首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The small keratan sulfate-substituted proteoglycan (fibromodulin) from articular cartilage was shown to contain keratan sulfate linked to the core protein through N-glycosidic linkages to residues Asn-109, Asn-147, Asn-182, and Asn-272. Biosynthetic experiments with articular chondrocytes in the presence of tunicamycin, an inhibitor of N-linked oligosaccharide synthesis, demonstrated a specific inhibition of [35S]SO4 incorporation into fibromodulin. Under the same conditions no effect on the addition of keratan sulfate to the large aggregating proteoglycan was detected. Fibromodulin substituted with keratan sulfate was purified from bovine articular cartilage extracts by density gradient centrifugation, ion-exchange chromatography, and gel-permeation chromatography. Isolation of glycosylated peptides from tryptic digests of fibromodulin by ion-exchange chromatography and reversed-phase high performance liquid chromatography revealed four separate hexosamine-rich species, that were also immunoreactive with monoclonal antibody 5D4. Sequence analysis of these glycopeptides gave blank cycles at positions which corresponded to Asn followed by X-Ser/Thr in the sequence derived from cDNA (Oldberg, A., Antonsson, P., Lindblom, K., and Heinegard, D. (1989) EMBO J. 8, 2601-2604). Hence, all four Asn residues in the leucine-rich region of the fibromodulin core protein can serve as acceptor sites for keratan sulfate addition.  相似文献   

2.
Adult human articular chondrocytes were used to investigate why keratan sulfate/polylactosamine chains are deficient on the lumican residing in the matrix of adult articular cartilage, whereas they are present on the lumican residing in the matrix of juvenile cartilage. Under serum-free conditions with either monolayer cultures, agarose cultures, or micromass cultures, the adult chondrocytes synthesized a form of lumican possessing keratan sulfate/polylactosamine chains. Thus, the adult chondrocytes are capable of producing a proteoglycan form of lumican and this appears to be the default synthesis preference. The micromass culture system proved useful for demonstrating that growth factors/cytokines present in the extracellular milieu are capable of influencing the structure of the keratan sulfate/polylactosamine chains on the secreted lumican. Of particular note was the ability of IL-1beta to promote the secretion of a form of lumican deficient in keratan sulfate/polylactosamine chains, whereas with bFGF, IGF-1 and TGFbeta keratan sulfate/polylactosamine chains were present, though their size or degree of substitution varied. Thus, growth factors/cytokines are able to modulate the molecular form of lumican. Furthermore, additional studies showed that this modulation was not due to the degradation of keratan sulfate/polylactosamine chains following proteoglycan secretion, but represented a direct effect on synthesis.  相似文献   

3.
Newly synthesized 35S-labeled chondrocytic keratan sulfate chains were generated by chondrocytes of human chondrosarcoma cell line 105KC and were analyzed for heterogeneity of regional substitution, hydrodynamic size, and charge density. After isolation of the high density large chondrocytic proteoglycans and sequential digestions with chondroitinase ABC, L-1-tosylamido-2-phenylethyl chloromethyl ketone-treated trypsin, and alpha-chymotrypsin, followed by Superose 6 chromatography, two populations of keratan sulfate-containing proteoglycan fragments were identified and pooled separately. Keratan sulfate chains from each of the regions were compared after release by Pronase digestion, and differences in substitution patterns were observed; keratan sulfate chains of greater polydispersity, as well as a population of larger hydrodynamic size, were present in only one of the two regions. Alkaline/borohydride treatment confirmed both the existence of a population of uniquely large keratan sulfate chains and its restriction to a single region of proteoglycan fragments. In addition to heterogeneity of hydrodynamic size, the keratan sulfate chains exhibited regional heterogeneity of charge density and hence, of sulfation patterns. Analysis by Mono Q chromatography identified distinct groups of keratan sulfate that segregated by charge density and whose proportionate composition differed between the proteoglycan regions. Furthermore, the most highly charged species were unique to a single region and encompassed the chains of larger hydrodynamic size. This suggests that there may be regional heterogeneity of keratan sulfate chains substituted along a single class of proteoglycans and identifies a novel population of large, highly sulfated chondrocytic keratan sulfate chains.  相似文献   

