首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C E Cooper  P Nicholls 《Biochemistry》1990,29(16):3865-3871
Cytochrome oxidase proteoliposomes were prepared from bovine heart oxidase. Size distributions determined by quasi-elastic light scattering (QELS) showed that there was a small population of large vesicles (120-200-nm diameter) and a large population of small vesicles (50-100-nm diameter). Trapping cytochrome c inside the proteoliposomes did not significantly alter this size distribution. Separation of the vesicles by gel filtration, however, revealed that the cytochrome c/cytochrome a ratio is higher in the larger vesicles. Internally trapped cytochrome c can be reduced by the membrane-permeable reductants 2,3,5,6-tetramethyl-p-phenylenediamine (DAD) or N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). Respiration on internal cytochrome c generated a membrane potential of 53 mV (positive inside) and a pH gradient of 0.2 (acid inside) as monitored by the optical probes oxonol V and pyranine, respectively. But the true magnitude of these gradients in individual proteoliposomes is complicated by vesicle heterogeneity. The membrane potential increased biphasically with increasing concentration of reductant. Ionophore sensitivity was higher for the "low Km" phase, and respiration became increasingly uncoupled as the reductant concentration was increased. These findings are consistent with a kinetic heterogeneity such that vesicles respiring at lower reductant concentrations generate a higher proton motive force than those with a larger Km. The steady-state internal acidification induced by turnover of the internally facing enzyme is probably maintained by both cytochrome oxidase proton translocation and a TMPD+/H+ antiport present in these vesicles [Cooper, C. E., & Nicholls, P. (1987) FEBS. Lett. 223, 155-160].  相似文献   

2.
1. Oxidation of ferrocytochrome c by cytochrome c oxidase incorporated into proteoliposomes induces a transient acidification of the external medium. This change is dependent on the presence of valinomycin and can be abolished by carbonyl cyanide p-trifluoromethoxyphenylhydrazone or by nigericin. The H+/e- ratio for the initial acidification varies with the internal buffering capacity of the vesicles, and under suitable conditions approaches + 1, the pulse slowly decaying to give a net alkalinity change with H+/e- value approaching -1. 2. Inhibition of cytochrome c oxidase turnover by ferricytochrome c or by azide addition results in ferrocytochrome c-dependent H+ pulses with decreasing H+/e- ratios. The rate of the initial H+ production remains higher than the rate of equilibration of the pH gradient, indicating an intrinsic dependence of the H+/e- ratio on enzyme turnover. The final net alkalinity changes are relatively unaffected by turnover inhibition.  相似文献   

3.
The detergent lauryl maltoside abolishes respiratory control and proton ejection by cytochrome c oxidase-containing proteoliposomes over a narrow concentration range. Expression of cryptic activity (inward-facing oxidase) is released over the same concentration range. Catalytic functions (Vmax. and Km) of the enzyme are not changed by the detergent. Lipid micelles containing detergent bind approximately the same amount of cytochrome c as do vesicles containing an equivalent amount of lipid. Uncoupler-insensitive proton release is seen when proteoliposomes are pulsed with ferrocytochrome c at low ionic strength. Such uncoupler-insensitive acidification is not seen at higher ionic strength, nor with oxygen pulses of anaerobic solutions previously incubated with cytochrome c. Vesicles at low ionic strength catalyse cytochrome c autoxidation; this process can mimic proton re-equilibration in systems that have pumped protons from inside to the bulk phase. Proton re-equilibration following a pulse of cytochrome c or oxygen is multiphasic. The slowest phases are attributed to vesicle heterogeneity, some internal alkali being retained within vesicles of low intrinsic proton permeability. This can be overcome by the addition of either very low levels of carbonyl cyanide p-trifluoromethoxyphenyl-hydrazone or high levels of valinomycin.  相似文献   

