首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Case A  Stein RL 《Biochemistry》2003,42(11):3335-3348
Serine proteases catalyze the hydrolysis of amide bonds of their protein and peptide substrates through a mechanism involving the intermediacy of an acyl-enzyme. While the rate constant for formation of this intermediate, k(2), shows a dramatic dependence on peptide chain length, the rate constant for the intermediate's hydrolysis is relatively insensitive to chain length. To probe the mechanistic origins of this phenomenon, we determined temperature dependencies and solvent isotope effects for the alpha-chymotrypsin-catalyzed hydrolysis of Suc-Phe-pNA (K(s) = 1 mM, k(2) = 0.04 s(-)(1), and k(3) = 11 s(-)(1)), Suc-Ala-Phe-pNA (K(s) = 4 mM, k(2) = 0.9 s(-)(1), and k(3) = 42 s(-)(1)), and Suc-Ala-Ala-Pro-Phe-pNA (K(s) = 0.1 mM, k(2) = 98 s(-)(1), and k(3) = 71 s(-)(1)). We found that while the van't Hoff plots for K(s) and the Eyring plots for k(3) are linear for all three reactions, the Eyring plots for k(2) are convex, indicating that the process governed by k(2) is complex, possibly involving a coupling between active site chemistry and protein conformational isomerization. This interpretation is strengthened by solvent isotope effects on k(2) that are largely temperature-independent. Furthermore, the dependence of k(2) on peptide length is manifested entirely in the enthalpy of activation, suggesting a mechanism of catalysis by distortion. Taken together, this analysis of acylation suggests that extended substrates which can engage in subsite interactions are able to efficiently trigger the coupling mechanism between chemistry and a conformational isomerization that distorts the substrate and thereby promotes nucleophilic attack.  相似文献   

2.
Leishmaniasis (1) is an endemic disease mainly caused by the protozoan Leishmania donovani (Ld). Polyamines have been identified as essential organic compounds for the growth and survival of Ld. These are synthesized in Ld by polyamine synthesis pathway comprising of many enzymes such as ornithine decarboxylase (ODC), spermidine synthase (SS), and S-adenosylmethionine decarboxylase. Inhibition of these enzymes in Ld offers a viable prospect to check its growth and development. In the present work, we used computational approaches to search natural inhibitors against ODC and SS enzymes. We predicted three-dimensional structures of ODC and SS using comparative modeling and molecular dynamics (MD) simulations. Thousands of natural compounds were virtually screened against target proteins using high throughput approach. MD simulations were then performed to examine molecular interactions between the screened compounds and functional residues of the active sites of the enzymes. Herein, we report two natural compounds of dual inhibitory nature active against the two crucial enzymes of polyamine pathway of Ld. These dual inhibitors have the potential to evolve as lead molecules in the development of antileishmanial drugs. (1)These authors contributed equally.  相似文献   

3.
Leishmaniasis 1 1These authors contributed equally.Communicated by Ramaswamy H. SarmaCommunicated by Ramaswamy H. Sarma is an endemic disease mainly caused by the protozoan Leishmania donovani (Ld). Polyamines have been identified as essential organic compounds for the growth and survival of Ld. These are synthesized in Ld by polyamine synthesis pathway comprising of many enzymes such as ornithine decarboxylase (ODC), spermidine synthase (SS), and S-adenosylmethionine decarboxylase. Inhibition of these enzymes in Ld offers a viable prospect to check its growth and development. In the present work, we used computational approaches to search natural inhibitors against ODC and SS enzymes. We predicted three-dimensional structures of ODC and SS using comparative modeling and molecular dynamics (MD) simulations. Thousands of natural compounds were virtually screened against target proteins using high throughput approach. MD simulations were then performed to examine molecular interactions between the screened compounds and functional residues of the active sites of the enzymes. Herein, we report two natural compounds of dual inhibitory nature active against the two crucial enzymes of polyamine pathway of Ld. These dual inhibitors have the potential to evolve as lead molecules in the development of antileishmanial drugs.  相似文献   