4.
The asparagine-linked sugar chains of natural interferon-beta 1 secreted from human foreskin fibroblasts by poly I:poly C induction and of three recombinant human interferon-beta 1 produced by Chinese hamster ovary cells, mouse epithelial cells (C127), and human lung adenocarcinoma cells (PC8) were released quantitatively as oligosaccharides by hydrazinolysis followed by N-acetylation. After being reduced with either NaB3H4 or NaB2H4, their structures were comparatively analyzed. More than 80% of the sugar chains of natural interferon-beta 1 occur as biantennary complex-type sugar chains, approximately 10% of which contain N-acetyllactosamine repeating structure in their outer chain moieties. The remainders are 2,4- and 2,6-branched triantennary complex-type sugar chains. The sugar chains of the recombinant interferon-beta 1 derived from Chinese hamster ovary cells were very similar to those of its natural counterpart. In contrast, two other recombinant proteins contain quite different sugar chains. The protein derived from C127 cells contains complex-type sugar chains with the Gal alpha 1----3Gal beta 1----4GlcNAc group in their outer chain moieties. Their sialic acid residues occur solely as the Sia alpha 2----6Gal group, where Sia is sialic acid. In contrast, the sialic acid residues of other interferon-beta 1 occur as the Sia alpha 2----3Gal group only. A part of the sugar chains of the protein derived from PC8 cells contains bisecting N-acetylglucosamine residue in addition to the Gal alpha 1----3Gal beta 1----4GlcNAc group.  相似文献   

5.
Mucopolysaccharidosis IVA (MPS IVA; Morquio A syndrome) is a lysosomal storage disorder caused by deficiency of N-acetylgalactosamine-6-sulfatase (GALNS), an enzyme that degrades keratan sulfate (KS). Currently no therapy for MPS IVA is available. We produced recombinant human (rh)GALNS as a potential enzyme replacement therapy for MPS IVA. Chinese hamster ovary cells stably overexpressing GALNS and sulfatase modifying factor-1 were used to produce active (∼2 U/mg) and pure (≥97%) rhGALNS. The recombinant enzyme was phosphorylated and was dose-dependently taken up by mannose-6-phosphate receptor (Kuptake = 2.5 nM), thereby restoring enzyme activity in MPS IVA fibroblasts. In the absence of an animal model with a skeletal phenotype, we established chondrocytes isolated from two MPS IVA patients as a disease model in vitro. MPS IVA chondrocyte GALNS activity was not detectable and the cells exhibited KS storage up to 11-fold higher than unaffected chondrocytes. MPS IVA chondrocytes internalized rhGALNS into lysosomes, resulting in normalization of enzyme activity and decrease in KS storage. rhGALNS treatment also modulated gene expression, increasing expression of chondrogenic genes Collagen II, Collagen X, Aggrecan and Sox9 and decreasing abnormal expression of Collagen I. Intravenous administration of rhGALNS resulted in biodistribution throughout all layers of the heart valve and the entire thickness of the growth plate in wild-type mice. We show that enzyme replacement therapy with recombinant human GALNS results in clearance of keratan sulfate accumulation, and that such treatment ameliorates aberrant gene expression in human chondrocytes in vitro. Penetration of the therapeutic enzyme throughout poorly vascularized, but clinically relevant tissues, including growth plate cartilage and heart valve, as well as macrophages and hepatocytes in wild-type mouse, further supports development of rhGALNS as enzyme replacement therapy for MPS IVA.  相似文献   

6.
We have determined the primary structure of a 59 kd collagen binding protein which is present in many types of connective tissues, e.g. cartilage, tendon, skin, sclera and cornea. The amino acid sequence, deducted from a 2662 bp cDNA clone, predicts a 42 kd protein with a high content of leucine residues. Most of the protein consists of homologous 23 amino acid residues repeats with predominantly leucine residues in conserved positions. Similar leucine rich repeats have been identified in a number of proteins including the small interstitial proteoglycans decorin and PG-S1. The 59 kd protein and the two proteoglycans are homologous in their entire sequences suggesting that they have evolved from a common ancestral gene. The 59 kd protein and decorin are also functionally related in that both bind to collagen type I and II, and affect their fibrillogenesis. The substitution with glycosaminoglycan chains appears to be a feature shared by all three members of this family of leucine rich motif extracellular proteins, since the 59 kd protein isolated from cartilage is substituted with at least one keratan sulfate chain.  相似文献   

