首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Green tea polyphenols (GTP) are widely believed to function as antioxidants and antimicrobial agents. Here we observed that GTP and epigallocatechin gallate, the most abundant catechin in GTP, could also function as prooxidants and produce hydrogen peroxide (H2O2) to inhibit the growth of Pseudomonas aeruginosa. pH value of the medium was the key factor that affected prooxidant versus antioxidant property of GTP. Under weakly acidic conditions (pH 5.5–6.5), GTP showed antioxidant activity by eliminating H2O2; whereas, under neutral and weakly alkaline conditions (pH 7.0–8.0), GTP showed prooxidant activity and inhibited the growth of P. aeruginosa. Furthermore, we studied the effects of GTP on gene expression profiles of a few oxidative stress-related genes by quantitative real-time PCR analysis. After 10 min to 1 h of exposure under weakly alkaline condition, GTP significantly up-regulated expression levels of katB, sodM, ohr, lexA, and recN gene. These findings highlight that the pH-dependent H2O2 production by GTP contributes to the antibacterial activity and can induce oxidative stress-related responses in P. aeruginosa.  相似文献   

2.
Catechin compounds from Korean and Chinese green tea, and pu-erh, Indian black, Longjing, Tieguanyin, Bamboo, Jasmine, Oolong, Flower, Red teas, as potential anticancer and antioxidant components, were target material in this work. After extracting the green tea with water at 50 degrees C for 4 h, the extract was partitioned with water/chloroform, which was best suited to remove caffeine impurity from the extract. Further, the resulting extract was partitioned with water/ethyl acetate to deeply purify the five catechin compounds epigallocatechin, (+) catechin, epicatechin, epigallocatechin gallate and epicatechin gallate. The extracted samples were analyzed by reversed-phase high performance liquid chromatography. The mobile phase applied was the binary system of A (water/acetic acid, 100/0.1 vol%) and B (acetonitrile/acetic acid 100/0.1 vol%) from 90:10 to 70:30 (A:B vol%) in a linear gradient over 30 min time. The amount of catechin compounds extracted from Chinese green tea was 114.65% higher than from the Korean green tea. Comparing various tea sorts, the green teas contained more than 1.7 times of the five catechin compounds contained in other teas.  相似文献   

3.
Tea polyphenols (TP) was investigated in rats for its protective effect on renal ischemia/reperfusion injury (RIRI). Rats were randomized into groups as follows: (I) sham group (n = 10); (II) RIRI group (n = 10); (III) RIRI + TP (100 mg/kg) group (n = 5); (IV) RIRI + TP (200 mg/kg) group (n = 5); (V) RIRI + TP+ Astragalus mongholicus aqueous extract (AMAE) (300 mg/kg + 100 mg/kg) group (n = 5). For the IRI + TP groups, rats were orally given with tea polyphenols (100, 200 and 300 mg/kg body weight) once daily 10 days before induction of ischemia, followed by renal IRI. For the sham group and RIRI group, rats were orally given with equal volume of saline once daily 10 days before induction of ischemia, followed by renal IRI. Results showed that tea polyphenol pretreatment significantly suppressed ROS level and MDA release. On the other hand, in rats subjected to ischemia–reperfusion, the activities of endogenous antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GSH-Px) showed recovery, whereas the levels of urea nitrogen and serum creatinine were reduced by administration of tea polyphenols orally for 10 days prior to ischemia–reperfusion. Moreover, tea polyphenol pretreatment significantly decreased TLR4 and NF-κB p65 protein expression levels in RIRI rats. At the same time, tea polyphenol pretreatment attenuated the increased level of serum IL-1β, IL-6, ICAM-1 and TNF-α, and enhanced IL-10 production in RIRI rats. Furthermore, tea polyphenol pretreatment significantly decreased renal epithelial tubular cell apoptosis induced by renal ischemia/reperfusion, alleviating renal ischemia/reperfusion injury. These results cumulatively indicate that tea polyphenol pretreatment could suppress the TLR4/NF-κB p65 signaling pathway, protecting renal tubular epithelial cells against ischemia/reperfusion-induced apoptosis, which implies that antioxidants may be a potential and effective agent for prevention of the ischemic/reperfusion injury through the suppression extrinsic apoptotic signal pathway induced by TLR4/NF-κB p65 signal pathway. Moreover, supplement of AMAE can increased renal protection effect of TP.  相似文献   

