutant is that of having no significant changes in the whole folding and secondary structure compared with the X-ray and solution structures of wild-type cytochrome b(5). The binding of different surface mutants of cytochrome b(5) with cytochrome c shows that electrostatic interactions play an important role in maintaining the stability and specificity of the protein complex formed. The differences in association constants demonstrate the electrostatic contributions of cytochrome b(5) surface negatively charged residues, which were suggested to be involved in complex formation in the Northrup and Salemme models, have cumulative effect on the stability of cyt c-cyt b(5) complex, and the contribution of Glu48 is a little higher than that of Glu44. Moreover, our result suggests that the docking geometry proposed by Northrup, which is involved in the participation of Glu48, Glu56, Asp60, and heme propionate of cytochrome b(5), do occur in the association between cytochrome b(5) and cytochrome c.  相似文献   

15.
It has recently been proposed that the role of neuroglobin in the protection of neurons from ischaemia induced cell death requires the formation of a transient complex with cytochrome c. No such complex has yet been isolated. Here, we present the results of soft docking calculations, which indicate one major binding site for cytochrome c to neuroglobin. The results yield a plausible structure for the most likely complex structure in which the hemes of each protein are in close contact. NMR analysis identifies the formation of a weak complex in which the heme group of cytochrome c is involved. surface plasmon resonance studies provide a value of 45muM for the equilibrium constant for cytochrome c binding to neuroglobin, which increases significantly as the ionic strength of the solution increases. The temperature dependence of the binding constant indicates that the complex formation is associated with a small unfavourable enthalpy change (1.9kcalmol(-1)) and a moderately large, favourable entropy change (14.8calmol(-1)deg(-1)). The sensitivity of the binding constant to the presence of salt suggests that the complex formation involves electrostatic interactions.  相似文献   

16.
Background: In recent years, since the molecular docking technique can greatly improve the efficiency and reduce the research cost, it has become a key tool in computer-assisted drug design to predict the binding affinity and analyze the interactive mode. Results: This study introduces the key principles, procedures and the widely-used applications for molecular docking. Also, it compares the commonly used docking applications and recommends which research areas are suitable for them. Lastly, it briefly reviews the latest progress in molecular docking such as the integrated method and deep learning. Conclusion: Limited to the incomplete molecular structure and the shortcomings of the scoring function, current docking applications are not accurate enough to predict the binding affinity. However, we could improve the current molecular docking technique by integrating the big biological data into scoring function.  相似文献   

17.
The interactions of heme peroxidase enzymes with their substrates have been studied for many years, but only in the last decade or so has structural information begun to appear. This review looks at crystal structures for a number of heme peroxidases in complex with a number of (mainly organic) substrates. It examines the nature and location of the binding interaction, and explores functional similarities and differences across the family.  相似文献   

18.
To further understand the mechanism of action and pharmacokinetics of medroxyprogesterone acetate (MPA), the binding interaction of MPA with bovine serum albumin (BSA) under simulated physiological conditions (pH 7.4) was studied using fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, circular dichroism and molecular docking methods. The experimental results reveal that the fluorescence of BSA quenches due to the formation of MPA–BSA complex. The number of binding sites (n) and the binding constant for MPA–BSA complex are ~1 and 4.6 × 103 M?1 at 310 K, respectively. However, it can be concluded that the binding process of MPA with BSA is spontaneous and the main interaction forces between MPA and BSA are van der Waals force and hydrogen bonding interaction due to the negative values of ΔG0, ΔH0 and ΔS0 in the binding process of MPA with BSA. MPA prefers binding on the hydrophobic cavity in subdomain IIIA (site II′′) of BSA resulting in a slight change in the conformation of BSA, but BSA retaining the α‐helix structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Elastase is a protease or proteolytic enzyme, responsible for the breakdown of protein. There are eight human genes encoding for elastase, of which Elastase-1 (CELA-1) and Elastase-2 (ELANE) has significant implications on human diseases. Elastase-1 is primarily expressed in skin keratinocytes and is regarded as the major cause for the blistering in bullous pemphigoid, which affects the skin. On the other hand, Elastase-2 (ELANE), is expressed in the azurophil granules of neutrophils, is responsible for pulmonary emphysema and cyclic hematopoiesis a rare genetic disorder. Elastase is also produced by bacteria such as Pseudomonas aeruginosa, and forms the virulent factor in human. The ingredients from essential natural oils were found to have wound healing effects on non-healing wounds that is interfered by elastase due to microbial infection. Essential oils such as citral, citronellal, geranial, geraniol, and thymol were screened for their inhibitory activity on elastase produced by neutrophil, skin, and Pseudomonas aeruginosa by docking and were analyzed for their subcutaneous ADMET properties by ADME - TOX - Web server.  相似文献   

20.
An open and a closed conformation of a surface loop in PhaZ7 extracellular poly(3‐hydroxybutyrate) depolymerase were identified in two high‐resolution crystal structures of a PhaZ7 Y105E mutant. Molecular dynamics (MD) simulations revealed high root mean square fluctuations (RMSF) of the 281–295 loop, in particular at residue Asp289 (RMSF 7.62 Å). Covalent docking between a 3‐hydroxybutyric acid trimer and the catalytic residue Ser136 showed that the binding energy of the substrate is significantly more favorable in the open loop conformation compared to that in the closed loop conformation. MD simulations with the substrate covalently bound depicted 1 Å RMSF higher values for the residues 281–295 in comparison to the apo (substrate‐free) form. In addition, the presence of the substrate in the active site enhanced the ability of the loop to adopt a closed form. Taken together, the analysis suggests that the flexible loop 281–295 of PhaZ7 depolymerase can act as a lid domain to control substrate access to the active site of the enzyme. Proteins 2017; 85:1351–1361. © 2017 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号