7.
Heparan sulfate N-sulfotransferase catalyzes the transfer of sulfate groups from adenosine 3'-phosphate, 5'-phosphosulfate to the free amino groups of glucosamine residues in heparan sulfate. We have identified a Chinese hamster ovary cell mutant, designated pgsE-606, which is 3-5-fold defective in N-sulfotransferase activity. The residual enzyme activity is indistinguishable from the wild-type enzyme with respect to Km values for adenosine 3'-phosphate,5'-phosphosulfate and N-desulfoheparin, pH dependence, Arrhenius activation energy, and thermal lability. The mutation is recessive, and mixing experiments indicate that the mutant does not produce soluble antagonists of N-sulfotransferase. Inspection of the heparan sulfate chains from the mutant showed that the extent of N-sulfation is reduced about 2-3-fold. The addition of sulfate to hydroxyl groups on the chain is reduced to a similar extent, suggesting that N-sulfation and O-sulfation are normally coupled. Nitrous acid fragmentation of the chains showed that N-sulfated glucosamine residues are spaced much less frequently than in heparan sulfate from wild-type cells. The close correlation of enzyme activity to the number and position of N-sulfate groups indicates that N-sulfotransferase plays a pivotal role in determining the extent of sulfation of heparan sulfate.  相似文献   

8.
Knowledge on fish matrix biology is important to ensure optimal fish -quality, -growth and -health in aquaculture. The aquaculture industry face major challenges related to matrix biology, such as inflammations and malformations. Atlantic cod skeletal muscle was investigated for collagen I, decorin, biglycan, and lumican expression and distribution by real-time PCR, immunohistochemical staining and Western blotting. Immunohistochemical staining and Western immunoblotting were also performed using antibodies against glycosaminoglycan side chains of these proteoglycans, in addition to fibromodulin. Real-time PCR showed highest mRNA expression of lumican and collagen I. Collagen I and proteoglycan immunohistochemical staining revealed distinct thread-like structures in the myocommata, with the exception of fibromodulin, which stained in dense structures embedded in the myocommata. Chondroitinase AC-generated epitopes stained more limited than cABC-generated epitopes, indicating a stronger presence of dermatan sulfate than chondroitin sulfate in cod muscle. Lumican and keratan sulfate distribution patterns were strong and ubiquitous in endomysia and myocommata. Western blots revealed similar SLRPs sizes in cod as are known from mammals. Staining of chondroitin/dermatan sulfate epitopes in Western blots were similar in molecular size to those of decorin and biglycan, whereas staining of keratan sulfate epitopes coincided with expected molecular sizes of lumican and fibromodulin. In conclusion, lumican was a major proteoglycan in cod muscle with ubiquitous distribution overlapping with keratan sulfate. Other leucine-rich proteoglycans were also present in cod muscle, and Western blot using antibodies developed for mammalian species showed cross reactivity with fish, demonstrating similar structures and molecular weights as in mammals.  相似文献   

9.
H Limeback  J Sodek  J Aubin 《Biochemistry》1982,21(19):4720-4729
The collagens synthesized by Chinese hamster ovary cells have been isolated and characterized. Although these cells produce very small amounts of collagen, at least five distinct collagenous chains could be identified from radiolabeled media and cell extracts after limited pepsin digestion. Two chains were characterized as alpha 1(V) and alpha 2(V), based on electrophoretic mobility, resistance to vertebrate collagenase, chromatographic properties on carboxymethylcellulose, and cyanogen bromide peptide patterns. Two smaller collagenous proteins (Mr 34000 and 37000) were also isolated by carboxymethylcellulose chromatography and characterized by cyanogen bromide digestion patterns. These collagens showed similarities to type IV collagen fragments but may be unique to Chinese hamster ovary cells. A colcemid-resistant mutant of Chinese hamster ovary cells designated CMR795 [Ling, V., Aubin, J.E., Chase, A., & Sarangi, F. (1979) Cell (Cambridge, Mass.) 18, 423-430] was found to synthesize the same collagen chains but in different proportions. In the wild-type cells colcemid (0.05-0.1 microgram/mL) reduced the amount of type V collagen in the culture media but had little effect on the other collagen type, whereas the type V collagen reduction was less pronounced in the CMR795 cells treated with the same concentrations of colcemid. Dibutyryladenosine cyclic monophosphate caused a fibroblast-like "reverse transformation" of the Chinese hamster ovary cells similar to that described previously [Hsie, A.W., & Puck, T. T. (1971) Proc. Natl. Acad. Sci. U.S.A. 68, 358-361]. However, collagen synthesis was increased only slightly. Furthermore, no apparent alteration in the types of collagens synthesized was detected.  相似文献   

