首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The open lid mediates pancreatic lipase function   总被引:3,自引:0,他引:3  
Pancreatic triglyceride lipase (PTL) and the homologous pancreatic lipase related protein 2 (PLRP2) provide a unique opportunity to understand the molecular mechanism of lipolysis. They differ in substrate specificity, sensitivity to bile salts, and colipase dependence despite their close amino acid and tertiary structure identity. One important structure, present in both lipases, is the lid which occupies different positions in the inactive and active forms of PTL. We investigated the role of the lid in lipase function by site-specific mutagenesis. By exchanging the lids between PTL and PLRP2, we created two chimeric lipases. Additionally, we made multiple substitution mutations in the PTL lid. PLRP2 with the PTL lid had kinetic properties similar to PLRP2. PTL with the PLRP2 lid was greatly impaired and had no activity at micellar bile salt concentrations even in the presence of colipase. Both chimeras showed interfacial activation suggesting that the closed lid position was maintained. A series of substitution mutations were made in positions Arg257 and Asp258. These mutations demonstrated the importance of these two residues to maintaining the normal activity, triglyceride acyl chain specificity, and colipase interaction of PTL. The preserved interfacial activation in the chimeras, the similar crystal structure of the two lids in the closed position, and the importance of Arg257 and Asp258 in mediating the open conformation of the lid argue that the position of the open lid influences the differences in activity against triglycerides, in sensitivity to bile salts, and in colipase dependence between PTL and PLRP2.  相似文献   

2.
The interfacial activation mechanism of family I.3 lipase from Pseudomonas sp. MIS38 (PML), which has two α-helical lids (lid1 and lid2), was investigated using a combination of X-ray crystallography and molecular dynamics (MD) simulation. The crystal structure of PML in an open conformation was determined at 2.1 Å resolution in the presence of Ca2+ and Triton X-100. Comparison of this structure with that in the closed conformation indicates that both lids greatly change their positions and lid1 is anchored by the calcium ion (Ca1) in the open conformation. This structure was not seriously changed even when the protein was dialyzed extensively against the Ca2+-free buffer containing Triton X-100 before crystallization, indicating that the open conformation is fairly stable unless a micellar substance is removed. The crystal structure of the PML derivative, in which the active site serine residue (Ser207) is diethylphosphorylated by soaking the crystal of PML in the open conformation in a solution containing diethyl p-nitrophenyl phosphate, was also determined. This structure greatly resembles that in the open conformation, indicating that PML structure in the open conformation represents that in the active form. MD simulation of PML in the open conformation in the absence of micelles showed that lid2 closes first, while lid1 maintains its open conformation. Likewise, MD simulation of PML in the closed conformation in the absence of Ca2+ and in the presence of octane or trilaurin micelles showed that lid1 opens, while lid2 remains closed. These results suggest that Ca1 functions as a hook for stabilization of a fully opened conformation of lid1 and for initiation of subsequent opening of lid2.  相似文献   

3.
Access to the active site of pancreatic lipase (PL) is controlled by a surface loop, the lid, which normally undergoes conformational changes only upon addition of lipids or amphiphiles. Structures of PL with their lids in the open and functional conformation have required cocrystallization with amphiphiles. Here we report two crystal structures of wild-type and unglycosylated human pancreatic lipase-related protein 2 (HPLRP2) with the lid in an open conformation in the absence of amphiphiles. These structures solved independently are strikingly similar, with some residues of the lid being poorly defined in the electron-density map. The open conformation of the lid is however different from that previously observed in classical liganded PL, suggesting different kinetic properties for HPLRP2. Here we show that the HPLRP2 is directly inhibited by E600, does not present interfacial activation, and acts preferentially on substrates forming monomers or small aggregates (micelles) dispersed in solution like monoglycerides, phospholipids and galactolipids, whereas classical PL displays reverse properties and a high specificity for unsoluble substrates like triglycerides and diglycerides forming oil-in-water interfaces. These biochemical properties imply that the lid of HPLRP2 is likely to spontaneously adopt in solution the open conformation observed in the crystal structure. This open conformation generates a large cavity capable of accommodating the digalactose polar head of galactolipids, similar to that previously observed in the active site of the guinea pig PLRP2, but absent from the classical PL. Most of the structural and kinetic properties of HPLRP2 were found to be different from those of rat PLRP2, the structure of which was previously obtained with the lid in a closed conformation. Our findings illustrate the essential role of the lid in determining the substrate specificity and the mechanism of action of lipases.  相似文献   