4.
Fabian M  Skultety L  Brunel C  Palmer G 《Biochemistry》2001,40(20):6061-6069
A comparison of bovine cytochrome c oxidase isolated in the presence and the absence of chloride salts reveals that only enzyme isolated in the presence of chloride salts is a mixture of a complex of oxidized enzyme with chloride (CcO.Cl) and chloride-free enzyme (CcO). Using a spectrophotometric method for chloride determination, it was shown that CcO.Cl contains one chloride ion that is released into the medium by a single turnover or by cyanide binding. Chloride is bound slowly within the heme a(3)-Cu(B) binuclear center of oxidized enzyme in a manner similar to the binding of azide. The pH dependence of the dissociation constant for the formation of the CcO.Cl complex reveals that chloride binding proceeds with the uptake of one proton. With both forms of the enzyme the dependence of the rate of reaction for cyanide binding upon cyanide concentration asymptotes a limiting value indicating the existence of an intermediate. With CcO.Cl this limiting rate is 10(3) higher than the rate of the spontaneous dissociation of chloride from the binuclear center and we propose that the initial step is the coordination of cyanide to Cu(B) and in this intermediate state the rate of dissociation of chloride is substantially enhanced.  相似文献   

5.
Orientation and reactivity of cytochrome aa3 heme groups in proteoliposomes   总被引:4,自引:0,他引:4  
Reduction of cytochrome aa3 in proteoliposomes with ascorbate plus cytochrome c confirms that not more than 55% of the molecules are externally accessible and that the remainder are reduced only on the addition of membrane-permeable N,N,N′,N′tetramethyl-p-henylenediamine. Reduction in the presence of terminal inhibitors such as cyanide, azide, and carbon monoxide shows that likewise 50% of the cytochrome a is accessible and 50% inaccessible. Dithionite reduces part of the cytochrome a3 in the presence of azide, and none in the presence of cyanide. Methyl viologen, which is somewhat membrane permeable, can reduce part of the cyanide-complexed cytochrome a3 at low concentrations and all of it at high concentrations. Cytochrome a3 is therefore also distributed randomly inside and outside the vesicles. Cytochrome c oxidase with externally facing cytochrome a is stimulated to high activity by its membrane association. Its turnover is dependent on the external pH and it is inhibited by external azide; trapping of azide cannot be used to demonstrate the orientation of the cytochrome a3 hemes associated with externally facing cytochrome a. Cytochrome c oxidase with internally facing cytochrome a is rather sluggishly reactive. Its low activity accounts for the apparent failure of detergents to release extra activity on lysing proteoliposomes. Double reciprocal plots of the reaction of added cytochrome c with proteoliposomes indicate apparent biphasic binding in the energized state, which is abolished upon the addition of uncouplers and valinomycin. But no transmembraneous effect upon the oxidase reaction other than energization has been identified.  相似文献   

6.
Many recent studies highlight the importance of lipids in membrane proteins, including in the formation of well-ordered crystals. To examine the effect of changes in one lipid, cardiolipin, on the lipid profile and the production, function, and crystallization of an intrinsic membrane protein, cytochrome c oxidase, we mutated the cardiolipin synthase (cls) gene of Rhodobacter sphaeroides, causing a >90% reduction in cardiolipin content in vivo and selective changes in the abundances of other lipids. Under these conditions, a fully native cytochrome c oxidase (CcO) was produced, as indicated by its activity, spectral properties, and crystal characteristics. Analysis by MALDI tandem mass spectrometry (MS/MS) revealed that the cardiolipin level in CcO crystals, as in the membranes, was greatly decreased. Lipid species present in the crystals were directly analyzed for the first time using MS/MS, documenting their identities and fatty acid chain composition. The fatty acid content of cardiolipin in R. sphaeroides CcO (predominantly 18:1) differs from that in mammalian CcO (18:2). In contrast to the cardiolipin dependence of mammalian CcO activity, major depletion of cardiolipin in R. sphaeroides did not impact any aspect of CcO structure or behavior, suggesting a greater tolerance of interchange of cardiolipin with other lipids in this bacterial system.  相似文献   