10.
The N-linked oligosaccharide structures on the envelope glycoprotein gp120 of human immunodeficiency virus 1 derived from chronically infected lymphoblastoid (H9) cells have been investigated by enzymatic microsequencing after release from protein by hydrazinolysis, labeling with NaB3H4, and chromatography on adsorbent columns of Phaseolus vulgaris erythrophytohemagglutinin and Ricinus communis agglutinin (Mr 120,000) and on Bio-Gel P-4. A substantially greater diversity of oligosaccharide structures was detected than among those released by hydrazinolysis from recombinant gp120 produced in Chinese hamster ovary cells and investigated by similar procedures (Mizuochi, T., Spellman, M.W., Larkin, M., Solomon, J., Basa, L.J., and Feizi, T. (1988) Biochem J. 254, 599-603) and among those released by endoglycosidases from virus-derived gp120 isolated from infected H9 cells after metabolic labeling with D-[2-3H]mannose or D-[6-3H]glucosamine (Geyer, H., Holschbach, L., Hunsmann, G., and Schneider, J. (1988) J. Biol. Chem. 263, 11760-11767). In this study, 16% of the oligosaccharides were identified as complex-type bi-, tri-, and tetraantennary sialo-oligosaccharides with bisecting N-acetylglucosamine residues. Such structures were lacking on recombinant gp120 and could not be detected on the metabolically labeled, virus-derived glycoprotein. As in the earlier investigations, complex-type chains lacking bisecting N-acetylglucosamine residues, hybrid-type chains, and a series of high mannose-type structures with 5-9 mannose residues were identified. In addition, an array of complex-type chains having one or more outer chains with beta-galactosyl residues were detected in this study, but with additional substitutions that require further investigation. The number of potential N-glycosylation sites on gp120 is on the order of 20, but the oligosaccharide structures are far more numerous. Thus, the salient conclusion from this and earlier investigations is that alternative structures occur on at least some of the glycosylation sites and that numerous glycosylation variants of this glycoprotein are produced even within a single cell line. Since the glycosylation is the product of host cell glycosyltransferases, an even greater number of glycosylation variants of gp120 are predicted to arise from the heterogeneous cell populations harboring the virus in in vivo infection.  相似文献   

11.
When chick limb bud mesenchyme cells from stage 23 to 24 embryos are plated at high density, they rapidly divide and a large proportion initiate chondrogenic expression during the first 2 to 3 days in culture. Between Days 4 and 8, the emergent chondrocytes mature and elaborate a cartilaginous matrix. The proteoglycans synthesized by the newly emergent Day 3 to 4 chondrocytes differ from those synthesized by either the prechondrogenic mesenchyme cells or the mature Day 8 chondrocytes. Cultures were grown from initial plating (Day 0) or from Day 2 in the continuous presence of 1 mM 4-methyl umbelliferyl-beta-D-xyloside, which acts intracellularly as a competitive acceptor with the endogenous core protein of proteoglycans for chondroitin sulfate synthesis. The proteoglycans synthesized by Day 8 cultures which had been maintained on xyloside or to which xyloside was added only 1 h prior to labeling were essentially identical. They were able to form aggregates, and they contained the same number of keratan sulfate chains, but only about 40% as many chondroitin sulfate chains, as normal. Additionally, both the chondroitin sulfate and keratan sulfate chains were 25% shorter than in the normal proteoglycans. The proteoglycans synthesized by cells in a culture maintained on xyloside until Day 8, and then switched to medium with no xyloside 1 h prior to labeling, were characteristic of those synthesized by normal mature Day 8 chondrocytes. These data suggest that stage 23 to 24 mesenchyme cells undergo normal chondrogenic maturation in culture in the presence of xylosides even though (a) most of the polysaccharides are synthesized onto the exogenously supplied xyloside substrate and released into the medium, (b) the proteoglycans that are synthesized are greatly reduced in polysaccharide content, and (c) the extracellular matrix as a consequence is greatly depleted in chondroitin sulfate content and, therefore, is abnormal in general morphology.  相似文献   

