首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of the lipids of Mycobacterium tuberculosis, by thin-layer chromatography, revealed the presence of two families of novel glycolipids each having two closely-related members but differing widely in polarity. The least and most polar families of lipids were characterized from M. tuberculosis strains C and H37Rv, respectively; all were based on trehalose, the least polar pair of glycolipids having more long-chain substituents than the more polar pair. The acyl substituents of the least polar of the four glycolipids were mainly straight-chain C16 and C18 acids and 2,4,6-trimethyltetracos-2-enoic (C27-mycolipenic) acid, and the second least polar glycolipid contained major amounts of 3-hydroxy-2,4,6-trimethyltetracosanoic (C27-mycolipanolic) acid in addition to these non-hydroxylated acids. The relatively polar pair of glycolipids were analysed together and released mainly straight-chain C16 and C18 acids, C27-mycolipanolic acid, minor amounts of C25- and C27-mycolipenic acids and major proportions of an acid having the chromatographic properties of 2,4-dimethyldocosanoic acid. The most polar pair of glycolipids co-chromatographed with glycolipid antigens previously detected in Mycobacterium bovis BCG.  相似文献   

2.
Phthienoic acids constitute a family of dextro-rotary odd-numbered unsaturated fatty acids isolated exclusively from virulent strains of human and bovine tubercle bacilli. In the bacterial cell they are not free and a search for their linked form in complex wall lipids of Mycobacterium tuberculosis (strain Canetti) showed that they esterified trehalose. Structural elucidation of the major phthienoyl trehalose showed the occurrence of five acyl residues located at 2, 2', 3', 4 and 6' positions of trehalose. The acyl substituents were mainly 2,4,6-trimethyl tetracos-2-enoic acid (C27 phthienoic acid) accompanied by its homologs. In addition to these branched fatty acids, straight-chain C16 and C18 acyls composed about 20% of the substituents. The proposed structure is a new one, both for the mycobacterial-specific glycolipid and for the substituted positions on trehalose. Other minor acyl trehaloses were detected in M. tuberculosis (strain Canetti), differing from the major component by the occurrence of an additional hydroxy fatty acid (3-hydroxy-2,4,6-trimethyl tetracosanoic acid) or by the number of acyl substituents. The major glycolipid presented a weak activity in vitro on mitochondrial oxidative phosphorylation. These glycolipids and phthienoic acids could serve as virulence indicators.  相似文献   

3.
Novel type-specific lipooligosaccharides from Mycobacterium tuberculosis   总被引:4,自引:0,他引:4  
Mycobacterium tuberculosis (strain Canetti) is characterized by the presence of two novel glycolipids of the alkali-labile, trehalose-containing lipooligosaccharide class. Their structures were established by permethylation, partial acid hydrolysis, infrared and high-field NMR spectroscopy, and electron-impact and fast atom bombardment mass spectrometry of the native glycolipids and hydrolysis products. The trehalose substituent is unique in that it is methylated at the 6'-position. The structure of the simpler of the two glycolipids is 2-O-Me-alpha-L-Fucp(1----3)-beta-D-Glcp(1----3)-2-O-Me- alpha-L-Rhap(1----3)-2-O-Me-alpha-L- Rhap(1----3)-beta-D-Glcp(1----3)-4-O-Me-alpha-L-Rhap(1----3) -6-O-Me-alpha-D- Glc. Further glycosylation of the octaglycosyl unit of this nonantigenic glycolipid by an incompletely defined N-acyl derivative of a 4-amino-4,6-dideoxy-Galp residue results in the second, highly antigenic nonasaccharide-containing glycolipid. Application of two-dimensional proton correlation spectroscopy demonstrated that the fatty acyl substituents are located on the 2,3,6 and 3,4,6 hydroxyl groups of the terminal glucosyl unit in the proportions of 2:3. Gas chromatography/mass spectrometry and optical rotation measurement allowed identification of the fatty acyl esters as primarily 2L-, 4L-dimethylhexadecanoate, 2L-,4L-,6L-,8L-tetramethyloctadecanoate, and 2-methyl-3-hydroxyeicosanoate. The relationship of these glycolipids to different morphological forms of M. tuberculosis and to virulence is discussed.  相似文献   