7.
1. Generation of a transmembrane electric potential difference by oligomycin-sensitive ATPase complex, incorporated into spherical or planar phospholipid membrane, has been demonstrated. To this end, penetrating anion probe and direct voltmeter measurement of electric potential across phospholipid membrane were used. It was found that ATP-induced electric response is sensitive to oligomycin and protonophorous uncouplers. 2. The effect of variations in the phospholipid component of proteoliposomes on the electric generation was studied. It was revealed that the usage of mitochondrial phospholipids and phosphatidylethanolamine allows the highest values of membrane potential to be obtained in the case of ATPase proteoliposomes. In the case of cytochrome oxidase and bacteriorhodopsin proteoliposomes, phosphatidylserine was also shown to be quite suitable. Phosphatidylcholine was absolutely ineffective in all cases. 3. In proteoliposomes, containing both ATPase and bacteriorhodopsin, ATP and light induced generation of the electric field of the same direction. 4. In ATPase + cytochrome oxidase proteoliposomes, ATP hydrolysis and ascorbate oxidation was found to support electric generation of the same direction if cytochrome c was inside vesicles. Oxidation via external cytochrome c resulted in formation of electric field of the direction, opposite to that induced by ATP hydrolysis. 5. The data obtained in experiments with proteoliposomes of different types are discussed. The conclusion is made that conversion of energy of different resources into electric form is a common feature of membraneous energy transducers, which is in agreement with the Mitchellian principle of cellular energetics.  相似文献   

8.
The proton-coupled Pho84 phosphate permease of Saccharomyces cerevisiae, overexpressed as a histidine-tagged chimera in Escherichia coli, was detergent-solubilized, purified, and reconstituted into proteoliposomes. Proteoliposomes containing the Pho84 protein were fused with proteoliposomes containing purified cytochrome c oxidase from beef heart mitochondria. Both components of the coreconstituted system were functionally incorporated in tightly sealed membrane vesicles in which the cytochrome c oxidase-generated electrochemical proton gradient could drive phosphate transport via the proton-coupled Pho84 permease. The metal dependency of transport indicates that a metal-phosphate complex is the translocated substrate.  相似文献   

9.
The purified two-subunit cytochrome c oxidase of Paracoccus denitrificans was reconstituted into phospholipid vesicles having a high internal buffering capacity and exhibiting a respiratory control index greater than 6.6. With these proteoliposomes, pH changes of the suspending medium were monitored in response to reductant pulses in the presence of valinomycin and potassium. When reduced cytochrome c was added to allow for a limited number of turnovers (2-12), a net acidification of the extravesicular space could be observed. This apparent proton ejection by the vesicles was abolished by inhibition of the oxidase with azide, by bypassing the oxidase with ferricyanide, or by preventing charge compensation by omitting valinomycin. Addition of uncoupler led to an alkalinization, rather than an acidification, of the extravesicular space in response to reduced cytochrome c. We thus conclude that cytochrome c oxidase of P. denitrificans is a proton pump. Under the conditions described here, an apparent stoichiometry of 0.6 proton ejected/electron was obtained by extrapolation to zero turnovers.  相似文献   

10.
Cyanide (CN(-)) is a frequently used inhibitor of mitochondrial respiration due to its binding to the ferric heme a(3) of cytochrome c oxidase (CcO). As-isolated CcO oxidized cyanide to the cyanyl radical ((.)CN) that was detected, using the ESR spin-trapping technique, as the 5,5-dimethyl-1-pyrroline N-oxide (DMPO)/(.)CN radical adduct. The enzymatic conversion of cyanide to the cyanyl radical by CcO was time-dependent but not affected by azide (N(3)(-)). The small but variable amounts of compound P present in the as-isolated CcO accounted for this one-electron oxidation of cyanide to the cyanyl radical. In contrast, as-isolated CcO exhibited little ability to catalyze the oxidation of azide, presumably because of azide's lower affinity for the CcO. However, the DMPO/(.)N(3) radical adduct was readily detected when H(2)O(2) was included in the system. The results presented here indicate the need to re-evaluate oxidative stress in mitochondria "chemical hypoxia" induced by cyanide or azide to account for the presence of highly reactive free radicals.  相似文献   