12.
We have prepared a monoclonal antibody, named MZ15, that specifically binds keratan sulfate. Immunofluorescence studies showed that the distribution of keratan sulfate in articular cartilage was not uniform: the amount of keratan sulfate increased with distance from the articular surface. Two subpopulations of chondrocytes could be distinguished after isolation from cartilage by the presence or absence of cell surface keratan sulfate. Keratan sulfate-negative chondrocytes were shown to come from the upper cartilage layers. There was therefore a direct correlation between biochemical heterogeneity of cartilage matrix and heterogeneity within the chondrocyte population. During growth in monolayer culture, superficial chondrocytes began to synthesize keratan sulfate, but the cells could still be distinguished from cultures of deep or unfractionated chondrocytes by their reduced substrate adhesiveness and tendency to remain rounded.  相似文献   

13.
The small keratan sulphate proteoglycan, fibromodulin, has been isolated from pooled human articular cartilage. The main chain repeat region and the chain caps from the attached N-linked keratan sulphate chains have been fragmented by keratanase II digestion, and the oligosaccharides generated have been reduced and isolated. Their structures and abundance have been determined by high pH anion-exchange chromatography. These regions of the keratan sulphate from human articular cartilage fibromodulin have been found to have the following general structure: Significantly, both α(2-6)- and α(2-3)-linked N-acetyl-neuraminic acid have been found in the capping oligosaccharides. Fucose, which is α(1-3)-linked as a branch to N-acetylglucosamine, has also been found along the length of the repeat region and in the capping region. The chains, which have been found to be very highly sulphated, are short; the length of the repeat region and chain caps is ca. nine disaccharides. These data demonstrate that the structure of the N-linked keratan sulphate chains of human articular cartilage fibromodulin is similar, in general, to articular cartilage derived O-linked keratan sulphate chains. Further, the general structure of the keratan sulphate chains attached to human articular cartilage fibromodulin has been found to be generally similar to that of both bovine and equine articular cartilage fibromodulin. Abbreviations: KS, keratan sulphate; IEC, ion-exchange chromatography; ELISA, enzyme linked immunosorbent assay; Gal, β-D-galactose; Fuc, α-L-Fucose; GlcNAc, N-acetylglucosamine (2-acetamido-β-D-glucose); GlcNAc-ol, N-acetylglucosaminitol (2-acetamido-D-glucitol); NeuAc, N-acetyl-neuraminic acid; 6S/(6S), O-ester sulphate group on C6 present/sometimes present; NMR -nuclear magnetic resonance; HPAE, high pH anion-exchange; PED, pulsed electrochemical detection; HPLC, high performance liquid chromatography This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

14.
The proteoglycans of animal cells typically contain one or more heparan sulfate or chondroitin sulfate chains. These glycosaminoglycans assemble on a tetrasaccharide primer, -GlcAbeta1, 3Galbeta1,3Galbeta1,4Xylbeta-O-, attached to specific serine residues in the core protein. Studies of Chinese hamster ovary cell mutants defective in the first or second enzymes of the pathway (xylosyltransferase and galactosyltransferase I) show that the assembly of the primer occurs by sequential transfer of single monosaccharide residues from the corresponding high energy nucleotide sugar donor to the non-reducing end of the growing chain. In order to study the other reactions involved in linkage tetrasaccharide assembly, we have devised a powerful selection method based on induced resistance to a mitotoxin composed of basic fibroblast growth factor-saporin. One class of mutants does not incorporate 35SO4 and [6-3H]GlcN into glycosaminoglycan chains. Incubation of these cells with naphthol-beta-D-xyloside (Xylbeta-O-Np) resulted in accumulation of linkage region intermediates containing 1 or 2 mol of galactose (Galbeta1, 4Xylbeta-O-Np and Galbeta1, 3Galbeta1, 4Xylbeta-O-Np) and sialic acid (Siaalpha2,3Galbeta1, 3Galbeta1, 4Xylbeta-O-Np) but not any GlcA-containing oligosaccharides. Extracts of the mutants completely lacked UDP-glucuronic acid:Galbeta1,3Gal-R glucuronosyltransferase (GlcAT-I) activity, as measured by the transfer of GlcA from UDP-GlcA to Galbeta1,3Galbeta-O-naphthalenemethanol (<0.2 versus 3.6 pmol/min/mg). The mutation most likely lies in the structural gene encoding GlcAT-I since transfection of the mutant with a cDNA for GlcAT-I completely restored enzyme activity and glycosaminoglycan synthesis. These findings suggest that a single GlcAT effects the biosynthesis of common linkage region of both heparan sulfate and chondroitin sulfate in Chinese hamster ovary cells.  相似文献   

