首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous studies have demonstrated enhanced secretion of pulmonary surfactant from type II alveolar epithelial cells following beta-adrenergic stimulation. The present study was undertaken in order to provide quantitative morphologic data supporting this effect in vivo. Adult male Sprague-Dawley rats were injected subcutaneously with 150 mg/kg L-isoproterenol, a wide-range beta-adrenergic agonist, and killed at times 0.25-12 hours post-injection. Other rats were similarly injected with saline, and killed at times 0.25-6 hours post-injection. A third group of animals was not injected, nor handled, prior to the time of death, and served as baseline controls. Stereologic analysis of the intracellular organelles of the type II cells in the animals treated with L-isoproterenol revealed a significant decrease in lamellar body volume density, indicating increased secretion of surfactant, at 0.5-4 hours. The rough endoplasmic reticulum volume density increased significantly at 2-6 hours, indicating increased synthetic activity. In contrast, the type II cells of saline-injected animals showed no significant evidence of increased secretion, but did demonstrate a large increase in synthetic activity, resulting in many large lamellar bodies at 2 and 4 hours post-injection. The results of this study provide quantitative morphological evidence of beta-adrenergic stimulation of the secretion and synthesis of pulmonary surfactant secretion by type II cells of the adult rat lung in vivo. In addition, they suggest an enhancement of surfactant synthesis following saline injection, which is perhaps based on endogenous catecholamine release.  相似文献   

2.
Specific beta-adrenergic receptors have been identified in dissociated preparations of rabbit lung cells greatly enriched for alveolar type II cells and compared with receptors in preparations of mixed lung cells and erythrocytes. Freshly isolated type II cells as well as mixed dissociated lung cells and erythrocytes from fetal (28 days gestation) and adult rabbits contained high-affinity, low-capacity binding sites for [3H]dihydroalprenolol (DHA). Binding to all preparations was stereospecific and characteristic of the beta 1-subtype of beta-adrenergic receptors. The concentrations of the receptors were similar in mixed lung cells and alveolar type II cells, indicating that beta-adrenergic receptors are present not only in type II cells but also in other lung cell types. When the contribution of erythrocytes to receptor concentration observed in type II cells was determined, it was found to be insignificant. In mixed lung cells, both the affinity and concentration of the receptors were higher in adult than fetal preparations. The affinity of the receptors was also higher in adult than fetal type II cells, although we did not find a significant age-related difference in receptor concentrations in this cell type. These results suggest that stimulation of surfactant secretion observed after exposure of lung tissue to beta-adrenergic agonists is mediated by specific beta-adrenergic receptors on alveolar type II cells.  相似文献   

3.
B Klangkalya  A Chan 《Life sciences》1988,42(23):2307-2314
The in vitro and in vivo effects of estrogen and progesterone on muscarinic and beta-adrenergic receptors of cardiac tissue were studied in ovariectomized (OVX) rats. The binding assay for muscarinic receptors was performed under a nonequilibrium condition; whereas the binding assay for beta-adrenergic receptors, under an equilibrium condition. Estrogenic compounds and progesterone were found to have no effect on the binding of the radioligand, [3H]-dihydroalprenolol, to beta-adrenergic receptors in vitro. However, progestins but not estrogenic compounds inhibited the binding of the radioligand, [3H]-quinuclidinyl benzilate, to muscarinic receptors in vitro, with progesterone as the most potent inhibitor (IC50 = 37 microM, apparent Ki = 13 microM). Progesterone was found to decrease the apparent affinity of muscarinic receptors for [3H](-)QNB in vitro. Daily treatment of OVX rats with estradiol benzoate (4 micrograms) or progesterone (2.5 mg) for 4 days had no effect on the muscarinic or beta-adrenergic receptors with respect to the binding affinity and receptor density. However, administrations of these hormones together for 4 days caused an increase in the receptor density of muscarinic receptors without a significant effect on their apparent binding affinity; also these hormones induced a decrease in the binding affinity and an increase in the receptor density of beta-adrenergic receptors. The results of this study demonstrate that progestins are capable of interacting with the cardiac muscarinic receptors in vitro, and indicate that estrogen and progesterone have a synergistic effect to increase the receptor densities of muscarinic and beta-adrenergic receptors as well as to cause a decrease in the binding affinity of beta-adrenergic receptors in vivo.  相似文献   