11.
The effect of gangliosides on membrane permeability was investigated by studying the kinetic properties of cytochrome c oxidase, the activity of which, when the enzyme is reconstituted in phospholipid vesicles, is dependent on membrane permeability to H+ and K+. The experiments indicate that three different gangliosides (GM1, DD1a, GT1b) incorporated into cytochrome c oxidase-containing phospholipid vesicles stimulate enzymic activity, in the absence of ionophores, most probably by disorganizing the bilayer lipid assembly and increasing its permeability to ions. This interpretation was confirmed by fluorescence-spectroscopy experiments in which the rate of passive leakage of carboxyfluorescein entrapped in the vesicles was measured. Cholera toxin, or its isolated B-subunit, added to GM1-containing proteoliposomes inhibited cytochrome c oxidase activity, indicating the lack of formation, under these experimental conditions, of channels freely permeable to H+ or K+.  相似文献   

12.
The aerobic respiratory chain of Escherichia coli is branched and contains two terminal oxidases. The chain predominant when the cells are grown with low aeration terminates with the cytochrome d terminal oxidase complex, and the branch present under high aeration ends with the cytochrome o terminal oxidase complex. Previous work has shown that cytochrome d complex functions as a ubiquinol-8 oxidase, and that a minimal respiratory chain can be reconstituted in proteoliposomes with a flavoprotein dehydrogenase (pyruvate oxidase), ubiquinone-8, and the cytochrome d complex. This paper demonstrates that the cytochrome o complex functions as an efficient ubiquinol-8 oxidase in reconstituted proteoliposomes, and that ubiquinone-8 serves as an electron carrier from the flavoprotein to the cytochrome complex. The maximal turnover (per cytochrome o) achieved in reconstituted proteoliposomes is at least as fast as observed in E. coli membrane preparations. Electron flow from the flavoprotein to oxygen in the reconstituted proteoliposomes generates a transmembrane potential of at least 120 mV, negative inside, which is sensitive to ionophore uncouplers and inhibitors of the terminal oxidase. These data demonstrate the minimal composition of this respiratory chain as a flavoprotein dehydrogenase, ubiquinone-8, and the cytochrome o complex. Previous models have suggested that cytochrome b556, also a component of the E. coli inner membrane, is required for electron flow to cytochrome o. This is apparently not the case. It now is clear that both of the E. coli terminal oxidases act as ubiquinol-8 oxidases and, thus, ubiquinone-8 is the branch point between the two respiratory chains.  相似文献   

13.
Interactions of azide ion with bovine heart cytochrome c oxidase (CcO) at five redox levels (IV) to (0), obtained by zero to four electron reduction of fully oxidized enzyme CcO(IV), were monitored by infrared and visible/Soret spectra. Partially reduced CcO gave three azide asymmetric stretch band at 2040, 2016, and 2004 cm-1 for CcO(III)N3 and two at 2040 and 2016 cm-1 for CcO(II)N3 and CcO(I)N3. Resting CcO(IV) reacts with N3- to give one band at 2041 cm-1 assigned to CuB2+N3 and another at 2051 cm-1 to N3- that is associated with protein but is not bound to a metal ion. At high azide concentrations the weak association of many azide molecules with non-metal protein sites was observed at all redox levels. These findings provide direct evidence for 1) N3- binding to CuB as well as Fea3 in partially reduced enzyme, but no binding to Fea3 in fully oxidized enzyme and no binding to either metal in fully reduced enzyme; 2) a long range effect of the oxidation state of Fea or CuA on ligand binding at heme a3, but not at CuB; and 3) an insensitivity of either Fea3 or CuB ligand site to changes in ligand or oxidation state at the other site. The observed independence of the Fea3 and CuB sites provides further support for Fea3(3)+ OOH, rather than Fea3(3)+ OOCuB2+, as an intermediate in the reduction of O2 to water by the oxidase.  相似文献   