15.
We have isolated emetine-resistant cell lines from Chinese hamster peritoneal fibroblasts and have shown that they represent a third distinct class or complementation group of emetine-resistant mutants, as determined by three different criteria. These mutants, like those belonging to the two other complementation groups we have previously defined, which were isolated from Chinese hamster lung and Chinese hamster ovary cells, have alterations that directly affect the protein biosynthetic machinery. So far, there is absolute cell line specificity with respect to the three complementation groups, in that all the emetine-resistant mutants we have isolated from Chinese hamster lung cells belong to one complementation group, all those we have isolated from Chinese hamster ovary cells belong to a second complementation group, and all those isolated from Chinese hamster peritoneal cells belong to a third complementation group. Thus, in cultured Chinese hamster cells, mutations in at least three different loci, designated emtA, emtB, and emtC, encoding for different components of the protein biosynthetic machinery, can give rise to the emetine-resistant phenotype.  相似文献   

16.
Animal cells utilize beta-D-xylosides as primers for glycosaminoglycan synthesis. However, most xylosides preferentially stimulate chondroitin sulfate synthesis and only weakly prime heparan sulfate synthesis. To test if the structure of the aglycone determines the type of glycosaminoglycan made, the priming activity of methyl, n-octyl, p-nitrophenyl, 4-methylumbelliferyl, trans,trans-farnesyl, cholesteryl, and estradiol beta-D-xylosides was compared. Their potency was tested in pgsA-745 cells, a Chinese hamster ovary cell mutant unable to initiate glycosaminoglycan synthesis due to a defect in xylosyltransferase. All of the xylosides stimulated chondroitin sulfate synthesis in the mutant, but only estradiol beta-D-xyloside primed heparan sulfate synthesis efficiently. When incubated with 30 microM estradiol beta-D-xyloside, mutant cells made about 3-fold more glycosaminoglycan than untreated wild-type cells and as much as 50% was heparan sulfate. Estradiol beta-D-xyloside also induced heparan sulfate synthesis in cycloheximide-treated wild-type Chinese hamster ovary cells, bovine aortic endothelial cells, baby hamster kidney cells, and Balb/c 3T3 fibroblasts. In addition to stimulating heparan sulfate synthesis, low concentrations of estradiol beta-D-xyloside inhibited the formation of endogenous heparan sulfate proteoglycans.  相似文献   

17.
The coordination of N-deacetylation and N-sulfation of heparan sulfate was examined in wild-type Chinese hamster ovary cells and mutant pgsE-606. This mutant expresses about 3-fold less N-sulfotransferase activity, which causes the proportion of N-sulfated GlcN residues in heparan sulfate to decline from 39 to 21% of total GlcN (Bame, K.J., and Esko, J.D. (1989) J. Biol. Chem. 264, 8059-8065). In this report, we show that microsomes from pgsE-606 cells have about twice the N-deacetylase activity found in microsomes from wild-type cells. However, N-deacetylation in vivo was actually depressed since heparan sulfate preparations from the mutant contained very few unsubstituted GlcN residues and 2-fold less N-sulfated GlcN residues. Treatment of mutant cells with chlorate, a general inhibitor of sulfation, depressed adenosine 3'-phosphate-5'-phosphosulfate pools more than 10-fold and further reduced the extent of N-sulfation from 21% to less than 6% of total GlcN. Unsubstituted GlcN residues accumulated under these conditions to the extent that N-sulfated residues declined. Thus, N-deacetylation remained depressed in the mutant in the presence of chlorate. These findings show that N-deacetylation is regulated in vivo and support the idea that the activity of N-deacetylase may be linked to N-sulfotransferase.  相似文献   