4.
5.
Ethanol is used to precipitate proteins during various processes, including purification and crystallization. To elucidate the mechanism of protein precipitation by alcohol, we have investigated the solubility and structural changes of protein over a wide range of alcohol concentrations. Conformation of hen egg-white lysozyme was changed from native to α-helical rich structure in the presence of ethanol at concentrations above 60%. The solubility of lysozyme was reduced with increasing ethanol concentration, although gel formation at ethanol concentrations between 60% and 75% prevented accurate solubility measurements. SH-modified lysozyme showed largely unfolded structure in water and α-helical structure in the presence of ethanol. More importantly, solubility of the chemically modified lysozyme molecules decreased with increasing ethanol concentration. There is no indication of increased solubility upon unfolding of the lysozyme molecules by ethanol, indicating that any favorable interaction of ethanol with the hydrophobic side chains, if indeed occuring, is offset by the unfavorable interaction of ethanol with the hydrophilic side chains and peptide bonds.  相似文献   

6.
The enzymatic hydrolysis of the glycosidic bond continues to gain importance, reflecting the critically important roles complex glycans play in health and disease as well as the rekindled interest in enzymatic biomass conversion. Recent advances include the broadening of our understanding of enzyme reaction coordinates, through both computational and structural studies, improved understanding of enzyme inhibition through transition state mimicry and fascinating insights into mechanism yielded by physical organic chemistry approaches.  相似文献   

7.
The activity of metabolic enzymes is controlled by three principle levels: the amount of enzyme, the catalytic activity, and the accessibility of substrates. Reversible lysine acetylation is emerging as a major regulatory mechanism in metabolism that is involved in all three levels of controlling metabolic enzymes and is altered frequently in human diseases. Acetylation rivals other common posttranslational modifications in cell regulation not only in the number of substrates it modifies, but also the variety of regulatory mechanisms it facilitates.  相似文献   

8.
Peptidyl alpha-aminoalkylphosphonate diphenyl esters have been synthesized and shown to be effective inhibitors of serine proteases. Extending the peptide chain from a single alpha-aminoalkylphosphonate residue (kobs/[I] = 2.5-260 M-1 s-1) to a tripeptide or tetrapeptide derivative (kobs/[I] = 7,000-17,000 M-1 s-1) resulted in 65-2800 improvement in inhibitory potency and increased specificity. The rate of inactivation of chymotrypsin by MeO-Suc-Ala-Ala-Pro-HNCH(CH2Ph)P(O)(OPh)2 was decreased 5 fold in the presence of the substrate Suc-Val-Pro-Phe-NA (0.119 mM). Phosphonylated serine proteases are extremely stable since the half-life for reactivation was greater than 48 hrs for the inhibited elastases and at least 10 hrs for chymotrypsin.  相似文献   

9.
Prion diseases are fatal neurodegenerative disorders. Identification of possible therapeutic tools is important in the search for a potential treatment for these diseases. Congo red is an azo dye that has been used for many years to detect abnormal prion protein in the brains of diseased patients or animals. Congo red has little therapeutic potential for the treatment of these diseases due to toxicity and poor permeation of the blood-brain barrier. We have prepared two Congo red derivatives, designed without these liabilities, with potent activity in cellular models of prion disease. One of these compounds cured cells of the transmissible agent. The mechanism of action of these compounds is possibly multifactorial. The high affinity of Congo red derivatives, including compounds that are ineffective and are effective at the cure of prion disease, for abnormally folded prion protein suggests that the amyloidophylic property of these derivatives is not as critical to the mechanism of action as other effects. Congo red derivatives that are effective at the cure of prion disease increased the degradation of abnormal PrP by the proteasome. Therefore, the principal mechanism of action of the Congo red analogues was to prevent inhibition of proteasomal activity by PrPSc.  相似文献   

10.
Although small interfering RNA (siRNA) can silence the expression of disease-related genes, delivery of these highly charged molecules is challenging. Delivery approaches for siRNAs are actively being pursued, and improved strategies are required for nontoxic and efficient delivery for gene knockdown. Low density lipoprotein (LDL) is a natural and endogenous nanoparticle that has a rich history as a delivery vehicle. Here, we examine purified LDL nanoparticles as carriers for siRNAs. When siRNA was covalently conjugated to cholesterol, over 25 chol-siRNA could be incorporated onto each LDL without changing nanoparticle morphology. The resulting LDL-chol-siRNA nanoparticles were selectively taken up into cells via LDL receptor mediated endocytosis, resulting in enhanced gene silencing compared to free chol-siRNA (38% gene knock down versus 0% knock down at 100 nM). However, silencing efficiency was limited by the receptor-mediated entrapment of the LDL-chol-siRNA nanoparticles in endolysosomes. Photochemical internalization demonstrated that endolysosome disruption strategies significantly enhance LDL-mediated gene silencing (78% at 100 nM).  相似文献   