4.
We investigated the phagocytosis-enhancing activity of green tea polyphenols, such as epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), epicatechin (EC) catechin (+C) and strictinin, using VD3-differentiated HL60 cells. EGCG, EGC, ECG and strictinin, but not EC and +C, increased the phagocytic activity of macrophage-like cells, and a caspase inhibitor significantly inhibited phagocytic activities. These results suggest that the pyrogallol-type structure in green tea polyphenols may be important for enhancement of the phagocytic activity through caspase signaling pathways.  相似文献   

5.
Introduction – Green tea, a popular drink with beneficial health properties, is a rich source of specific flavanols (polyphenols). There is a special interest in the water extraction of green tea polyphenols since the composition of the corresponding extracts is expected to reflect the one of green tea infusions consumed worldwide. Objective – To develop a microwave‐assisted water extraction (MWE) of green tea polyphenols. Methodology – MWE of green tea polyphenols has been investigated as an alternative to water extraction under conventional heating (CWE). The experimental conditions were selected after consideration of both temperature and extraction time. The efficiency and selectivity of the process were determined in terms of extraction time, total phenolic content, chemical composition (HPLC‐MS analysis) and antioxidant activity of the extracts. Results – By MWE (80°C, 30 min), the flavanol content of the extract reached 97.46 (± 0.08) mg of catechin equivalent/g of green tea extract, vs. only 83.06 (± 0.08) by CWE (80°C, 45 min). In particular, the concentration of the most bioactive flavanol EGCG was 77.14 (± 0.26) mg of catechin equivalent/g of green tea extract obtained by MWE, vs 64.18 (± 0.26) mg/g by CWE. Conclusion – MWE appears more efficient than CWE at both 80 and 100°C, particularly for the extraction of flavanols and hydroxycinnamic acids. Although MWE at 100°C typically affords higher yields in total phenols, MWE at 80°C appears more convenient for the extraction of the green tea‐specific and chemically sensitive flavanols. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Abdominal aortic aneurysms (AAA) are progressive dilatations of infra-renal aorta causing structural weakening rendering the aorta prone to rupture. AAA can be potentially stabilized by inhibiting inflammatory enzymes such as matrix metalloproteinases (MMP); however, active regression of AAA is not possible without new elastic fiber regeneration. Here we report the elastogenic benefit of direct delivery of polyphenols such as pentagalloyl glucose (PGG), epigallocatechin gallate (EGCG), and catechin, to smooth muscle cells obtained either from healthy or from aneurysmal rat aorta. Addition of 10 μg/ml PGG and ECGC induce elastin synthesis, organization, and crosslinking while catechin does not. Our results indicate that polyphenols bind to monomeric tropoelastin and enhance coacervation, aid in crosslinking of elastin by increasing lysyl oxidase (LOX) synthesis, and by blocking MMP-2 activity. Thus, polyphenol treatments leads to increased mature elastin fibers synthesis without increasing the production of intracellular tropoelastin.  相似文献   

7.
Green tea is rich in polyphenols, like catechins, which are thought to contribute to the health benefits of tea. The aim of this study was to evaluate the radioprotective effect of EGCG (epigallocatechin-3-gallate), a green tea catechin on γ-radiation induced cell damage. Under acellular condition of radiation exposure, pBR322 plasmid DNA was protected by EGCG in a concentration dependent manner. Treatment of murine splenocytes with EGCG 2h prior to radiation (3Gy), protected the cellular DNA against radiation-induced strand breaks. EGCG also inhibited γ-radiation induced cell death in splenocytes. EGCG pretreatment to the cells decreased the radiation induced lipid peroxidation and membrane damage. The levels of phase II enzymes, glutathione and lactate dehydrogenase were restored with EGCG treatment prior to radiation. Our results show that pretreatment with EGCG offers protection to pBR322 DNA under acellular condition and normal splenocytes under cellular condition, against γ-radiation induced damage and is better radioprotector in comparison to quercetin and vitamin C.  相似文献   