4.
Administration of chlorphentermine to rats leads to an increase in the phospholipid content of pulmonary surfactant materials and alveolar macrophages. It is known that this drug binds to pure phospholipids and prevents their degradation by phospholipases. Therefore, experiments were carried out to determine if chlorphentermine binds to surfactant phospholipids in vitro and to measure the in vivo association of drug with phospholipids in alveolar lavage materials from rats injected with [14C]chlorphentermine. The presence of chlorphentermine in alveolar macrophages, type II cells and other small pneumocytes (a population of lung cells which does not include alveolar macrophages or type II cells) from treated animals was also assessed. Binding of the drug to surfactant phospholipids, as measured with the fluorescent probe, 1-anilino-8-naphthalene sulfonate, occurs in vitro and does not differ in various subfractions of alveolar lavage materials isolated by differential centrifugation. Following daily administration of chlorphentermine to rats for 3 days, the drug appears to be associated with surfactant phospholipids such that the molar ratio is 1:100 (chlorphentermine/phospholipid). Chlorphentermine is also associated with alveolar macrophages (molar ratio, 1:18) and type II cells (molar ratio, 1:33). Not much drug is associated with the population of other lung cells (molar ratio, 1:333). In alveolar macrophages, approx. 70% of the drug seems to be bound to phospholipid and/or sequestered in subcellular organelles. However, only 20% of the chlorphentermine is bound and/or sequestered in type II cells. The results of these experiments suggest that following chlorphentermine administration, the drug is associated with phospholipids in acellular pulmonary lavage materials, alveolar macrophages and type II cells. This drug-phospholipid interaction may impair phospholipid degradation and lead to a phospholipidosis in surfactant materials and alveolar macrophages.  相似文献   

5.
J B Cheng  R G Townley 《Life sciences》1982,30(24):2079-2086
This study was undertaken to compare the activity of muscarinic and beta adrenergic receptors in bovine peripheral lung to the corresponding receptor activity in tracheal smooth muscle. We used [3H] quinuclidinyl benzilate (QNB) and [3H]dihydroalprenolol (DHA) to measure muscarinic and beta receptor activity, respectively. Binding to QNB and DHA at 25 degrees C was rapid, reversible, saturable and of high affinity. The order of potency for cholinergic and adrenergic agents competing for binding was compatible with muscarinic and beta 2 adrenergic potencies. We found that the concentration of muscarinic receptor binding sites was 37-fold greater in the tracheal muscle preparation (2805 +/- 309 fmol/mg protein) than in the peripheral lung preparation (76 +/- 28 fmol/mg protein). Unlike muscarinic receptors, the lung contained 8-fold higher concentration of the beta adrenergic receptors than did the tracheal muscle (1588 +/- 417 vs. 199 +/- 42 fmol/mg protein). The dissociation constant or the agonist's inhibitory constant (Ki) for either receptor binding site, however, was not significantly different between the two tissues. Furthermore, in vitro contraction studies showed that the response of tracheal muscle strips to methacholine was markedly greater than the response of peripheral lung strips, a finding consistent with the QNB binding result. The muscle but not the peripheral lung strip exhibited a relaxing response to epinephrine. Our data indicate a striking quantitative difference in muscarinic and beta adrenergic receptors between lung tissue and tracheal muscle, and that each receptor in the lung is qualitatively similar to the corresponding receptor in the muscle.  相似文献   

6.
Previous studies have demonstrated a role for the beta-adrenergic system in the maturation of the fetal alveolar epithelium. Chronic blockade of beta-adrenergic binding sites has been shown to adversely effect physiologic and biochemical indices of fetal lung maturation. In the present study timed-pregnant female Sprague-Dawley rats were treated with a continuous 0.5 mg/hr dose of propranolol HCl, or saline, via an osmotic pump. The treatment periods were days 18-21, or 20-23 of gestation. Fetal body weights were obtained, and the morphology of the fetal lungs studied by light and electron microscopy. Cytoplasmic volume densities of lamellar inclusion bodies and glycogen within developing type II alveolar epithelial cells were also determined. In addition, total phospholipids (as phosphorus) and glycogen content were determined biochemically. The fetuses from females treated from day 20-23 demonstrated no differences between saline-treated and propranolol-treated groups, in either fetal weight or the morphologic appearance of the developing lung. In contrast, the fetuses from mothers treated from day 18-21 with propranolol were significantly smaller, and their lungs appeared less mature than saline-treated counterparts. The glycogen content of developing type II alveolar epithelial cells was significantly more abundant (as judged by stereologic and biochemical analyses) in the propranolol-treated fetuses. In addition, total phospholipids were decreased in the propranolol-treated 21-day fetuses. The results of the present study suggest that the development of the alveolar epithelium is sensitive to continuous beta-adrenergic blockade by propranolol during a critical time late in gestation.  相似文献   