11.
We recently debuted a variety of linear polyethylenimines (LPEIs) with low molecular weight as carriers for gene delivery. The highest transfection efficiency (approximately 44%) was obtained with LPEI 6.6 kDa, while the cytotoxicity remained low (approximately 90% of CHO-K1 cells survived the transfection procedure). Here, we investigated various steps during the transfection process using LPEI 8.1, 5.0 and 1.8 kDa, in order to gain a more complete insight into LPEI-mediated gene transfer and to explore conceptual aspects for further optimization. The cellular uptake characterized by flow cytometry was similar for LPEI 8.1 and 5.0 kDa, while it was significantly lower for LPEI 1.8 kDa. The transfection efficacy in contrast was at NP 24 20.07% for LPEI 8.1 kDa and 39.71% for LPEI 5.0 kDa. This suggests that the endocytosis seems not to be a decisive parameter that determines the efficacy of a polymer in the transfection process. Real-time PCR investigations revealed that LPEI 1.8 kDa likewise or even better protected plasmid from degradation compared to LPEI 5.0 or 8.1 kDa. Furthermore, we found that 1/6 to 1/3 intact plasmid DNA reached the intracellular compartments after complexation with LPEI 1.8 kDa. Therefore, the amount of plasmid DNA available in the cytoplasm seems not to be a limiting factor in the transfection process. That LPEI 8.1-polyplexes built at NP 12 in glucose and transfected in serum-free culture conditions were superior to those built in sodium chloride or transfected in serum-containing conditions points at the structure as a decisive parameter deserving more attention in future studies.  相似文献   

12.
In this study we offer a mechanistic interpretation of the previously known but unexplained substrate inhibition observed for CYP2E1. At low substrate concentrations, p-nitrophenol (pNP) was rapidly turned over (47 min(-1)) with relatively low K(m) (24 microM); nevertheless, at concentrations of >100 microM, the rate of pNP oxidation gradually decreased as a second molecule bound to CYP2E1 through an effector site (K(ss) = 260 microm), which inhibited activity at the catalytic site. 4-Methylpyrazole (4MP) was a potent inhibitor for both sites through a mixed inhibition mechanism. The K(i) for the catalytic site was 2.0 microM. Although we were unable to discriminate whether an EIS or ESI complex formed, the respective inhibition constants were far lower than K(ss). Bicyclic indazole (IND) inhibited catalysis through a single CYP2E1 site (K(i) = 0.12 microM). Similarly, 4MP and IND yielded type II binding spectra that reflected the association of either two 4MP or one IND molecule(s) to CYP2E1, respectively. Based on computational docking studies with a homology model for CYP2E1, the two sites for monocyclic molecules, pNP and 4MP, exist within a narrow channel connecting the active site to the surface of the enzyme. Because of the presence of the heme iron, one site supports catalysis, whereas the other more distal effector site binds molecules that can influence the binding orientation and egress of molecules for the catalytic site. Although IND did not bind these sites simultaneously, the presence of IND at the catalytic site blocked binding at the effector site.  相似文献   

13.
Li AG  Piluso LG  Cai X  Wei G  Sellers WR  Liu X 《Molecular cell》2006,23(4):575-587
Earlier studies have shown that PTEN regulated p53 protein stability both in a phosphatase-dependent manner through antagonizing Akt-Mdm2 pathway and in a phosphatase-independent manner through interacting with p53. In this study, we report that PTEN forms a complex with p300 in the nucleus and plays a role in maintenance of high p53 acetylation in response to DNA damage. Furthermore, p300 is required for nuclear PTEN-regulated cell cycle arrest. Interestingly, however, p53 acetylation was found to promote PTEN-p53 interaction. To investigate the molecular mechanisms, we show that acetylation promotes p53 tetramerization, which, in turn, is required for the PTEN-p53 interaction and subsequent maintenance of high p53 acetylation. Taken together, our results suggest a physiological role for the PTEN tumor suppressor in the nucleus and provide a molecular explanation for our previous observation that PTEN controls p53 protein levels independent of its phosphatase activity.  相似文献   