4.
Harvests of Mycobacterium lepraemurium obtained from livers of moribund infected mice yielded M. lepraemurium cell walls that were extracted with solvent to provide crude M. lepraemurium cell wall lipids. By solvent fractionation and chromatography on DEAE cellulose and cellulose, a cord factor-like glycolipids contaminated with mycoside C was obtained. Additional solvent treatment provided the purified glycolipid, which was identified as 6,6'-trehalose dimycolate, by infrared and chromatographic comparison with authentic samples from M. tuberculosis, by identification of trehalose and specific mycolates of M. lepraemurium, and by permethylation analysis. This constitutes the first unequivocal identification of cord factor as a product of in vivo-derived mycobacteria.  相似文献   

5.
A crude phenolic glycolipid extract from Mycobacterium bovis bacille Calmette-Guerin (BCG) was fractionated until homogeneity at the intact level into four phenolic glycolipids called B, B-1, B-2, and B-3 according to their polarity. The apolar one, which is the most abundant was assigned to the well-known mycoside B. The B-2 and B-3 phenolic glycolipids were purified by direct-phase high performance liquid chromatography using a 5 micron Spherisorb column but were only recovered in small amounts (3 mg). A linear gradient of 0-20% methanol in chloroform was used. The B-1, B-2, and B-3 glycolipids were subjected to suitable modern analytical techniques selected for their potential to elucidate the structure at the intact level. Desorption chemical ionization-mass spectrometry allowed the molecular mass of B-3 to be determined as 1652 Da for the major homolog establishing the molecular formula as C103H192O14. Thus, the B-3 polar phenolic glycolipid contained two deoxyhexoses, one molecule of phenolphthiocerol esterified by two molecules of mycocerosic acid. Using two-dimensional 1H NMR (correlated chemical shift and nuclear Overhauser effect spectroscopy) at the intact level the B-3 oligosaccharide structure was determined as an alpha-L-Rhap-(1----3)-2-O-Me-alpha-L-Rhap. This is the first report of a diglycosylated phenolic glycolipid in a nonpathogenic mycobacteria. The disaccharide unit, the antigenic determinant, appears to be characteristic of M. bovis BCG. This polar glycolipid B-3 and the apolar ones, B-1 and B-2, were reactive in enzyme-linked immunosorbent assay against serum from rabbit hyperimmunized with M. bovis BCG.  相似文献   

6.
Abstract Free lipids were extracted from Mycobacterium tuberculosis H37Rv, and their antigenicity was assessed directly on thin-layer chromatograms (TLC) by an immunostaining technique. A family of glycolipids, composed of trehalose acylated with multimethyl branched long-chain fatty acids, was investigated. The most polar of these glycolipids was identified as a possible specific surface antigen. A pair of novel polar glycolipids also showed positive antigenic reactions.  相似文献   

7.
Nuclear magnetic resonance spectroscopy, fast-atom bombardment mass spectrometry as well as various chemical degradations and chromatographic techniques were used to re-examine the structure of a highly immunoreactive glycolipid previously described in Mycobacterium tuberculosis (strain Canetti) as a 2,3-diacyl trehalose 2'-sulfate (labelled SL-IV). Ion exchange chromatography allowed the recognition of a neutral and an acidic glycolipid, indistinguishable on conventional silica gel. The neutral glycolipid was shown to be serologically identical to SL-IV and its structure was established as 2,3-diacyl trehalose. It corresponded to the non-chemically defined highly observed immunoreactive lipid previously recognized by others in M. tuberculosis (H37Rv).  相似文献   

