首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The orphan nuclear receptor Nurr1 is primarily expressed in the central nervous system. It has been shown that Nurr1 is necessary for terminal differentiation of dopaminergic (DA) neurons in ventral midbrain. The receptor, however, is also expressed in other organs including bone, even though the role of Nurr1 is not yet understood. Therefore, we investigated the role of Nurr1 in osteoblast differentiation in MC3T3-E1 cells and calvarial osteoblasts derived from Nurr1 null newborn pups. Our results revealed that reduced Nurr1 expression, using Nurr1 siRNA in MC3T3-E1 cells, affected the expression of osteoblast differentiation marker genes, osteocalcin (OCN) and collagen type I alpha 1 (COL1A1), as measured by quantitative real-time PCR. The activity of alkaline phosphatase (ALP), another osteoblast differentiation marker gene, was also decreased in Nurr1 siRNA-treated MC3T3-E1 cells. In addition, Nurr1 overexpression increased OCN and COL1A1 expression. Furthermore, consistent with these results, during osteoblast differentiation, the expression of osteoblast marker genes was decreased in primary cultured mouse calvarial osteoblasts derived from Nurr1 null mice. Collectively, our results suggest that Nurr1 is important for osteoblast differentiation.  相似文献   

3.
While the roles of the mammalian target of rapamycin (mTOR) signaling in regulation of cell growth, proliferation, and survival have been well documented in various cell types, its actions in osteoblasts are poorly understood. In this study, we determined the effects of rapamycin, a specific inhibitor of mTOR, on osteoblast proliferation and differentiation using MC3T3-E1 preosteoblastic cells (MC-4) and primary mouse bone marrow stromal cells (BMSCs). Rapamycin significantly inhibited proliferation in both MC-4 cells and BMSCs at a concentration as low as 0.1 nM. Western blot analysis shows that rapamycin treatment markedly reduced levels of cyclin A and D1 protein in both cell types. In differentiating osteoblasts, rapamycin dramatically reduced osteoblast-specific osteocalcin (Ocn), bone sialoprotein (Bsp), and osterix (Osx) mRNA expression, ALP activity, and mineralization capacity. However, the drug treatment had no effect on osteoblast differentiation parameters when the cells were completely differentiated. Importantly, rapamycin markedly reduced levels of Runx2 protein in both proliferating and differentiating but not differentiated osteoblasts. Finally, overexpression of S6K in COS-7 cells significantly increased levels of Runx2 protein and Runx2 activity. Taken together, our studies demonstrate that mTOR signaling affects osteoblast functions by targeting osteoblast proliferation and the early stage of osteoblast differentiation.  相似文献   

4.
Cheung WM  Ng WW  Kung AW 《FEBS letters》2006,580(1):121-126
Osteoblastic differentiation is an essential part of bone formation. Dimethyl sulfoxide (DMSO) is a water miscible solvent that is used extensively for receptor ligands in osteoblast studies. However, little is known about its effects on osteoblastogenic precursor cells. In this study, we have used a murine preosteoblast cell line MC3T3-E1 cells to demonstrate that DMSO effectively induces osteoblastic differentiation of MC3T3-E1 cells via the activation of Runx2 and osterix and is dependent upon the protein kinase C (PKC) pathways. We further demonstrated that prolonged activation of PKC pathways is sufficient to induce osteoblastic differentiation, possibly via the activation of PKD/PKCmu.  相似文献   

5.
Bone formation involves several tightly regulated gene expression patterns of bone-related proteins. To determine the expression patterns of bone-related proteins during the MC3T3-E1 osteoblast-like cell differentiation, we used Northern blotting, enzymatic assay, and histochemistry. We found that the expression patterns of bone-related proteins were regulated in a temporal manner during the successive developmental stages including proliferation (days 4–10), bone matrix formation/maturation (days 10–16), and mineralization stages (days 16 –30). During the proliferation period (days 4–10), the expression of cell-cycle related genes such as histone H3 and H4, and ribosomal protein S6 was high. During the bone matrix formation/maturation period (days 10–16), type I collagen expression and biosynthesis, fibronectin, TGF-β1 and osteonectin expressions were high and maximal around day 16. During this maturation period, we found that the expression patterns of bone matrix proteins were two types: one is the expression pattern of type I collagen and TGF-β1, which was higher in the maturation period than that in both the proliferation and mineralization periods. The other is the expression pattern of fibronectin and osteonectin, which was higher in the maturation and mineralization periods than in the proliferation period. Alkaline phosphatase activity was high during the early matrix formation/maturation period (day 10) and was followed by a decrease to a level still significantly above the baseline level seen at day 4. During the mineralization period (days 16–30), the number of nodules and the expression of osteocalcin were high. Osteocalcin gene expression was increased up to 28 days. Our results show that the expression patterns of bone-related proteins are temporally regulated during the MC3T3-E1 cell differentiation and their regulations are unique compared with other systems. Thus, this cell line provides a useful in vitro system to study the developmental regulation of bone-related proteins in relation to the different stages during the osteoblast differentiation. © 1996 Wiley-Liss, Inc.  相似文献   