14.
The thermotropic behavior of the mitochondrial enzyme cytochrome c oxidase (EC 1.9.3.1) reconstituted in dimyristoylphosphatidylcholine (DMPC) vesicles has been studied by using high-sensitivity differential scanning calorimetry and fluorescence spectroscopy. The incorporation of cytochrome c oxidase into the phospholipid bilayer perturbs the thermodynamic parameters associated with the lipid phase transition in a manner analogous to other integral membrane proteins: it reduces the enthalpy change, lowers the transition temperature, and reduces the cooperative behavior of the phospholipid molecules. Analysis of the dependence of the enthalpy change on the protein:lipid molar ratio indicates that cytochrome c oxidase prevents 99 +/- 5 lipid molecules from participating in the main gel-liquid-crystalline transition. These phospholipid molecules presumably remain in the same physical state below and above the transition temperature of the bulk lipid, thus providing a more or less constant microenvironment to the protein molecule. The effect of the phospholipid bilayer matrix on the thermodynamic stability of the cytochrome c oxidase complex was examined by high-sensitivity differential scanning calorimetry. Detergent (Tween 80)-solubilized cytochrome c oxidase undergoes a complex, irreversible thermal denaturation process centered at 56 degrees C and characterized by an enthalpy change of 550 +/- 50 kcal/mol of enzyme complex. Reconstitution of the cytochrome c oxidase complex into DMPC vesicles shifts the transition temperature upward to 63 degrees C, indicating that the phospholipid bilayer moiety stabilizes the native conformation of the enzyme. The lipid bilayer environment contributes approximately 10 kcal/mol to the free energy of stabilization of the enzyme complex. The thermal unfolding of cytochrome c oxidase is not a two-state process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The solution structure of Sco1 from Bacillus subtilis is the first structure of a protein important in the assembly of cytochrome c oxidase (CcO). The assembly of CcO requires the insertion of multiple cofactors. Sco1 is a conserved protein implicated in formation of the binuclear Cu(A) center.  相似文献   

16.
Detergent-solubilized dimeric and monomeric cytochrome c oxidase (CcO) have significantly different quaternary stability when exposed to 2-3 kbar of hydrostatic pressure. Dimeric, dodecyl maltoside-solubilized cytochrome c oxidase is very resistant to elevated hydrostatic pressure with almost no perturbation of its quaternary structure or functional activity after release of pressure. In contrast to the stability of dimeric CcO, 3 kbar of hydrostatic pressure triggers multiple structural and functional alterations within monomeric cytochrome c oxidase. The perturbations are either irreversible or slowly reversible since they persist after the release of high pressure. Therefore, standard biochemical analytical procedures could be used to quantify the pressure-induced changes after the release of hydrostatic pressure. The electron transport activity of monomeric cytochrome c oxidase decreases by as much as 60% after exposure to 3 kbar of hydrostatic pressure. The irreversible loss of activity occurs in a time- and pressure-dependent manner. Coincident with the activity loss is a sequential dissociation of four subunits as detected by sedimentation velocity, high-performance ion-exchange chromatography, and reversed-phase and SDS-PAGE subunit analysis. Subunits VIa and VIb are the first to dissociate followed by subunits III and VIIa. Removal of subunits VIa and VIb prior to pressurization makes the resulting 11-subunit form of CcO even more sensitive to elevated hydrostatic pressure than monomeric CcO containing all 13 subunits. However, dimeric CcO, in which the association of VIa and VIb is stabilized, is not susceptible to pressure-induced inactivation. We conclude that dissociation of subunit III and/or VIIa must be responsible for pressure-induced inactivation of CcO since VIa and VIb can be removed from monomeric CcO without significant activity loss. These results are the first to clearly demonstrate an important structural role for the dimeric form of cytochrome c oxidase, i.e., stabilization of its quaternary structure.  相似文献   