8.
The purpose of this study was to explore the bioavailability, efficacy and molecular mechanisms of green tea polyphenols (GTP) related to preventing bone loss in rats with chronic inflammation. A 2 [placebo vs. lipopolysaccharide (LPS)]×2 (no GTP vs. 0.5% GTP in drinking water) factorial design enabled the evaluation of effects of LPS administration, GTP levels, and LPS×GTP interaction. Urinary GTP components and 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels were determined by high-pressure liquid chromatography for bioavailability and molecular mechanism, respectively. Efficacy was evaluated by examining changes in femoral mineral content (BMC) and density (BMD) using dual-energy X-ray absorptiometry, and bone turnover biomarkers [osteocalcin (OC) and tartrate-resistant acid phosphatase (TRAP)] using respective ELISA kits. The mRNA expression of tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2) in spleen was determined by real-time RT-PCR. Neither LPS administration nor GTP levels affected body weight and femoral bone area throughout the study period. Only GTP supplementation resulted in increased urinary epigallocatechin and epicatechin concentrations. LPS administration led to a decrease in femur BMC and BMD, and serum OC levels, but an increase in serum TRAP, urinary 8-OHdG and spleen mRNA expression of TNF-α and COX-2 levels. GTP supplementation resulted in higher values for femur BMC, BMD and serum OC, but lower values for serum TRAP, urinary 8-OHdG and spleen mRNA expression of TNF-α and COX-2 levels. We conclude that GTP mitigates bone loss in a chronic inflammation-induced bone loss model by reducing oxidative stress-induced damage and inflammation.  相似文献   

9.
Crouvezier S  Powell B  Keir D  Yaqoob P 《Cytokine》2001,13(5):280-286
Epidemiological evidence suggests protective effects of dietary flavonoids against cardiovascular disease. Tea provides a major source of dietary flavonoids in many countries and its polyphenolic components have well-recognised antioxidant properties. However, scavenging of free radicals may not be the sole mechanism by which tea-derived polyphenols exert their protective effects. This study investigates the effects of four major tea-derived catechins and a black tea extract on the production of pro- and anti-inflammatory cytokines by human leukocytes in vitro. Epicatechin gallate, epigallocatechin and epigallocatechin gallate decreased the production of interleukin 1beta and enhanced the production of interleukin 10, but had no effect on the production of interleukin 6 or tumour necrosis factor-alpha. Although these effects suggest anti-inflammatory properties of the tea-derived catechins, they were observed at concentrations which were unlikely to be achievable in plasma in vivo and are therefore unlikely to contribute to the protective effects of tea-derived flavonoids in inflammatory diseases.  相似文献   

10.
We attempted to improve the bioavailability of green tea catechins by using food ingredients. The catechin bioavailability of a green tea extract administered to mice was significantly (p<0.05) increased by supplementing with steamed rice. This enhanced bioavailability was due to the increased concentration of plasma non-gallated catechins, especially epigallocatechin (EGC).  相似文献   

11.
We attempted to improve the bioavailability of green tea catechins by using food ingredients. The catechin bioavailability of a green tea extract administered to mice was significantly (p<0.05) increased by supplementing with steamed rice. This enhanced bioavailability was due to the increased concentration of plasma non-gallated catechins, especially epigallocatechin (EGC).  相似文献   

12.
《Free radical research》2013,47(9):667-671
Abstract

Green tea polyphenols, the most interesting constituent of green tea leaves, have been shown to have both pro-oxidant and antioxidant properties. Both pro-oxidant and antioxidant properties are expected to contribute to modulation of oxidative stress response under ideal optimal dosage regimens. Exposure to a low concentration of a pro-oxidant prior to exposure to oxidative stress induces the expression of genes that code for proteins that induce adaptation in a subsequent oxidative stress. On the other hand, exposure to an antioxidant concurrently with exposure to the oxidative stress affords protection through free radical scavenging or through other indirect antioxidant mechanisms. In any case, the optimal conditions that afford protection from oxidative stress should be defined for any substance with redox properties. Green tea polyphenols, being naturally occurring substances, seem to be an ideal option for the modulation of oxidative stress response. This paper reviews available data on the pro-oxidant and antioxidant properties of green tea polyphenols focusing on their potential on the modulation of oxidative stress response.  相似文献   

13.
Green tea polyphenols (GTP) effectively protect against chronic diseases in various animal models but human studies have been inconclusive. GTP components and metabolites in body fluids have been suggested as potential biomarkers, but validation of these biomarkers has rarely been done in human populations. A randomized, double-blinded, and placebo-controlled phase IIa chemoprevention study with GTP was conducted in 120 human subjects for 3 months. To validate GTP biomarker profiles, plasma samples were collected at baseline, 1-month, and 3-month and were analyzed by HPLC-Coularray electrochemical detection (ECD) for specific GTP components as well as for non-targeted metabolites. The levels of 2 GTP components, epigallocatechin-3-gallate (EGCG) and epicatechin-3-gallate (ECG), were homogenous at baseline (p > 0.45) but were significantly elevated (p < 0.01) by GTP treatment. Metabolic profiling identified 106 metabolites, and 56 of them were chosen to construct discriminant functions (DFs) based on the data at 3 months. The DFs clearly separated the placebo, 500 mg GTP, and 1000 mg GTP groups with an accuracy rate of 97.3%. When the DFs were applied to the combined baseline and 1-month data, the accuracy rate was 62.9% in classifying subjects into the 3 intervention groups. DFs derived from 1-month data showed similar results. Overall, this study validated plasma EGCG and ECG as reliable biomarkers for GTP consumption, and found metabolic profiles effective in discriminating different GTP dosages.  相似文献   