18.
Components that propagate inflammation in joint disease may be derived from cartilage since the inflammation resolves after joint replacement. We found that the cartilage component fibromodulin has the ability to activate an inflammatory cascade, i.e. complement. Fibromodulin and immunoglobulins cause comparable deposition of C1q, C4b, and C3b from human serum. Using C1q and factor B-deficient sera in combination with varying contents of metal ions, we established that fibromodulin activates both the classical and the alternative pathways of complement. Further studies revealed that fibromodulin binds directly to the globular heads of C1q, leading to activation of C1. However, deposition of the membrane attack complex and C5a release were lower in the presence of fibromodulin as compared with IgG. This can be explained by the fact that fibromodulin also binds complement inhibitor factor H. Factor H and C1q bind to non-overlapping sites on fibromodulin, but none of the interactions is mediated by the negatively charged keratan sulfate substituents of fibromodulin. C1q but not factor H binds to an N-terminal fragment of fibromodulin previously implicated to be affected in cartilage stimulated with the inflammatory cytokine interleukin 1. Taken together our observations indicate fibromodulin as one factor involved in the sustained inflammation of the joint.  相似文献   

19.
Hyaluronate binding properties of versican.   总被引:7,自引:0,他引:7  
We have previously cloned a large chondroitin sulfate proteoglycan (versican) from human fibroblasts. The primary sequence shows that the N terminus contains sequence homology with known hyaluronate-binding molecule, suggesting that versican can bind hyaluronate. To test this hypothesis we have reconstructed a full-length versican cDNA and a versican cDNA fragment encoding the N terminus and have transfected Chinese hamster ovary cells and mouse 3T3 fibroblasts, respectively, with these constructs. The transfected Chinese hamster ovary cells make a proteoglycan shown to be versican by enzymatic and immunologic analysis. No corresponding proteoglycan was seen in the control cells. Using hyaluronate affinity chromatography, we show that recombinant versican specifically binds hyaluronate and does not bind to heparin or chondroitin sulfate. The transfected fibroblasts make a 78-kDa truncated form of versican that also binds hyaluronate and does not bind the related polysaccharides, showing that the hyaluronate binding activity resides at the N terminus of versican. The binding of versican to hyaluronate is substrate-concentration dependent and time dependent and can be competed with unlabeled versican. The dissociation constant for versican binding to hyaluronate was determined to be 4 x 10(-9) M.  相似文献   

20.
Heparanases are mammalian endoglucuronidases that degrade heparan sulfate (HS) glycosaminoglycans to short 5-6 kDa pieces. In the Golgi, HS glycosaminoglycans are modified by a series of interdependent reactions which result in chains that have regions rich in N- and O-sulfate groups and iduronate residues (S-domains), separated by regions that are nearly devoid of sulfate. Structural analysis of the short HS chains produced by Chinese hamster ovary (CHO) cell heparanases indicate that the enzymes recognize differences in sulfate content between S-domains and unmodified sequences, and cleave the chain at junctions between these regions. To look more closely at whether the spacing of S-domains on the gly- cosaminoglycan influences its ability to be cleaved by heparanases, we examined the susceptibility of the HS chains synthesized by the proteoglycan synthesis mutant, pgsE-606. PGS:E-606 cells are deficient in the modification enzyme N-deacetylase/N-sulfotransferase I, and synthesize HS chains that have fewer N- and O-sulfate groups and iduronate residues compared to wild-type (Bame et al., (1991), J. Biol. Chem., 266, 10287). HS glycosaminoglycans were isolated from wild-type and pgsE-606 cells and separated into populations based on sulfate content. Compared to wild-type HS, which has 14 S-domains, pgsE-606 cells synthesize three HS species, 606-1, 606-2, and 606-3, with 1, 4, and 8 S-domains, respectively. The spacing of the S-domains on the pgsE-606 HS chains is similar to the spacing the modified sequences on wild-type HS, indicating that each mutant glycosaminoglycan is composed of wild-type-like sequences and sequences devoid of S-domains. When incubated with partially purified CHO heparanases, only the portion of the mutant HS chains that had S-domains were degraded. Structural analysis of the heparanase-products confirmed that both the number and the arrangement of S-domains on the HS glycosaminoglycan are important for heparanase susceptibility. The structure of the different pgsE-606 HS chains also suggests mechanisms for the placement of S-domains when the gly- cosaminoglycan is synthesized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号