首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GABAergic and cholinergic synaptosome populations were isolated by immunomagnetophoresis. Analysis of 8 amino acids showed that the GABAergic population was enriched in GABA (3 fold). The cholinergic population was enriched in citrulline (5 fold). CCK was found in both populations, but was enriched in the GABAergic. No monoamines were found in either subpopulation. Stimulated release (veratridine 50 m), measured using a superfusion system, showed that glutamate was only released from the cholinergic subpopulation, as was VIP. In the GABAergic population, stimulated SRIF release was slow and prolonged, and the CCK release was delayed and rapid. GABA release was rapid, only occurring during application of the stimulus and only from the GABAergic synaptosomes. The GABAergic release could be modified by GABAA and GABAB targeted drugs. The cholinergic subpopulation exhibited late release of both VIP and CCK, each showing the same time pattern of release. All release was calcium and tetrodotoxin dependent.Special issue dedicated to Dr. Claude Baxter.  相似文献   

2.
S H Zorn  S J Enna 《Life sciences》1985,37(20):1901-1912
Antinociception produced by the GABA uptake inhibitors d,l- SKF-89976A and SKF-100330A was characterized and compared to that produced by other types of GABAergic drugs. Using the mouse tail-immersion assay it was found that the antinociception produced by the uptake inhibitors was antagonized by scopolamine, a cholinergic muscarinic receptor antagonist. However, neither SKF compound demonstrated any significant affinity for muscarinic receptor binding sites suggesting that they are not direct-acting cholinomimetics. In vitro uptake experiments revealed that the SKF compounds selectively inhibit GABA transport, having no effect on the accumulation of aspartic acid, glutamic acid, beta-alanine or glycine. Moreover, antinociception and GABA uptake inhibition were stereoselective for SKF-89976A, with the d-isomer being more active in both tests. When comparing antinociceptive responses at maximally effective doses it was also found that the SKF compounds were substantially more efficacious than direct-acting GABA receptor agonists or a GABA transaminase inhibitor. These data suggest that uptake inhibitors may be facilitating GABA transmission in a system that is less affected by other types of GABAergic compounds.  相似文献   

3.
A V Revuelta  D L Cheney  E Costa 《Life sciences》1982,30(21):1841-1846
Accumulating evidence suggests that the cannabinoids exert their action to reduce the turnover rate of acetylcholine in the hippocampus by an action in the septum via inhibitory gamma-butyric acid (GABA) containing interneurons. In the studies presented here administration of the potent dimethylheptyl derivative of (-)-delta-tetrahydrocannabinol, which has previously been shown to reduce the turnover rate of acetylcholine in the hippocampus, reduces the turnover rate of GABA in the septum. A simple model in which cannabinoids transsynaptically activate inhibitory GABAergic septal neurons impinging on cholinergic septal neurons does not explain the data. A more complex model suggesting that inhibitory GABAergic septal interneurons innervate other inhibitory GABAergic septal interneurons has been hypothesized.  相似文献   

4.
Circadian clocks play vital roles in the control of daily rhythms in physiology and behavior of animals. In Drosophila, analysis of the molecular and behavioral rhythm has shown that the master clock neurons are entrained by sensory inputs and are synchronized with other clock neurons. However, little is known about the neuronal circuits of the Drosophila circadian system and the neurotransmitters that act on the clock neurons. Here, we provide evidence for a new neuronal input pathway to the master clock neurons, s-LN(v)s, in Drosophila that utilizes GABA as a slow inhibitory neurotransmitter. We monitored intracellular calcium levels in dissociated larval s-LN(v)s with the calcium-sensitive dye Fura-2. GABA decreased intracellular calcium in the s-LN(v)s and blocked spontaneous oscillations in calcium levels. The duration of this response was dose-dependent between 1 nM and 100 microM. The response to GABA was blocked by a metabotropic GABA(B) receptor (GABA(B)-R) antagonist, CGP54626, but not by an ionotropic receptor antagonist, picrotoxin. The GABA(B)-R agonist, 3-APMPA, produced a response similar to GABA. An antiserum against one of the Drosophila GABA(B)-Rs (GABA(B)-R2) labeled the dendritic regions of the s-LN(v)s in both adults and larvae, as well as the dissociated s-LN(v)s. We found that some GABAergic processes terminate at the dendrites of the LN(v)s, as revealed by GABA immunostaining and a GABA-specific GAL4 line (GAD1-gal4). Our results suggest that the s-LN(v)s receive slow inhibitory GABAergic inputs that decrease intracellular calcium of these clock neurons and block their calcium cycling. This response is mediated by postsynaptic GABA(B) receptors.  相似文献   