17.
Cytochrome c oxidase was reconstituted in phospholipid vesicles in the presence of highly hydrophobic poly(vinyl alkanoate) polymers. Electron-microscopy observations demonstrated that polymer interaction with the lipid phase induces vesicles to adopt smaller diameters than those typical of standard proteoliposomes. Functional characterization of these polymer-proteoliposome structures indicates that the reconstitution of the enzyme proceeds efficiently without causing either scrambling of the protein orientation in the membrane or loss of respiratory control. A clear dependence of respiratory control ratio on vesicle size was also demonstrated, which is in agreement with a previous model proposed for control of activity of cytochrome c oxidase vesicles [Brunori, Sarti, Colosimo, Antonini, Malatesta, Jones & Wilson (1985) EMBO J. 4, 2365-2368].  相似文献   

18.
Lipid-depleted cytochrome c oxidase (EC 1.9.3.1) containing less than 20 microgram lipids per milligram protein was reconstituted with pure phospholipids of well-defined chemical structure and fatty acid composition without using detergents and (or) sonication. For the maximal restoration of electron transport activity, lipid-depleted cytochrome c oxidase required acidic phospholipds such as phosphatidylglycerol or phosphatidylserine or lysophospholipids such as lysophosphatidylcholine or lysophosphatidic acid, but no specific phospholipid fatty acid composition was necessary. The organization of the lipid environment of the reconstituted cytochrome c oxidase, having a well-defined lipid composition, morphology, and a high specific activity, was examined by electron spin resonance spectroscopy using 2-(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxazolidinyloxyl (16-doxyl stearic acid) and 16-doxyl stearic acid - containing phosphatidylglycerol. The presence of boundary lipid was established in both lamellar and micellar organizations of reconstituted cytochrome c oxidase and was not necessarily related to the enzymatic activity of the complex. Our results have established that aside from structural considerations, the boundary lipid, at least in the reconstituted cytochrome c oxidase, is a necessary but not sufficient condition for the enzymatic expression of cytochrome c oxidase.  相似文献   

19.
20.
The control of cytochrome c oxidase incorporated into proteoliposomes has been investigated as a function of membrane potential (delta psi) and pH gradient (delta pH). The oxidase generates a pH gradient (alkaline inside) and a membrane potential (negative inside) when respiring on external cytochrome c. Low levels of valinomycin collapse delta psi and increase delta pH; the respiration rate decreases. High levels of valinomycin, however, decrease delta pH as valinomycin can also act as a protonophore. Nigericin (in the absence of valinomycin) increases delta psi and collapses delta pH; the respiration rate increases. On a millivolt equivalent basis delta pH is a more effective inhibitor of activity than is delta psi. In the absence of any ionophores the cytochrome oxidase proteoliposomes enter a steady state, in which there are both delta pH and delta psi components of control. Present and previous data suggest that the respiration rate responds in a linear way ("ohmically") to increasing delta pH but in a nonlinear way to delta psi ("non-ohmically"). High levels of both delta psi and delta pH do not completely inhibit turnover (maximal respiratory control values lie between 6 and 10). The controlled steady state involves the electrophoretic entry and electroneutral exit of K+ from the vesicles. A model is presented in which the enzyme responds to both delta pH and delta psi components of the proton-motive force, but is more sensitive to delta pH than to delta psi at an equivalent delta mu H+. The steady state of the proteoliposome system can be represented for any set of permeabilities and enzyme activity levels using the computer simulation programme Stella.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号