7.
Summary The immunocytochemical localization of tetrameric carbonyl reductase in the mouse lung was determined by an electron-microscopical immunogold procedure using monospecific antibodies against the enzyme. The labelling of carbonyl reductase was observed within the mitochondria of the ciliated and non-ciliated cells of the bronchioles and the type II alveolar pneumocytes, and the density of labelling in the non-ciliated cells was higher than those in the other cells. No significant labelling was detected over other compartments of the epithelial cells. The labelling was undetectable in the type I alveolar cells, alveolar macrophages and connective tissue cells of the lung. These results clearly indicate the localization of carbonyl reductase to the mitochondrial matrix of these epithelial cells, of which the non-ciliated bronchiolar cells contained particularly high amounts of the enzyme.  相似文献   

8.
Pre-term neonates and neonates in general exhibit physiological vitamin E deficiency and are at increased risk for the development of acute lung diseases. Apoptosis is a major cause of acute lung damage in alveolar type II cells. In this paper, we evaluated the hypothesis that vitamin E deficiency predisposes alveolar type II cells to apoptosis. Therefore, we measured markers of apoptosis in alveolar type II cells isolated from control rats, vitamin E deficient rats and deficient rats that were re-fed a vitamin E-enriched diet. Bax and cytosolic cytochrome c increased, and the mitochondrial transmembrane potential and Hsp25 expression was reduced in vitamin E deficiency. Furthermore, increased DNA-fragmentation and numbers of early and late apoptotic cells were seen, but caspases 3 and 8 activities and expression of Fas, Bcl-2, Bcl-x and p53 remained unchanged. Vitamin E depletion did not change the GSH/GSSG ratio and the activities of antioxidant enzymes. Thus, vitamin E deficiency may induce a reversible pro-apoptotic response in lung cells and sensitise them for additional insult. In agreement with this hypothesis, we demonstrate that in vivo hyperoxia alone does not induce apoptosis in type II cells of control rats but reversibly increases DNA-fragmentation and numbers of early apoptotic type II cells in vitamin E-depleted cells.  相似文献   

9.
Pre-term neonates and neonates in general exhibit physiological vitamin E deficiency and are at increased risk for the development of acute lung diseases. Apoptosis is a major cause of acute lung damage in alveolar type II cells. In this paper, we evaluated the hypothesis that vitamin E deficiency predisposes alveolar type II cells to apoptosis. Therefore, we measured markers of apoptosis in alveolar type II cells isolated from control rats, vitamin E deficient rats and deficient rats that were re-fed a vitamin E-enriched diet. Bax and cytosolic cytochrome c increased, and the mitochondrial transmembrane potential and Hsp25 expression was reduced in vitamin E deficiency. Furthermore, increased DNA-fragmentation and numbers of early and late apoptotic cells were seen, but caspases 3 and 8 activities and expression of Fas, Bcl-2, Bcl-x and p53 remained unchanged. Vitamin E depletion did not change the GSH/GSSG ratio and the activities of antioxidant enzymes. Thus, vitamin E deficiency may induce a reversible pro-apoptotic response in lung cells and sensitise them for additional insult. In agreement with this hypothesis, we demonstrate that in vivo hyperoxia alone does not induce apoptosis in type II cells of control rats but reversibly increases DNA-fragmentation and numbers of early apoptotic type II cells in vitamin E-depleted cells.  相似文献   