5.
It has been shown that MSH administered in the ventral tegmental area (VTA) elicits excessive grooming behavior (EGB) by stimulating an acetylcholinergic pathway. The present work was performed in order to evaluate the possible participation of the GABAergic system in this behavior. VTA injection of GABA antagonist bicuculline stimulated the EGB (55.5 +/- 2.4). In contrast, this effect disappeared if the animals were pretreated with atropine (33.1 +/- 1.5). When bicuculline was injected before a 200 ng/microliters dose of MSH, the EGB increased (87.6 +/- 4.4) in comparison to MSH-treated rats (46.5 +/- 3.2). Our results suggest that GABA, ACh, and MSH interact in the VTA in the induction of EGB; an increase in MSH levels appears to stimulate cholinergic neurons. GABAergic fibers probably modulate the cholinergic discharge at the presynaptic level.  相似文献   

6.
Chronic treatment with γ-acetylenic GABA(GAG), a GABA transaminase inhibitor, causes an increase in striatal dopamine receptor binding and function in rat brain suggesting that extrapyramidal side effects may accompany the use of these agents. In the present investigation it was found that chronic administration of THIP, a direct acting GABA receptor agonist, induced a similar increase in dopamine receptor binding. In addition, co-administration of atropine, a cholinergic muscarinic antagonist, was found to completely prevent the GABA-induced dopamine receptor increase. Furthermore, high affinity choline uptake, a measure of cholinergic activity, in striatal synaptosomes is enhanced after the acute administration of either GAG or THIP. Taken together these results support the notion of an interaction between dopaminergic, cholinergic and GABA-ergic neurons in the extrapyramidal system and indicate that co-administration of an anticholinergic agent may be of benefit in preventing the extrapyramidal side effects which may accompany the use of GABAergic agonists.  相似文献   

7.
S P Sivam  I K Ho 《Life sciences》1985,37(3):199-208
Drugs affecting various steps of GABA transmission exhibit analgesia in a variety of experimental models in animals; this analgesic response generally requires high doses of the drugs and does not appear to be opiate-like since the GABAergic analgesia is naloxone-insensitive and lacks dependence liability. The outcome of the analgesia response is variable when opiate and GABAergic drugs are administered together; however, directly acting GABA receptor stimulants and GABA-transaminase inhibitors generally enhance the analgesic effect of opiates. The development of newer GABAergic drugs with greater potency and specificity may offer an alternative to opiate analgesics. The results obtained over the years, on the possible involvement of the GABA system in morphine tolerance and dependence are equivocal. Studies on region-specific changes in opiate-GABA interaction as well as opiate-GABA-benzodiazepine interaction are needed to further elucidate the role of GABA on opiate system.  相似文献   

8.
乙酰胆碱,谷氨酸与GABA对丘脑腹内侧核神经元活动的影响   总被引:2,自引:0,他引:2  
本文采用微电泳方法观察到在大鼠丘脑腹内侧核(VM),微电泳给予乙酰胆碱(ACH)使所有受试神经元自发放电频率加快,谷氨酸(GLU)使大多数神经元放电加快,它们的作用依赖于电流强度;而γ氨基丁酸(GABA)和氯苯氨丁酸则抑制大多数神经元的放电活动,但前者的作用快速而暂短,而后者的作用相对缓慢而持久。在微电泳ACH或GLU的过程中,给予GABA可拮抗它们的兴奋作用。双钴碱使大多数神经元的自发放电频率加快,而阿托品和MK801对自发放电的影响较小。这些结果表明GABA,ACH和GLU等递质活动在同一VM神经元有重要的会聚作用;GABA对VM神经元有紧张性抑制作用。  相似文献   

9.
Lee S  Kim K  Zhou ZJ 《Neuron》2010,68(6):1159-1172
Starburst amacrine cells (SACs) process complex visual signals in the retina using both acetylcholine (ACh) and gamma-aminobutyric acid (GABA), but the synaptic organization and function of ACh-GABA corelease remain unclear. Here, we show that SACs make cholinergic synapses onto On-Off direction-selective ganglion cells (DSGCs) from all directions but make GABAergic synapses onto DSGCs only from the null direction. ACh and GABA were released differentially in a Ca(2+) level-specific manner, suggesting the two transmitters were released from different vesicle populations. Despite the symmetric cholinergic connection, the light-evoked cholinergic input to a DSGC, detected at both light onset and offset, was motion- and direction-sensitive. This input was facilitated by two-spot apparent motion in the preferred direction but supressed in the null direction, presumably by a GABAergic mechanism. The results revealed a high level of synaptic intricacy in the starburst circuit and suggested differential, yet synergistic, roles of ACh-GABA cotransmission in motion sensitivity and direction selectivity.  相似文献   