8.
Mycolic acids are essential components of the cell walls of bacteria belonging to the suborder Corynebacterineae, including the important human pathogens Mycobacterium tuberculosis and Mycobacterium leprae. Mycolic acid biosynthesis is complex and the target of several frontline antimycobacterial drugs. The condensation of two fatty acids to form a 2-alkyl-3-keto mycolate precursor and the subsequent reduction of this precursor represent two key and highly conserved steps in this pathway. Although the enzyme catalyzing the condensation step has recently been identified, little is known about the putative reductase. Using an extensive bioinformatic comparison of the genomes of M. tuberculosis and Corynebacterium glutamicum, we identified NCgl2385, the orthologue of Rv2509 in M. tuberculosis, as a potential reductase candidate. Deletion of the gene in C. glutamicum resulted in a slow growing strain that was deficient in arabinogalactan-linked mycolates and synthesized abnormal forms of the mycolate-containing glycolipids trehalose dicorynomycolate and trehalose monocorynomycolate. Analysis of the native and acetylated trehalose glycolipids by MALDI-TOF mass spectrometry indicated that these novel glycolipids contained an unreduced beta-keto ester. This was confirmed by analysis of sodium borodeuteride-reduced mycolic acids by gas chromatography mass spectrometry. Reintroduction of the NCgl2385 gene into the mutant restored the transfer of mature mycolic acids to both the trehalose glycolipids and cell wall arabinogalactan. These data indicate that NCgl2385, which we have designated CmrA, is essential for the production of mature trehalose mycolates and subsequent covalent attachment of mycolic acids onto the cell wall, thus representing a focus for future structural and pathogenicity studies.  相似文献   

9.
Rough and smooth colony variants of the Mycobacterium tuberculosis complex were compared with respect to their composition in trehalose-containing glycolipid antigens in view of the results of a recent investigation suggesting that the chemical basis of rough and smooth colony morphology in mycobacteria may reside in the occurrence of lipooligosaccharides. A careful chemical characterization of the individual glycolipids of the selected strains allowed the identification of the major glycolipids. The comparative study of the glycolipid content of the smooth Canetti strain, its spontaneous rough variant, and 16 additional strains of M. tuberculosis, M. bovis and M. africanum showed that the presence of lipooligosaccharides was not related to the morphology of the colonies.  相似文献   

10.
Analysis of the lipids of Mycobacterium tuberculosis H37Rv, by both normal- and reverse-phase thin-layer chromatography, revealed a series of novel glycolipids based on 2,3-di-O-acyltrehalose. The structures of these acylated trehaloses were elucidated by a combination of gas chromatography-mass spectrometry, 1H, 13C, two-dimensional 1H-1H, and 1H-13C nuclear magnetic resonance spectrometry. The fatty acyl substituents were mainly of three types: saturated straight-chain C16-C19 acids; C21-C25 "mycosanoic acids"; and C24-C28 "mycolipanolic acids." Analysis of one of the major 2,3-di-O-acyltrehaloses by two-dimensional 1H-chemical shift correlated and 1H-detected heteronuclear multiple-bond correlation spectroscopy established that the C18 saturated straight-chain acyl group was located at the 2 position and that the C24 mycosanoyl substituent was at the 3 position of the same "right-hand" glucosyl residue. At least six molecular species differing only in their fatty acid content comprised this family of di-O-acylated trehaloses. We regard these acyltrehaloses as elemental forms of the multiglycosylated acyltrehaloses (the lipooligosaccharides) perhaps due to an inability of the majority of isolates of virulent tubercle bacilli to glycosylate core acyltrehaloses. The acyltrehaloses are minor but consistent components of virulent M. tuberculosis and apparently the basis of the specific serological activity long associated with its lipid fractions.  相似文献   

11.
The chemical and physical properties of a biosurfactant synthesized by hexadecane-grown Rhodococcus species H13-A are described. The biosurfactant is an anionic glycolipid consisting of 1 major and 10 minor components. The hydrophilic portion of the molecule is trehalose, which is acylated with normal C(10) to C(22) saturated and unsaturated fatty acids, C(35) to C(40) mycolic acids, hexanedioic and dodecanedioic acids, and 10-methyl hexadecanoic and 10-methyl octadecanoic acids. The major glycolipid species was identified as 2,3,4,6,2',3',4',6'-octaacyltrehalose, plus minor glycolipid species of di-, tetra- and hexa-acyltrehalose derivatives. The glycolipid exhibited a critical micelle concentration of 1.5?mg/mL and minimum interfacial tension value of 2?×?10(-2)?mN/m against decane, with a further reduction in interfacial tension to 6?×?10(-5)?mN/m in the presence of the cosurfactant pentanol. The phase behavior of the glycolipid indicates the formation of a surfactant-rich, "middle-phase" microemulsion containing liquid crystals, both of which are associated with surfactant systems having ultralow interfacial tension values. Key words: trehalose lipids, glycolipids, biosurfactants.  相似文献   