14.
The purpose of the study was to construct mucosal vaccine of a recombinant Lactococcus lactis expressing PRRSV ORF6 gene and evaluate mucosal and systemic immune response against PRRSV in mice after intranasal immunization. The result show that the vaccine can stimulate mice to produce specific IgG in serum and remarkable special s-IgA in lung lavage fluid, at the same time, the contents of cytokines IL-2 and IFN-γ of the experimental group were significant higher than those of the control group (P < 0.01), however, the contents of cytokines IL-4 was not different to the all groups. In summary, the constructed mucosal vaccine can significantly induce mucosal immune, humoral immunity and cellular immunity involved Th1 type cytokines, which will lay a theoretical foundation on immune mechanism and new efficient vaccines for PRRSV.  相似文献   

15.
Consumption of green tea is associated with a decrease in cardiovascular mortality. The beneficial health effects of green tea are attributed in part to polyphenols, organic compounds found in tea that lower blood pressure, reduce body fat, decrease LDL cholesterol, and inhibit inflammation. We hypothesized that epigallocatechin gallate (EGCG), the most abundant polyphenol in tea, inhibits endothelial exocytosis, the initial step in leukocyte trafficking and vascular inflammation. To test this hypothesis, we treated human umbilical-vein endothelial cells with EGCG and other polyphenols, and then measured endothelial exocytosis. We found that EGCG decreases endothelial exocytosis in a concentration-dependent manner, with the effects most prominent after 4 h of treatment. Other catechin polyphenols had no effect on endothelial cells. By inhibiting endothelial exocytosis, EGCG decreases leukocyte adherence to endothelial cells. In searching for the mechanism by which EGCG affects endothelial cells, we found that EGCG increases Akt phosphorylation, eNOS phosphorylation, and nitric oxide (NO) production. NOS inhibition revealed that NO mediates the anti-inflammatory effects of EGCG. Our data suggest that polyphenols can decrease vascular inflammation by increasing the synthesis of NO, which blocks endothelial exocytosis.  相似文献   

16.
The phenolic composition and antioxidant activities [TEAC, ORAC, FRAP] of consumer brews (1 tea bag in 230 ml for 1 min) of seven different brands of black tea from the British market were investigated. The main phenolic compounds identified were epigallocatechin gallate, four theaflavins, as well as epicatechin gallate, theogallin (tentative assignment), quercetin-3-rutinoside and 4-caffeoyl quinic acid. Thearubigins represented an estimated 75-82% of the total phenolics. Further, polyphenol fractions were in decreasing order theaflavins, flavan-3-ols, flavonols, gallic acids and hydroxycinnamates. On average, a cup of a consumer brew of black tea is providing polyphenols at the level of 262 mg GAE/serving, of which 65 mg were assigned to individual polyphenols. The antioxidant activity of black tea preparations is higher than that of most reported dietary agents on a daily basis. Correlations were observed between the antioxidant activities and the sum of all quantified polyphenols by HPLC analysis as well as with the total phenolics. Treatment of the black tea brew with simulated gastric juice resulted in a significant increase of the identified theaflavins implying a partial cleavage of thearubigins in the environment of the gastric lumen. Therefore, black tea can be considered to be a rich source of polyphenols and/or antioxidants.  相似文献   

17.
An in vitro model fermentation system, containing purified catechins and partially purified polyphenol oxidase (EC 1.14.81.1) from green tea shoots, has been used to determine the efrect of catechin mixtures of different concentration and proportions on the formation of theaflavin and thearubigin. Increases in total catechin concentration, 25% above that typical in green tea shoots of Malawi-grown bushes, inhibited polyphenol oxidase activity and, consequently, depressed theaflavin levels. Individual or combined concentrations of epicatechin gallate and epigallocatechin gallate in excess of 110 mM were shown to be responsible for enzyme inhibition, whereas epicatechin and epigallocatechin had no effect. Fermentation of a catechin mixture, containing the four major catechins, epicatechin, epigallocatechin, epigallocatechin gallate and epicatechin gallate, at equal individual concentrations (55 mM), produced, after 3O min, total theaflavin levels 68% higher and thearubigin levels only 25% higher than those from a standard catechin mixture fermented under similar conditions. Continued fermentation of this mixture produced no further theaflavin, but the thearubigin fraction increased significantly, due to subsequent oxidation of the excess of simple catechins. A new catechin mixture was, therefore, calculated to give a similar level of theaflavin to that of the previous mixture without leaving an excess of unoxidized simple catechins. The catechin proportions and concentrations of the latter mixture agree well with those of the green shoots of quality Kenyan teas or similar quality Malawi teas grown during the dry cold season. The results indicate that a high ratio of simple to gallocatechins will facilitate a high theaflavin-thearubigin ratio in black tea.  相似文献   