10.
The effects of several gamma-aminobutyric acid (GABA)-ergic drugs on sodium-dependent high-affinity choline uptake (HACU) were investigated in the hippocampus. HACU was measured in vitro after in vivo administration of the drug to mice. HACU was inhibited by those drugs that enhance GABA transmission. The convulsant 3-mercaptopropionic acid, which decreases GABA levels, stimulated HACU. From these results and previous findings, it appears that GABA mediates a tonic inhibitory effect on the septal-hippocampal cholinergic system.  相似文献   

11.
The effects of acute and chronic administration of diisopropylfluorophosphate (DFP) to rats on acetylcholinesterase (AChE) activity (in striatum, medulla, diencephalon, cortex, and medulla) and muscarinic, dopamine (DA), and gamma-aminobutyric acid (GABA) receptor characteristics (in striatum) were investigated. After a single injection of (acute exposure to) DFP, striatal region was found to have the highest degree of AChE inhibition. After daily DFP injections (chronic treatment), all brain regions had the same degree of AChE inhibition, which remained at a steady level despite the regression of the DFP-induced cholinergic overactivity. Acute administration of DFP increased the number of DA and GABA receptors without affecting the muscarinic receptor characteristics. Whereas chronic administration of DFP for either 4 or 14 days reduced the number of muscarinic sites without affecting their affinity, the DFP treatment caused increase in the number of DA and GABA receptors only after 14 days of treatment; however, the increase was considerably lower than that observed after the acute treatment. The in vitro addition of DFP to striatal membranes did not affect DA, GABA, or muscarinic receptors. The results indicate an involvement of GABAergic and dopaminergic systems in the actions of DFP. It is suggested that the GABAergic and dopaminergic involvement may be a part of a compensatory inhibitory process to counteract the excessive cholinergic activity produced by DFP.  相似文献   

12.
This work was aimed to identify the action of several ion channel and pump inhibitors as well as nicotinic, GABAergic, purinergic and serotoninergic drugs on the resting membrane potential (RMP) and assess the role of cholinergic and GABAergic sensitivity in earthworm muscle electrogenesis. The nicotinic agonists acetylcholine (ACh), carbacholine (CCh) and nicotine depolarize the RMP at concentrations of 5 μM and higher. The nicotinic antagonists (+)tubocurarine, α-bungarotoxin, muscarinic antagonists atropine and hexamethonium do not remove or prevent the CCh-induced depolarization. Verapamil, tetrodotoxin, removal of Cl(-) and Ca(2+) from the solution also cannot prevent the depolarization by CCh. In a Na(+)-free medium, however, CCh lost this depolarization ability and this indicates that the drug opens the sodium permeable pathway. Serotonin, glutamate, glycine, adenosine triphosphate (ATP) and cis-4-aminocrotonic acid (GABA(C) receptor antagonist) had no effect on the RMP. On the other hand, isoguvacin, γ-aminobutyric acid (GABA) and baclofen (GABA(B) receptor agonist) hyperpolarized the RMP. Ouabain, bicucullin (GABA(A) antagonist) and phaclofen (GABA(B) antagonist), as well as the removal of Cl(-), suppressed the effect of GABA and baclofen. CCh did not enhance the depolarization generated by ouabain but, on the other hand, hindered the hyperpolarizing activity of baclofen both in the absence and presence of atropine and (+)tubocurarine. The long-term application of CCh depolarizes the RMP primarily by inhibiting the Na(+)/K(+)-ATPase. The muscle membrane also contains A and B type GABA binding sites, the activation of which increases the RMP at the expense of increasing the action of ouabain- and Cl(-) -sensitive electrogenic pumps.  相似文献   