6.
NELL1 is an extracellular protein inducing osteogenic differentiation and bone formation of osteoblastic cells. To elucidate the intracellular signaling cascade evoked by NELL1, we have shown that NELL1 protein transiently activates the MAPK signaling cascade, induces the phosphorylation of Runx2, and promotes the rapid intracellular accumulation of Tyr-phosphorylated proteins. Unlike BMP2, NELL1 protein does not activate the Smad signaling cascade. These findings suggest that upon binding to a specific receptor NELL1 transduces an osteogenic signal through activation of certain Tyr-kinases associated with the Ras-MAPK cascade, and finally leads to the osteogenic differentiation.  相似文献   

7.
8.
9.
Fish bone, a by‐product of fishery processing, is composed of protein, calcium, and other minerals. The objective of this study was to investigate the effects of a bioactive peptide isolated from the bone of the marine fish, Johnius belengerii, on the osteoblastic differentiation of MC3T3‐E1 pre‐osteoblasts. Post consecutive purification by liquid chromatography, a potent osteogenic peptide, composed of 3 amino acids, Lys‐Ser‐Ala (KSA, MW: 304.17 Da), was identified. The purified peptide promoted cell proliferation, alkaline phosphatase activity, mineral deposition, and expression levels of phenotypic markers of osteoblastic differentiation in MC3T3‐E1 pre‐osteoblast. The purified peptide induced phosphorylation of mitogen‐activated protein kinases, including p38 mitogen‐activated protein kinase, extracellular regulated kinase, and c‐Jun N‐terminal kinase as well as Smads. As attested by molecular modelling study, the purified peptide interacted with the core interface residues in bone morphogenetic protein receptors with high affinity. Thus, the purified peptide could serve as a potential pharmacological substance for controlling bone metabolism.  相似文献   

10.
In continuation of the investigation of osteogenic potential of solvent fractions of ethanolic extract of Cissus quadrangularis (CQ), an ancient medicinal plant, most notably known for its bone-healing properties, to isolate and identify antiosteoporotic compounds. In the current study, we report the effect of hexane fraction (CQ-H) and dichloromethane fraction (CQ-D) of CQ on the differentiation and mineralization of mouse preosteoblast cell line MC3T3-E1 (subclone 4). Growth, viability, and proliferation assays revealed that low concentrations (0.1, 1, and 100 ng/ml) of both solvent fractions were nontoxic, whereas higher concentrations were toxic to the cells. Differentiation and mineralization of MC3T3-E1 with nontoxic concentrations of CQ-D and CQ-H revealed that CQ-D delayed the mineralization of MC3T3-E1 cells. However, early and enhanced mineralization was observed in cultures treated with nontoxic concentrations of CQ-H, as indicated by Von Kossa staining and expression profile of osteoblast marker genes such as osterix, Runx2, alkaline phosphatase (ALP), collagen (Col1a1), integrin-related bone sialoprotein (IBSP), osteopontin (OPN), and osteocalcin (OCN). These findings suggest CQ-H as the most efficacious solvent fraction for further investigation to isolate and identify the active compounds in CQ-H.  相似文献   

11.
12.
Lu W  Kim KA  Liu J  Abo A  Feng X  Cao X  Li Y 《FEBS letters》2008,582(5):643-650
R-spondins are a new group of Wnt/beta-catenin signaling agonists, however, the role of these proteins in bone remains unclear. We reported herein that R-sponin1 (Rspo1) acted synergistically with Wnt3A to activate Wnt/beta-catenin signaling in the uncommitted mesenchymal C2C12 cells. Furthermore, we found that Rspo1 at concentrations as low as 10 ng/ml synergized strongly with Wnt3A to induce C2C12 osteoblastic differentiation and osteoprotegerin expression. These events were blocked by Wnt/beta-catenin signaling antagonist Dickkopf-1. Finally, we demonstrated that Rspo1 synergized with Wnt3A to induce primary mouse osteoblast differentiation. Together, these findings suggest that Rpos1 may play an important role in bone remodeling.  相似文献   