10.
J P Joad  T B Casale 《Life sciences》1987,41(13):1577-1584
Quinuclidinyl benzilate, a muscarinic antagonist, has previously been used in its tritiated form ([3H]-QNB) to study the lung muscarinic receptor. We investigated whether a newer iodinated form of QNB ([125I]-QNB) of higher specific activity would be an appropriate ligand to study the human peripheral lung muscarinic receptor. Both the tritiated and iodinated ligands bound specifically to human lung at 23 degrees C. At 37 degrees C the specific binding of [3H]-QNB increased slightly, but no specific binding of [125I]-QNB was found. The data from multiple equilibrium binding experiments covering a wide range of radiolabeled QNB concentrations were combined and analyzed using the computer modeling program, LIGAND. The tritiated QNB identified a single affinity human lung binding site with a Kd of 46 +/- 9 pM and a receptor concentration of 34 +/- 3 fmol/mg protein. The iodinated QNB identified a single higher affinity human lung binding site (Kd = 0.27 +/- 0.32 pM) of much smaller quantity (0.62 +/- 0.06 fmol/mg protein). Competition studies comparing the binding of unlabeled QNB relative to labeled QNB indicated that unlabeled QNB had the same Kd as that measured for [3H]-QNB, but a 5 log greater Kd than that measured for [125I]-QNB. Other muscarinic receptor agonists and antagonists competed with [3H]-QNB, but not [125I]-QNB for binding to muscarinic receptors with the expected magnitude and rank order of potency. We conclude that of the 2 radiolabeled forms of QNB available, only the tritiated form should be used to study the human peripheral lung muscarinic receptor.  相似文献   

11.
Fluid reabsorption from alveolar space is driven by active Na reabsorption via epithelial Na channels (ENaCs) and Na-K-ATPase. Both are inhibited by hypoxia. Here we tested whether hypoxia decreases Na transport by decreasing the number of copies of transporters in alveolar epithelial cells and in lungs of hypoxic rats. Membrane fractions were prepared from A549 cells exposed to hypoxia (3% O(2)) as well as from whole lung tissue and alveolar type II cells from rats exposed to hypoxia. Transport proteins were measured by Western blot analysis. In A549 cells, alpha(1)- and beta(1)-Na-K-ATPase, Na/K/2Cl cotransport, and ENaC proteins decreased during hypoxia. In whole lung tissue, alpha(1)-Na-K-ATPase and Na/K/2Cl cotransport decreased. alpha- and beta-ENaC mRNAs also decreased in hypoxic lungs. Similar results were seen in alveolar type II cells from hypoxic rats. These results indicate a slow decrease in the amount of Na-transporting proteins in alveolar epithelial cells during exposure to hypoxia that also occurs in vivo in lungs from hypoxic animals. The reduced number of transporters might account for the decreased transport activity and impaired edema clearance in hypoxic lungs.  相似文献   

12.
Incubation of 1321N1 human astrocytoma cells with carbachol resulted in a rapid loss of binding of [3H]N-methylscopolamine ([3H]NMS) to muscarinic cholinergic receptors measured at 4 degrees C on intact cells; loss of muscarinic receptors in lysates from the same cells measured with [3H]quinuclidinyl benzilate [( 3H]QNB) at 37 degrees C occurred at a slower rate. Upon removal of agonist from the medium, the lost [3H]NMS binding sites measured on intact cells recovered with a t1/2 of approximately 20 min, but only to the level to which [3H]QNB binding sites had been lost; no recovery of "lost" [3H]QNB binding sites occurred over the same period. Based on these data and the arguments of Galper et al. (Galper, J. B., Dziekan, L. C., O'Hara, D. S., and Smith, T. W. (1982) J. Biol. Chem. 257, 10344-10356) regarding the relative hydrophilicity of [3H]NMS versus [3H]QNB, it is proposed that carbachol induces a rapid sequestration of muscarinic receptors that is followed by a loss of these receptors from the cell. These carbachol-induced changes are accompanied by a change in the membrane form of the muscarinic receptor. Although essentially all of the muscarinic receptors from control cells co-purified with the plasma membrane fraction on sucrose density gradients, 20-35% of the muscarinic receptors from cells treated for 30 min with 100 microM carbachol migrated to a much lower sucrose density. This conversion of muscarinic receptors to a "light vesicle" form occurred with a t1/2 approximately 10 min, and reversed with a t1/2 approximately 20 min. In contrast to previous results in this cell line regarding beta-adrenergic receptors (Harden, T. K., Cotton, C. U., Waldo, G. L., Lutton, J. K., and Perkins, J. P. (1980) Science 210, 441-443), agonist binding to muscarinic receptors in the light vesicle fraction obtained from carbachol-treated cells was still regulated by GTP. One interpretation of these data is that agonists induce an internalization of muscarinic receptors with the retention of their functional interaction with a guanine nucleotide regulatory protein.  相似文献   