13.
Growth cone fractions isolated from neonatal [postnatal day 3 (P3)] rat forebrain contain GABAergic growth cones as demonstrated by immunofluorescence staining with monospecific antibodies to gamma-aminobutyric acid (GABA). HPLC analysis shows that GABAergic growth cones release this endogenous GABA when stimulated with high K+. Endogenous GABA release is Ca2(+)-independent and, in this respect, similar to that seen previously with [3H]GABA. Isolated growth cone fractions also exhibit a K(+)-stimulated, Ca2(+)-independent release of endogenous taurine. None of the other amino acids shown to be present in isolated growth cone fractions were released, including glutamate, aspartate, and glycine. A population of dissociated cerebral cortical neurones prepared from P1 rat forebrain were GABA-immunoreactive after 1 day in culture. The cell body, neurites, and growth cones of these neurones were all stained with GABA antibodies. At this time in culture, neurones did not stain with either of two antibodies to synaptic vesicle antigens, i.e., p65 and synaptophysin. Growth cones isolated from P3 rat forebrain were also not immunoreactive with these antibodies. After about 8 days in culture, when neurones had established extensive networks of long, varicose axons and elaborately branched dendrites, many neurones and their neurites were immunoreactive for GABA antibodies. At this time in culture, p65 and synaptophysin antibodies did stain neuronal cell bodies and particularly their varicose axons. Dendrites were not stained with synaptic vesicle antibodies. These results suggest that GABAergic neurones synthesize GABA during neurite outgrowth and that GABA is present in, and can be released from, the growth cones of these neurones. The presence of GABA in GABAergic growth cones is not associated with synaptic vesicles, which explains the Ca2+ independency of both endogenous and [3H]GABA release from these growth cones.  相似文献   

14.
The experiments on rats have shown that the elaboration of conditioned drinking reflex in T-maze during administration of 2-ethyl-6-methyl-3-hydroxypyridine antioxidant with an anti-stress effect was accompanied by the development of state dependent learning. However, its formation was slower, as compared to state dependent learning in response to the known psychotropic drugs. The replacing test with the injection of bicuculline, picrotoxin, Ca valproate, Ro-15-1788, benactyzine, Cleregil, etc. during state dependent learning made it possible to establish the role of GABA and cholinergic systems in the formation of state dependent learning and in the development of disorders in emotional behavioural reactions after long-term administration and withdrawal of 3-hydroxypyridine.  相似文献   

15.
In the present study we characterize the optimal experimental conditions under which to investigate the cholinergic regulation of endogenous electrically evoked γ-aminobutyric acid (GABA) release from guinea pig cortical slices. Superfusion with the neuronal GABA reuptake inhibitor, SKF89976A (10 μM) caused cortical GABA release to be linearly correlated with the frequency of electrical stimulation (5, 10, 20 Hz). Electrically evoked GABA release (10 Hz) was tetrodotoxin-sensitive and Ca2+-dependent and was under GABAB autoreceptor control. Under these experimental conditions, acetylcholine (0.1–10 μM) and physostigmine (30 μM) decreased the electrically evoked GABA release while the M2 receptor antagonist AFDX-116 (0.01–0.1 μM) counteracted these effects. Similar results were also observed in a cortical synaptosomal preparation stimulated with K+ (10 mM). These findings demonstrate an inhibitory cholinergic regulation of electrically evoked GABA release via M2 receptors located on cortical GABAergic terminals.  相似文献   

16.
gamma-Aminobutyric acid(A) neurotransmission and cerebral ischemia   总被引:6,自引:0,他引:6  
In this review, we present evidence for the role of gamma-aminobutyric acid (GABA) neurotransmission in cerebral ischemia-induced neuronal death. While glutamate neurotransmission has received widespread attention in this area of study, relatively few investigators have focused on the ischemia-induced alterations in inhibitory neurotransmission. We present a review of the effects of cerebral ischemia on pre and postsynaptic targets within the GABAergic synapse. Both in vitro and in vivo models of ischemia have been used to measure changes in GABA synthesis, release, reuptake, GABA(A) receptor expression and activity. Cellular events generated by ischemia that have been shown to alter GABA neurotransmission include changes in the Cl(-) gradient, reduction in ATP, increase in intracellular Ca(2+), generation of reactive oxygen species, and accumulation of arachidonic acid and eicosanoids. Neuroprotective strategies to increase GABA neurotransmission target both sides of the synapse as well, by preventing GABA reuptake and metabolism and increasing GABA(A) receptor activity with agonists and allosteric modulators. Some of these strategies are quite efficacious in animal models of cerebral ischemia, with sedation as the only unwanted side-effect. Based on promising animal data, clinical trials with GABAergic drugs are in progress for specific types of stroke. This review attempts to provide an understanding of the mechanisms by which GABA neurotransmission is sensitive to cerebral ischemia. Furthermore, we discuss how dysfunction of GABA neurotransmission may contribute to neuronal death and how neuronal death can be prevented by GABAergic drugs.  相似文献   