13.
14.
A number of agents have been reported to influence osteoblastic differentiation and to prevent and treat bone loss. We found that kaempferol, a flavonoid identified in extracts of the medicinal plant, Polygonum tinctorium. Lour, had stimulatory effects on the differentiation and mineralization of the murine pre-osteoblastic cell line, MC3T3-E1. After enhancing the alkaline phosphatase activity, significant augmentation of calcification by kaempferol was observed between concentrations of 10 and 20 μM, without any marked effect on cell proliferation. When kaempferol was combined with ipriflavone, which is clinically applied to treat bone loss, calcification was synergistically augmented, suggesting that these two flavonoids may have different mechanisms of action.

These results suggest that kaempferol may be a promising agent for the prevention or treatment of bone loss, especially when combined with ipriflavone.  相似文献   

15.
16.
17.
In the previous study, we reported the gene expression for proteins related to the function of 5-hydroxytryptamine (5-HT, serotonin) and elucidated the expression patterns of 5-HT2 receptor subtypes in mouse osteoblasts. In the present study, we evaluated the possible involvement of 5-HT receptor subtypes and its inactivation system in MC3T3-E1 cells, an osteoblast cell line. DOI, a 5-HT2A and 5-HT2C receptor selective agonist, as well as 5-HT concentration-dependently increased proliferative activities of MC3T3-E1 cells in their premature period. This effect of 5-HT on cell proliferation were inhibited by ketanserin, a 5-HT2A receptor specific antagonist. Moreover, both DOI-induced cell proliferation and phosphorylation of ERK1 and 2 proteins were inhibited by PD98059 and U0126, selective inhibitors of MEK in a concentration-dependent manner. Furthermore, treatment with fluoxetine, a 5-HT specific re-uptake inhibitor which inactivate the function of extracellular 5-HT, significantly increased the proliferative activities of MC3T3-E1 cells in a concentration-dependent manner. Our data indicate that 5-HT fill the role for proliferation of osteoblast cells in their premature period. Notably, 5-HT2A receptor may be functionally expressed to regulate mechanisms underlying osteoblast cell proliferation, at least in part, through activation of ERK/MAPK pathways in MC3T3-E1 cells.  相似文献   

18.
19.
Bortezomib (BZB) is a chemotherapeutic agent approved for treating multiple myeloma (MM) patients. In addition, there are several reports showing that bortezomib can induce murine mesenchymal stem cells (MSCs) to undergo osteogenic differentiation and increase bone formation in vivo. MSCs are the multipotent stem cells that have capacity to differentiate into several mesodermal derivatives including osteoblasts. Nowadays, MSCs mostly bone marrow derived have been considered as a valuable source of cell for tissue replacement therapy. In this study, the effect of bortezomib on the osteogenic differentiation of human MSCs derived from both bone marrow (BM-MSCs) and postnatal sources such as placenta (PL-MSCs) were investigated. The degree of osteogenic differentiation of BM-MSCs and PL-MSCs after bortezomib treatment was assessed by alkaline phosphatase (ALP) activity, matrix mineralization by Alizarin Red S staining and the expression profiles of osteogenic differentiation marker genes, Osterix, RUNX2 and BSP. The results showed that 1 nM and 2 nM BZB can induce osteogenic differentiation of BM-MSCs and PL-MSCs as demonstrated by increased ALP activity, increased matrix mineralization and up-regulation of osteogenic differentiation marker genes, Osterix, RUNX2 and BSP as compared to controls. The enhancement of osteogenic differentiation of MSCs by bortezomib may lead to the potential therapeutic applications in human diseases especially patients with osteopenia.  相似文献   

20.
We recently reported proliferative and anti-mineralogenic effects of vanadate on fish chondrocytes and here we investigate the signalling pathways associated with these effects. Our data show that vanadate stimulates chondrocyte proliferation through the MAPK pathway, using signalling mechanisms similar to those used by IGF-1, while it inhibits chondrocyte differentiation/mineralization through a putative PI-3K/Ras/Erk signalling, a pathway shared with insulin. Our data also suggest that vanadate impairs ECM mineralization not only by interfering with regulatory pathways but also by inhibiting enzymatic activity of ALP. Finally, this work provides additional evidence for the conservation, throughout evolution, of mechanisms regulating chondrocyte proliferation and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号