13.
14.
To study the effect of diabetes on pulmonary surfactant secretion, type II pneumocytes from adult streptozotocin-induced diabetic rats were placed in short-term culture. As opposed to a linear secretory rate by control type II cells, the secretory rate of type II cells from diabetic animals was biphasic reaching a minimum at 1.5 h. When exogenous surfactant containing radioactive phosphatidylcholine was added to the incubation media for 1.5 h, the cells from diabetic animals incorporated more exogenous phosphatidylcholine into lamellar bodies than control cells. This suggests that in the type II cell from diabetic animals, the rate of reutilization is greater than the rate of secretion until 1.5 h, at which time the rate of secretion becomes greater. The altered secretory pattern was reversed by in vivo insulin treatment 30 min prior to killing but not by the addition of insulin to the incubation media. When challenged by isoproterenol, a beta-adrenergic agonist, the secretory pattern of cells from diabetic animals was biphasic as observed with basal secretion; however, secretion was stimulated 30% as opposed to 100% increase in control cells. These data suggest that basal and stimulated secretion are altered in the cultured type II cell from diabetic animals and restored by in vivo but not in vitro insulin treatment.  相似文献   

15.
Although keratinocyte growth factor (KGF) protects against experimental acute lung injury, the mechanisms for the protective effect are incompletely understood. Therefore, the time-dependent effects of KGF on alveolar epithelial fluid transport were studied in rats 48-240 h after intratracheal administration of KGF (5 mg/kg). There was a marked proliferative response to KGF, measured both by in vivo bromodeoxyuridine staining and by staining with an antibody to a type II cell antigen. In controls, alveolar liquid clearance (ALC) was 23 +/- 3%/h. After KGF pretreatment, ALC was significantly increased to 30 +/- 2%/h at 48 h, to 39 +/- 2%/h at 72 h, and to 36 +/- 3%/h at 120 h compared with controls (P < 0.05). By 240 h, ALC had returned to near-control levels (26 +/- 2%/h). The increase in ALC was explained primarily by the proliferation of alveolar type II cells, since there was a good correlation between the number of alveolar type II cells and the increase in ALC (r = 0.92, P = 0.02). The fraction of ALC inhibited by amiloride was similar in control rats (33%) as in 72-h KGF-pretreated rats (38%), indicating that there was probably no major change in the apical pathways for Na uptake in the KGF-pretreated rats at this time point. However, more rapid ALC at 120 h, compared with 48 h after KGF treatment, may be explained by greater maturation of alpha-epithelial Na channel, since its expression was greater at 120 than at 48 h, whereas the number of type II cells was the same at these two time points. beta-Adrenergic stimulation with terbutaline 72 h after KGF pretreatment further increased ALC to 50 +/- 7%/h (P < 0.5). In summary, KGF induced a sustained increase over 120 h in the fluid transport capacity of the alveolar epithelium. This impressive upregulation in fluid transport was further enhanced with beta-adrenergic agonist therapy, thus providing evidence that two different treatments can simultaneously increase the fluid transport capacity of the alveolar epithelium.  相似文献   

16.
The selective muscarinic antagonist L-[3H]-quinuclidinyl benzilate (L-[3H]QNB) binds reversibly and with high affinity (KD = 0.3 nM) to a single population (Bmax = 105 fmol/mg protein) of specific sites in nervous tissue of the crab Cancer magister. The binding site is stereoselective; (-)QNB is over 200 times more potent than (+)QNB as an inhibitor of specific L-[3H]QNB binding. The muscarinic antagonists scopolamine and atropine are over 10,000 times more potent inhibitors of L-[3H]QNB binding than the nicotinic antagonists decamethonium and d-tubocurarine. The muscarinic agonists oxotremorine, pilocarpine, arecoline, and carbachol also compete effectively for the L-[3H]QNB binding site. This pharmacological profile strongly suggests the presence of classical muscarinic receptors in the crab nervous system. These receptors are localized to nervous tissue containing cell bodies and neuropil, whereas specific L-[3H]QNB binding is low or absent in peripheral nerve, skeletal muscle, and artery.  相似文献   

