首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Vershinin AV 《Genetika》2006,42(9):1200-1214
Investigation of protein complexes, various types of protein modifications and the structure of the chromatin of specific chromosome regions, such as centromeres, telomeres, and adjacent heterochromatic regions, considerably complicated the notion on DNA, prevailing five decades ago, as molecules that exclusively control coding and realization of genetic information. Striking plasticity of the primary structure of centromeric and telomeric DNA suggests a variety of molecular mechanisms underlying fundamental and universal functions of these key chromosome regions. The present review is an attempt to consider the current concepts on the structure of the DNA and protein components, as well as the structure of the chromatin of specific chromosome regions in eukaryotes, and the concerted evolution of these components, leading to the formation of a hierarchy of coordinated DNA-protein complexes.  相似文献   

5.
Investigation of protein complexes, various types of protein modifications and the structure of the chromatin of specific chromosome regions, such as centromeres, telomeres, and adjacent heterochromatic regions, considerably complicated the notion on DNA, prevailing five decades ago, as molecules that exclusively control coding and realization of genetic information. Striking plasticity of the primary structure of centromeric and telomeric DNA suggests a variety of molecular mechanisms underlying fundamental and universal functions of these key chromosome regions. The present review is an attempt to consider the current concepts on the structure of the DNA and protein components, as well as the structure of the chromatin of specific chromosome regions in eukaryotes, and the concerted evolution of these components, leading to the formation of a hierarchy of coordinated DNA-protein complexes.  相似文献   

6.
7.
Benoit Miotto 《Epigenetics》2013,8(10):1008-1012
Chromatin structure is regulated by families of proteins that are able to covalently modify the histones and the DNA, as well as to regulate the spacing of nucleosomes along the DNA. Over the years, these chromatin remodeling factors have been proven to be essential to a variety of processes, including gene expression, DNA replication, and chromosome cohesion. The function of these remodeling factors is regulated by a number of chemical and developmental signals and, in turn, changes in the chromatin structure eventually contribute to the response to changes in the cellular environment. Exciting new research findings by the laboratories of Sharon Dent and Steve Jackson indicate, in two different contexts, that changes in the chromatin structure may, in reverse, signal to intracellular signaling pathways to regulate cell fate. The discoveries clearly challenge our traditional view of ‘epigenetics’, and may have important implications in human health.  相似文献   

8.
The execution of apoptosis or programmed cell death comprises both caspase-dependent and caspase-independent processes. Apoptosis inducing factor (AIF) was identified as a major player in caspase-independent cell death. It induces chromatin condensation and initial DNA cleavage via an unknown molecular mechanism. Here we report the crystal structure of human AIF at 1.8 A resolution. The structure reveals the presence of a strong positive electrostatic potential at the AIF surface, although the calculated isoelectric point for the entire protein is neutral. We show that recombinant AIF interacts with DNA in a sequence-independent manner. In addition, in cells treated with an apoptotic stimulus, endogenous AIF becomes co-localized with DNA at an early stage of nuclear morphological changes. Structure-based mutagenesis shows that DNA-binding defective mutants of AIF fail to induce cell death while retaining nuclear translocation. The potential DNA-binding site identified from mutagenesis also coincides with computational docking of a DNA duplex. These observations suggest that AIF-induced nuclear apoptosis requires a direct interaction with DNA.  相似文献   

9.
DNA and histone chromatin modifying enzymes play a crucial role in chromatin remodeling in several biological processes. Lysine-specific demethylase 1 (LSD1), the first identified histone demethylase, is a relevant player in the regulation of a broad spectrum of biological processes including development, cellular differentiation, embryonic pluripotency and cancer. Here, we review recent insights on the role of LSD1 activity in chromatin regulatory complexes, its functional role in the epigenetic changes during embryonic development, in the establishment and maintenance of stemness and during cancer progression.  相似文献   

10.
Chromatin is a dynamic DNA scaffold structure that responds to a variety of external and internal stimuli to regulate the fundamental biological processes. Majority of the cases chromatin dynamicity is exhibited through chemical modifications and physical changes between DNA and histones. These modifications are reversible and complex signaling pathways involving chromatin-modifying enzymes regulate the fluidity of chromatin. Fluidity of chromatin can also be impacted through irreversible change, proteolytic processing of histones which is a poorly understood phenomenon. In recent studies, histone proteolysis has been implicated as a regulatory process involved in the permanent removal of epigenetic marks from histones. Activities responsible for clipping of histone tails and their significance in various biological processes have been observed in several organisms. Here, we have reviewed the properties of some of the known histone proteases, analyzed their significance in biological processes and have provided future directions.  相似文献   

11.
12.
Chromatin as an oxygen sensor and active player in the hypoxia response   总被引:1,自引:0,他引:1  
  相似文献   

13.
14.
In eukaryotes, chromatin is the natural form of DNA in the nucleus. For hundreds of millions of years, DNA-binding factors have evolved with chromatin. It is therefore more desirable to study the molecular mechanisms of DNA-directed processes with chromatin than with naked DNA templates. To this end, it is necessary to reconstitute DNA and histones into chromatin. Fortunately, there are a variety of methods by which a nonspecialist can prepare chromatin of high quality. Here, we describe strategies and techniques for the reconstitution of chromatin in vitro.  相似文献   

15.
染色质可及性(chromatin accessibility)作为一种衡量染色质结合因子与染色质DNA结合能力高低的染色质属性,是评价染色质结构稳态的重要指标之一,在多种细胞核进程中扮演重要角色,包括基因转录调控以及DNA损伤修复等。该属性的异常调控与多种疾病的发生发展密切相关,包括肿瘤以及神经退行性疾病等。对于该属性探究已经成为生命科学与疾病领域的热点。伴随越来越多的新技术应运而生,例如染色质构象捕获技术、高通量测序技术以及两种技术的结合等。随着技术的进步,多种参与调控染色质可及性的因素被发现和总结,包括核小体占位、组蛋白修饰以及非编码RNA等。多项大规模的染色质组学数据绘制了多种疾病的染色质可及性图谱,为揭示疾病的发生发展与染色质可及性之间的关系提供了数据支持。同时,随着单细胞染色质可及性测序技术的发展,实现了对细胞类型染色质层面的划分,弥补了单纯依赖基因表达划分细胞类型的不足。本文将从染色质的组成与可及性、影响染色质可及性的因素、染色质可及性的检测方法,以及染色质可及性与癌症的关系等方面简要阐述染色质可及性的研究进展。  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号