12.
Rhoades ER  Streeter C  Turk J  Hsu FF 《Biochemistry》2011,50(42):9135-9147
Mycobacterium tuberculosis, the causative agent of tuberculosis, is unique among bacterial pathogens in that it contains a wide array of complex lipids and lipoglycans on its cell wall. Among them, the sulfated glycolipid, termed the sulfolipid, is thought to mediate specific host-pathogen interactions during infection. Sulfolipids (SLs), including sulfolipid I (SL-I) and sulfolipid II (SL-II), are 2,3,6,6'-tetraacyltrehalose 2'-sulfates. SL-I was identified as a family of homologous 2-palmitoyl(stearoyl)-3-phthioceranoyl-6,6'-bis(hydroxyphthioceranoy1)trehalose 2'-sulfates and was believed to be the principal sulfolipid of M. tuberculosis strain H37Rv. We cultured and extracted sulfolipids using various conditions, including those originally described, and employed high-resolution multiple-stage linear ion-trap mass spectrometry with electrospray ionization to characterize the structure of the principal SL. We revealed that SL-II, a family of homologous 2-stearoyl(palmitoyl)-3,6,6'-tris(hydroxyphthioceranoy1)trehalose 2'-sulfates, rather than SL-I is the principal sulfolipid class. We identified a great number of isomers resulting from permutation of the various hydroxyphthioceranoyl substituents at positions 6 and 6' of the trehalose backbone for each of the SL-II species in the entire family. We redefined the structure of this important lipid family that was misassigned using the traditional methods 40 years ago.  相似文献   

13.
Mycobacterial species-specific antigens belong to the three following classes: phenolic glycolipids (Phe Gl), acyltrehalose-containing lipooligosaccharides and polar glycopeptidolipids. These antigens have been chemically defined and alkali-labile epitopes were found to characterize the lipooligosaccharide antigen type. In the present study the major Mycobacterium kansasii phenolic glycolipid epitope namely Phe Gl K-I was delineated as the distal monoacetylated disaccharidic residue: 2,6-dideoxy-4-O-methyl-alpha-D-arabino-hexopyranosyl-(1----3)-2-O-methyl -4-O- acetyl-alpha-L-fucopyranose. This acetoxy group is required for K-I epitope recognition demonstrating that alkali-labile epitopes also occur in the phenolic glycolipid antigen class. Using immunoelectron microscopy, the Phe Gl K-I epitope was localized around the electron-transparent layer on the M. kansasii cell-wall surface. Furthermore, two new phenolic glycolipids namely Phe Gl K-III and Phe Gl K-IV were discovered in minute amounts. They were purified and characterized by their retention time in direct-phase column HPLC. These molecules are also M. kansasii antigens, whose epitopes differ from that of Phe Gl K-I. The complete family of phenolic glycolipids Phe Gl K-I, K-II, K-III and K-IV was found in both rough and smooth variants of both M. kansasii and Mycobacterium gastri species.  相似文献   

14.
Total non-acid and acid glycolipid fractions were isolated from epithelial cell scrapings and the non-epithelial residue of a human upper ureter. The glycolipid fractions were structurally characterized as total mixtures by thin-layer chromatography, mass spectrometry, and proton NMR spectroscopy. Selected structural information was also obtained on binding of monoclonal antibodies and bacteria to the thin-layer chromatograms. The major epithelial cell glycolipids were Glc beta 1-1ceramide (75%), dihexosylceramide (10%) and NeuAcLacceramide (10%). In addition, 8 minor glycolipids belonging to the blood group P, Lewis and ABO systems were identified. The major glycolipids of the non-epithelial residues were mono- and dihexosylceramides together with globotriaosyl- and globotetraosylceramides. The epithelial mono- and diglycosylceramide compounds had an unusual ceramide composition with mainly C18 and C20 trihydroxy long chain bases in combination with C22-C24 hydroxy fatty acids in contrast to the non-epithelial glycolipids which contained mainly C18 dihydroxy long chain bases in combination with C16-C24 non-hydroxy fatty acids.  相似文献   