17.
We have investigated by LM, TEM, and HRSEM the effects of D,L-isoproterenol (beta-adrenergic agent), carbachol (muscarinic agent) and clozapine on biopsy specimens of human submandibular gland stimulated in vitro in an inorganic oxygenated medium. Clozapine is a dibenzodiazepine derivative used in psychotic patients that provokes hypersalivation, a displeasing side effect that often causes discontinuance of therapy. Our findings demonstrate that clozapine acts on salivary mucous and seromucous (serous) cells of the gland as a muscarinic agonist. However, the induced secretory response seems to differ qualitatively and quantitatively from that resulting from carbachol. Thus, in agreement with published data resulting from therapeutic treatments and from experimental studies on rats, the mechanism of clozapine induced hypersialorrhea remains open to further investigation.  相似文献   

18.
Fibrogenesis is a common pulmonary response to injury, which is usually preceded by other severe reactions, including inflammation, fluid exudation, and alveolar epithelial damage and proliferation. The purpose of this study was to examine the morphologic effects on the distal lung of a continuous propranolol treatment. Adult male rats were treated, via a subcutaneous osmotic pump, with a continuous (approximately 0.5 mg/hour) dose of propranolol HCl, a potent wide range beta-adrenergic blocking agent, in saline, or saline alone. The animals were killed after one week or three weeks. Electron microscopy of the lungs of the propranolol-treated animals revealed a dramatic increase in the prominence of interstitial cells and fibers of the alveolar septa, along with focal thickening of endothelial cells and some morphologic changes in type II alveolar epithelial cells. In some animals an analysis of total protein content, as well as 3H-proline incorporation into total protein and collagen was undertaken. The results of this study indicated a significant increase in total protein content and proline incorporation into collagen in the lungs of animals treated for seven days with continuous propranolol. There was no evidence of stimulated blood cells, macrophages, edema or severe epithelial damage. This study provides morphologic evidence that continuous treatment with moderate levels of propranolol results in a fibrogenic response in the peripheral lung, in the absence of typical hallmarks of severe pulmonary damage.  相似文献   

19.
Somatic cell gene transfer is a potentially useful strategy to alter lung function. However, achieving efficient transfer to the alveolar epithelium, especially in smaller animals, has not been demonstrated. In this study, the rat heme oxygenase-1 (HO-1) gene was delivered to the lungs of neonatal mice via transpulmonary injection. A bidirectional promoter construct coexpressing both HO-1 and a luciferase reporter gene was used so that in vivo gene expression patterns could be monitored in real time. HO-1 expression levels were also modulated with doxycycline and assessed in vivo with bioluminescent light transmitted through the tissues from the coregulated luciferase reporter. As a model of oxidative stress and HO-1-mediated protection, groups of animals were exposed to hyperoxia. After gene transfer, elevated levels of HO-1 were detected predominantly in alveolar type II cells by immunocytochemistry. With overexpression of HO-1, increased oxidative injury was observed. Furthermore, this model demonstrated a cell-specific effect of lung HO-1 overexpression in oxidative stress. Specific control of expression for therapeutic genes is possible in vivo. The transpulmonary approach may prove useful in targeting gene expression to cells of the alveolar epithelium or to circumscribed areas of the lung.  相似文献   

20.
To further analyze functionally important cholinergic receptors on lymphocytes, we studied the binding of the muscarinic antagonist Quinuclidinyl benzilate (QNB) to murine splenic lymphocytes. Studies of displacement of [3H]QNB by unlabelled QNB on lymphocytes revealed at least two binding sites. Scatchard analysis of equilibrium binding isotherms also distinguished two sites with apparent Kds of 480 nM and 16 μM. There was greater specific QNB binding to B cell-enriched lymphocyte fractions than to T cell fractions. Lymphocyte binding demonstrated temperature-dependent dissociability, and specific binding occurred on isolated lymphocyte membranes as well. Both muscarinic and nicotinic ligands competed for QNB binding to lymphocytes with low and nearly equal affinity. Therefore, QNB binding sites on lymphocytes appear to be of low affinity and of mixed muscarinic and nicotinic character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号