14.
Hydrolysis of polyesters by serine proteases   总被引:2,自引:0,他引:2  
The substrate specificity of -chymotrypsin and other serine proteases, trypsin, elastase, proteinase K and subtilisin, towards hydrolysis of various polyesters was examined using poly(L-lactide) (PLA), poly(-hydroxybutyrate) (PHB), poly(ethylene succinate) (PES), poly(ethylene adipate) (PEA), poly(butylene succinate) (PBS), poly(butylene succinate-co-adipate) (PBS/A), poly[oligo(tetramethylene succinate)-co-(tetramethylane carbonate)] (PBS/C), and poly(-caprolactone) (PCL). -Chymotrypsin could degrade PLA and PEA with a lower activity on PBS/A. Proteinase K and subtilisin degraded almost all substrates other than PHB. Trypsin and elastase had similar substrate specificities to -chymotrypsin.  相似文献   

15.
16.
17.
The suppressive effect of rapamycin on T cells has been extensively studied, but its influence on the function of APC is less clear. The data in this study demonstrated that immunostimulatory activity of B10 (H2(b)) dendritic cells (DC) exposed to rapamycin (rapa-DC) was markedly suppressed as evidenced by the induction of low proliferative responses and specific CTL activity in allogeneic (C3H, H2(k)) T cells. Administration of rapa-DC significantly prolonged survival of B10 cardiac allografts in C3H recipients. Treatment with rapamycin did not affect DC expression of MHC class II and costimulatory molecules or IL-12 production. Rapamycin did not inhibit DC NF-kappaB pathway, however, IL-12 signaling through Janus kinase 2/Stat4 activation was markedly suppressed. Indeed, Stat4(-/-) DC similarly displayed poor allostimulatory activity. The Stat4 downstream product, IFN-gamma, was also inhibited by rapamycin, but DC dysfunction could not solely be attributed to low IFN-gamma production as DC deficient in IFN-gamma still exhibited vigorous allostimulatory activity. Rapamycin did not affect DC IL-12R expression, but markedly suppressed IL-18Ralpha and beta expression, which may in turn down-regulate DC IL-12 autocrine activation.  相似文献   

18.
From stereochemical considerations and model building the following conclusions were drawn for the stereochemistry of the catalytic steps of chymotrypsin and subtilisin. (1) In contrast to previous stereochemical investigations, rotation of 120° or more of the oxygen atom of the “reactive” serine residue is not possible in the course of the reaction with specific substrates. (2) During catalysis the serine oxygen atom is approximately in the position found in the crystalline enzyme, i.e. at a distance of about 3 Å from the nitrogen atom of the catalytically important histidine residue. (3) The detailed stereochemical mechanism involves the formation of a strained tetrahedral intermediate and a strained acylenzyme. The strain energy is supplied by the formation of a hydrogen bond between the enzyme and a specific substrate. (4) The geometry of proton transfers in the intimate encounter complex of chymotrypsin is slightly but significantly different from that of subtilisin.  相似文献   

19.
20.
Both enantiomers of 3-benzyl-2-oxetanone (1) were found to be slowly hydrolyzed substrates of alpha-chymotrypsin having k(cat) values of 0.134+/-0.008 and 0.105+/-0.004 min(-1) for (R)-1 and (S)-1, respectively, revealing that alpha-CT is virtually unable to differentiate the enantiomers in the hydrolysis of 1. The initial step to form the acyl-enzyme intermediate by the attack of Ser-195 hydroxyl on the beta-lactone ring at the 2-position in the hydrolysis reaction may not be enzymatically driven, but the relief of high ring strain energy of beta-lactone may constitute a major driving force. The deacylation step is also attenuated, which is possibly due to the hydrogen bond that would be formed between the imidazole nitrogen of His-57 and the hydroxyl group generated during the acylation in the case of (R)-1, but in the alpha-CT catalyzed hydrolysis of (S)-1 the imidazole nitrogen may form a hydrogen bond with the ester carbonyl oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号