15.
A novel mannose containing phenolic glycolipid from Mycobacterium kansasii   总被引:2,自引:0,他引:2  
Using high-performance liquid chromatography, a new kind of phenolic glycolipid quantitatively minor, called phenolic glycolipid-II, was isolated from a lipidic fraction of Mycobacterium kansasii. The structure was determined by fast atom bombardment-mass spectrometry and proton nuclear magnetic resonance spectroscopy, as: 2,4-di-O-Me-alpha-D-Manp(1----3) 4-O-Ac-2-O-Me-alpha-L-Fucp(1----3)2-O-Me- alpha-L-Rhap(1----3) 2,4-di-O-Me-alpha-L-Rhap 1----phenolphthiocerol dimycocerosate. Phenolic glycolipids I and II differ only by their distal monosaccharide hapten which is 2,6-dideoxy-4-O-Me-alpha-D-arabinohexopyranosyl and the 2,4-di-O-Me-alpha-D-mannopyranosyl, respectively. This sugar appears to be characteristic and apparently unique in the Mycobacterium genus. Moreover, phenolic glycolipids I and II constitute with the lipooligosaccharides two classes of antigens of M. kansasii.  相似文献   

16.
Kai M  Fujita Y  Maeda Y  Nakata N  Izumi S  Yano I  Makino M 《FEBS letters》2007,581(18):3345-3350
Glycolipids of Mycobacterium leprae obtained from armadillo tissue nodules infected with the bacteria were analyzed. Mass spectrometric analysis of the glycolipids indicated the presence of trehalose 6,6'-dimycolate (TDM) together with trehalose 6-monomycolate (TMM) and phenolic glycolipid-I (PGL-I). The analysis showed that M. leprae-derived TDM and TMM possessed both alpha- and keto-mycolates centering at C78 in the former and at C81 or 83 in the latter subclasses, respectively. For the first time, MALDI-TOF mass analyses showed the presence of TDM in M. leprae.  相似文献   

17.
Members of the genus Mycobacterium are characterized by cell envelopes rich in unusual free lipids, interacting with a covalently anchored mycolyl-arabinogalactan matrix. Previous studies have shown that Mycobacterium marinum produces large amounts of a diacylglycosylphenolphthiocerol, "phenolic" glycolipid. When cultivated on liquid Sauton medium, traces of a polar lipooligosaccharide (LOS) glycolipid antigen were also previously indicated. In this study, it was found that growth of the type strain of M. marinum on solid Sauton or Middlebrook 7H10 agar gave substantial, but different, amounts of a family of four major trehalose-based LOSs. The core pentasaccharide LOS-I was a rhamnosyl diglucosyl-acylated trehalose. The heptasaccharide, LOS-II, was derived from LOS-I by adding xylose accompanied by a novel sugar (X); repeated addition of this sugar unit X gave the octasaccharide LOS-III. LOS-IV has a decasaccharide component with two additional unusual sugar units, YZ. In a recent study (Alexander, D. C., Jones, J. R., Tan, T., Chen, J. M., and Liu, J. (2004) J. Biol. Chem. 279, 18824-18833), chromatographically similar glycolipids were assigned to the family of phosphatidylinositol mannosides (PIMs) and a "PimF" (Rv1500) glycosyltransferase implicated in the conversion of a supposed "PIM5" to a "PIM7." The present study indicates that these putative PIMs are in fact members of the phosphorus-free LOS family of glycolipids and that the protein product of Rv1500, which we have now termed LosA, is a glycosyltransferase involved in transferring sugars to LOS-III to form LOS-IV of M. marinum.  相似文献   