17.
The effects of anticonvulsant drugs on growth, cholinergic, and GABAergic properties were examined in the neuronal cell clone NG108-15. Cells were exposed for 4 days to valproic acid, phenobarbital, phenytoin, or carbamazepine in concentrations equivalent to therapeutic free levels in human serum. Experiments were also performed with varying concentrations of a recently proposed antiepileptic, gamma-vinyl GABA. Of these five anticonvulsants, cell growth (total protein and cell counts) was decreased with valproic acid and phenytoin but only valproic acid and gamma-vinyl GABA altered neurotransmitter markers. Therapeutic concentrations of valproic acid increased choline acetyltransferase activity to 142% of control but had no effect on either the activity of glutamate decarboxylase or the level of GABA. The effects of a higher (toxic) concentration of valproic acid (200 g/ml) were similar to those induced by the differentiating agent dibutyryl cyclic AMP: both decreased cell growth, enhanced the activity of choline acetyltransferase and reduced the activity of glutamate decarboxylase. Gamma-vinyl GABA had no effect on cholinergic markers but, at 1300 g/ml, increased GABA levels to 135% of control despite the reduction of glutamate decarboxylase to 68% of control. In the NG108-15 cell clone, anticonvulsants have varying effects on cell growth, differentiation, and neurotransmitter systems. Our findings do not support the proposal that the mechanism of action for valproic acid, phenobarbital, phenytoin, and carbamazepine is via alteration of GABA levels.  相似文献   

18.
Dahdal D  Reeves DC  Ruben M  Akabas MH  Blau J 《Neuron》2010,68(5):964-977
Intercellular signaling is important for accurate circadian rhythms. In Drosophila, the small ventral lateral neurons (s-LN(v)s) are the dominant pacemaker neurons and set the pace of most other clock neurons in constant darkness. Here we show that two distinct G protein signaling pathways are required in LN(v)s for 24?hr rhythms. Reducing signaling in LN(v)s via the G alpha subunit Gs, which signals via cAMP, or via the G alpha subunit Go, which we show signals via Phospholipase 21c, lengthens the period of behavioral rhythms. In contrast, constitutive Gs or Go signaling makes most flies arrhythmic. Using dissociated LN(v)s in culture, we found that Go and the metabotropic GABA(B)-R3 receptor are required for the inhibitory effects of GABA on LN(v)s and that reduced GABA(B)-R3 expression in?vivo lengthens period. Although no clock neurons produce GABA, hyperexciting GABAergic neurons disrupts behavioral rhythms and s-LN(v) molecular clocks. Therefore, s-LN(v)s require GABAergic inputs for 24?hr rhythms.  相似文献   

19.
The role of electrical activity in the developmental regulation of cholinergic neurons was investigated in dissociated spinal cord--dorsal root ganglion (SC-DRG) cultures. Application of tetrodotoxin (TTX) during the first 6 days after plating had no effect on choline acetyltransferase (CAT) activity. Suppression of electrical activity during the 7th day decreased CAT to 68% of control. These decreases in CAT activity were still apparent 2 weeks after removal of the TTX. GABAergic neurons, as indicated by glutamic acid decarboxylase activity and high affinity [3H]GABA uptake, were not affected by TTX treatment. Addition of 8-bromo-cAMP or conditioned medium obtained from SC-DRG cultures at certain developmental periods produced dose-dependent increases in CAT levels on TTX-treated cultures as compared with those treated with TTX alone. Similar studies with 8-bromo-cGMP revealed no significant effects on CAT activity. Vasoactive intestinal peptide (VIP) produced a dose-dependent increase in CAT activity when added to cultures between days 12 and 14. Similar studies conducted on younger cultures (days 5-7) or older cultures (days 21-23) revealed no increases in CAT activity. Addition of 0.1 nM VIP to TTX-treated cultures resulted in CAT levels which were not significantly different from those of electrically active controls. These data suggest that cyclic AMP, VIP, and trophic substances in conditioned medium may have roles in the mechanism of cholinergic toxicity produced by electrical blockade of developing spinal cord neurons.  相似文献   

20.
M K Ticku  G Maksay 《Life sciences》1983,33(24):2363-2375
Several classes of centrally acting convulsant, depressant, anticonvulsant and anxiolytic drugs modulate GABAergic transmission. The postsynaptic receptor with which these drugs interact is an allosteric complex with distinct binding sites for GABA, benzodiazepines, picrotoxinin and related compounds. Convulsants which inhibit GABA transmission (except bicuculline) inhibit competitively the binding of dihydropicrotoxinin (DHP) or t-butylbicyclophosphorothionate (TBPT) to the picrotoxinin site and prevent the allosteric enhancing effect of depressant drugs on GABA and benzodiazepine binding. Depressant drugs give a mixed inhibition of TBPT binding. The possible topography of the picrotoxinin site and its relationship to convulsant/depressant drug action at the benzodiazepine-GABA receptor-ionophore complex is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号