18.
A number of in vitro studies have shown that polyphenols and flavonoids in tea exert significant antioxidant activity. However, epidemiologic and experimental studies have produced conflicting results. The purpose of the present study was to compare the antioxidant activity of black tea in vitro with that ex vivo. Black tea polyphenols (BTP), black tea extract (BTE), or their major polyphenolic antioxidant constituent, epigallocatechin gallate (EGCG), were added to human plasma and lipid peroxidation was induced by the water-soluble radical generator 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). Following a lag phase, lipid peroxidation was initiated and occurred at a rate that was lowered in a dose-dependent manner by BTP. Similarly, EGCG and BTE added to plasma in vitro strongly inhibited AAPH-induced lipid peroxidation. The lag phase preceding detectable lipid peroxidation was due to the antioxidant activity of endogenous ascorbate, which was more effective at inhibiting lipid peroxidation than the tea polyphenols and was not spared by these compounds. In contrast, when eight healthy volunteers consumed the equivalent of six cups of black tea, the resistance of their plasma to lipid peroxidation ex vivo did not increase over the next 3 h. These data suggest that, despite antioxidant efficacy in vitro, black tea does not protect plasma from lipid peroxidation in vivo. The striking discrepancy between the in vitro and ex vivo data is most likely explained by the insufficient bioavailability of tea polyphenols in humans.  相似文献   

19.
The phenolic composition and antioxidant activities [TEAC, ORAC, FRAP] of consumer brews (1 tea bag in 230 ml for 1 min) of seven different brands of black tea from the British market were investigated. The main phenolic compounds identified were epigallocatechin gallate, four theaflavins, as well as epicatechin gallate, theogallin (tentative assignment), quercetin-3-rutinoside and 4-caffeoyl quinic acid. Thearubigins represented an estimated 75-82% of the total phenolics. Further, polyphenol fractions were in decreasing order theaflavins, flavan-3-ols, flavonols, gallic acids and hydroxycinnamates. On average, a cup of a consumer brew of black tea is providing polyphenols at the level of 262 mg GAE/serving, of which 65 mg were assigned to individual polyphenols. The antioxidant activity of black tea preparations is higher than that of most reported dietary agents on a daily basis. Correlations were observed between the antioxidant activities and the sum of all quantified polyphenols by HPLC analysis as well as with the total phenolics. Treatment of the black tea brew with simulated gastric juice resulted in a significant increase of the identified theaflavins implying a partial cleavage of thearubigins in the environment of the gastric lumen. Therefore, black tea can be considered to be a rich source of polyphenols and/or antioxidants.  相似文献   

20.
Green tea polyphenols exert a wide range of biochemical and pharmacological effects, and have been shown to possess antimutagenic and anticarcinogenic properties. Oxidative stress is involved in the pathogenesis of Parkinson's disease. However, although green tea polyphenols may be expected to inhibit the progression of Parkinson's disease on the basis of their known antioxidant activity, this has not previously been established. In the present study, we evaluated the neuroprotective effects of green tea polyphenols in the Parkinson's disease pathological cell model. The results show that the natural antioxidants have significant inhibitory effects against apoptosis induced by oxidative stress. 6-Hydroxydopamine (6-OHDA)-induced apoptosis in catecholaminergic PC12 cells was chosen as the in vitro model of Parkinson's disease in our study. Apoptotic characteristics of PC12 cells were assessed by MTT assay, flow cytometry, fluorescence microscopy and DNA fragmentation. Green tea polyphenols and their major component, EGCG at a concentration of 200 microM, exert significant protective effects against 6-OHDA-induced PC12 cell apoptosis. EGCG is more effective than the mixture of green tea polyphenols. The antioxidant function of green tea polyphenols may account for this neuroprotective effect. The present study supports the notion that green tea polyphenols have the potential to be effective as neuropreventive agents for the treatment of neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号