18.
The structure of a novel antigenic glycolipid that distinguishes the opportunistic pathogen Mycobacterium haemophilum from all other mycobacteria was established by a series of degradation reactions leading to products that were analyzed by gas/liquid chromatography-mass spectrometry. The complete structure of the oligosaccharide unit was determined as 2,3-di-O-CH3-alpha-L-Rhap(1----2)3-O-CH3-alpha-L-Rhap(1----4 )-2,3-di-O-CH3-alpha-L-Rhap(1----. The lipid portion of the phenolic glycolipid was composed of two component phenolphthiocerols differing by two methylene groups, as determined by analysis of their per-O-trideuteriomethylated derivatives. The diol unit of the phenolphthiocerols has a threo relative configuration. The absolute stereochemistry of the asymmetric centers of the phenolphthiocerols is uncertain, but the centers are probably 3R, 4S, 9R, and 11R as found for phthiocerol A from Mycobacterium tuberculosis. The hydroxyl functions of the branched glycolic chain are esterified to a complex mixture of multi-methyl branched mycocerosic acids, C27, C30, C32, C34, and C37 with molecular weights (as methyl esters) of 424, 466, 494, 522, and 564, respectively. The stereochemistry of the methyl branches of the mycocerosates have R absolute configuration. The glycolipid is highly antigenic and appears to be specific for M. haemophilum. There are intriguing similarities between the product from M. haemophilum and the well-known phenolic glycolipid I of Mycobacterium leprae, a matter that is discussed.  相似文献   

19.
The detection of tuberculosis currently relies upon insensitive and unspecific techniques; newer diagnostics would ideally co-opt specific bacterial processes to provide real-time readouts. The trehalose mycolyltransesterase enzymes (antigens 85A, 85B and 85C (Ag85A, Ag85B, Ag85C)) serve as essential mediators of cell envelope function and biogenesis in Mycobacterium tuberculosis. Through the construction of a systematically varied sugar library, we show here that Ag85 enzymes have exceptionally broad substrate specificity. This allowed exogenously added synthetic probes to be specifically incorporated into M. tuberculosis growing in vitro and within macrophages. Even bulky substituents, such as a fluorescein-containing trehalose probe (FITC-trehalose), were incorporated by growing bacilli, thereby producing fluorescent bacteria; microscopy revealed selective labeling of poles and membrane. Addition of FITC-trehalose to M. tuberculosis-infected macrophages allowed selective, sensitive detection of M. tuberculosis within infected mammalian macrophages. These studies suggest that analogs of trehalose may prove useful as probes of function and for other imaging modalities.  相似文献   

20.
Strain differentiation by DNA restriction fragment length polymorphism (RFLP) has been used mainly for the epidemiological purpose of Mycobacterium tuberculosis infection. In this study, we tried to connect the molecular and phenotypic characteristics of M. tuberculosis patient isolates by comparing the DNA fingerprints obtained by RFLP using IS6110 and lipid patterns using two-dimensional thin-layer chromatography (2-D TLC) with silica gel, since M. tuberculosis has a lipid-rich cell envelope which contributes to the virulence and immunomodulatory properties. We found that 66 isolates of M. tuberculosis from tuberculosis patients showed that the occurrence of IS6110 varied from 1 to 24 copies. The IS6110 patterns were highly variable among isolates. Fifty different RFLP patterns were observed, and 12 RFLP patterns were shared by two or more strains. By computerized analysis of the RFLP patterns of M. tuberculosis patient isolates, we found that 95% of the isolates fell into seven clusters, from A to G, with at least two isolates in each (> 30% similarity). Among the cellular lipids, the phospholipid composition did not differ by strain, whereas the glycolipid pattern differed markedly. Especially, the relative concentration of cord factor and sulfolipid, both of which were known as virulent factors, varied by strain. The fingerprints of some strains showed an association between the DNA and glycolipid patterns, even though some of the same DNA fingerprint strains showed differences in lipid patterns. Among the patient isolates, M. tuberculosis strain 249 possessed a specific glycolipid with 2-O-methyl-L -rhamnose and L-rhamnose, which is rarely found in other strains. This glycolipid showed serological activity against the sera of tuberculosis patients, even if the reactivity was not as strong as trehalose dimycolate. It also showed the inhibition of phagosome-lysosome fusion in macrophages, suggesting involvement with virulence. These results suggest that RFLP analysis using IS6110 is useful for clustering the human isolates of M. tuberculosis, however, for further strain differentiation on virulence, a lipid analysis provides more information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号