4.
In most lipases, a mobile lid covers the substrate binding site. In this closed structure, the lipase is assumed to be inactive. Upon activation of the lipase by contact with a hydrophobic solvent or at a hydrophobic interface, the lid opens. In its open structure, the substrate binding site is accessible and the lipase is active. The molecular mechanism of this interfacial activation was studied for three lipases (from Candida rugosa, Rhizomucor miehei, and Thermomyces lanuginosa) by multiple molecular dynamics simulations for 25 ns without applying restraints or external forces. As initial structures of the simulations, the closed and open structures of the lipases were used. Both the closed and the open structure were simulated in water and in an organic solvent, toluene. In simulations of the closed lipases in water, no conformational transition was observed. However, in three independent simulations of the closed lipases in toluene the lid gradually opened. Thus, pathways of the conformational transitions were investigated and possible kinetic bottlenecks were suggested. The open structures in toluene were stable, but in water the lid of all three lipases moved towards the closed structure and partially unfolded. Thus, in all three lipases opening and closing was driven by the solvent and independent of a bound substrate molecule.  相似文献   

5.
The interfacial activation of many lipases at water/lipid interface is mediated by large conformational changes of a so‐called lid subdomain that covers up the enzyme active site. Here we investigated using molecular dynamic simulations in different explicit solvent environments (water, octane and water/octane interface) the molecular mechanism by which the lid motion of Burkholderia cepacia lipase might operate. Although B. cepacia lipase has so far only been crystallized in open conformation, this study reveals for the first time the major conformational rearrangements that the enzyme undergoes under the influence of the solvent, which either exposes or shields the active site from the substrate. In aqueous media, the lid switches from an open to a closed conformation while the reverse motion occurs in organic environment. In particular, the role of a subdomain facing the lid on B. cepacia lipase conformational rearrangements was investigated using position‐restrained MD simulations. Our conclusions indicate that the sole mobility of α9 helix side‐chains of B. cepacia lipase is required for the full completion of the lid conformational change which is essentially driven by α5 helix movement. The role of selected α5 hydrophobic residues on the lid movement was further examined. In silico mutations of two residues, V138 and F142, were shown to drastically modify the conformational behavior of B. cepacia lipase. Overall, our results provide valuable insight into the role played by the surrounding environment on the lid conformational rearrangement and the activation of B. cepacia lipase. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Most lipases contain a lid domain to shield the hydrophobic binding site from the water environment. The lid, mostly in helical form, can undergo a conformational change to expose the active cleft during the interfacial activation. Here we report the crystal structures of Malassezia globosa LIP1 (SMG1) at 1.45 and 2.60 ? resolution in two crystal forms. The structures present SMG1 in its closed form, with a novel lid in loop conformation. SMG1 is one of the few members in the fungal lipase family that has been found to be strictly specific for mono- and diacylglycerol. To date, the mechanism for this substrate specificity remains largely unknown. To investigate the substrate binding properties, we built a model of SMG1 in open conformation. Based on this model, we found that the two bulky hydrophobic residues adjacent to the catalytic site and the N-terminal hinge region of the lid both may act as steric hindrances for triacylglycerols binding. These unique structural features of SMG1 will provide a better understanding on the substrate specificity of mono- and diacylglycerol lipases and a platform for further functional study of this enzyme.  相似文献   

7.
Interfacial activation of Rhizomucor miehei lipase is accompanied by a hinge-type motion of a single helix (residues 83-94) that acts as a lid over the active site. Activation of the enzyme involves the displacement of the lid to expose the active site, suggesting that the dynamics of the lid could be of mechanistic and kinetic importance. To investigate possible activation pathways and to elucidate the effect of a hydrophobic environment (as would be provided by a lipid membrane) on the lid opening, we have applied molecular dynamics and Brownian dynamics techniques. Our results indicate that the lipase activation is enhanced in a hydrophobic environment. In nonpolar low-dielectric surroundings, the lid opens in approximately 100 ns in the BD simulations. In polar high-dielectric (aqueous) surroundings, the lid does not always open up in simulations of up to 900 ns duration, but it does exhibit some gating motion, suggesting that the enzyme molecule may exist in a partially active form before the catalytic reaction. The activation is controlled by the charged residues ARG86 and ASP91. In the inactive conformation, ASP91 experiences repulsive forces and pushes the lid toward the open conformation. Upon activation ARG86 approaches ASP61, and in the active conformation, these residues form a salt bridge that stabilizes the open conformation.  相似文献   

8.
脂肪酶是一种非常重要的水解酶,在工业催化、医药和科学研究等领域中有广泛应用. 大部分脂肪酶的活性部位上方有一段被称为“盖”的α-螺旋,这种盖赋予脂肪酶在水/油界面上有特殊的催化活性,界面活性.而在单一水相或油相中却表现出低活性或无活性.界面活性与盖的组成、大小、构象及其存在环境等密切相关,探明盖与脂肪酶界面活性的关系对于脂肪酶的开发和利用是非常关键的.因此,长期以来人们对盖在脂肪酶催化作用中所扮演的角色进行了孜孜不倦的探索.本文从盖的构象、移动、组成和删除等方面综述了其对脂肪酶催化作用的影响,期望对人们认识脂肪酶盖与其催化作用之间的关系有一定的帮助.  相似文献   

9.
Lipase LipA from Serratia marcescens is a 613-amino acid enzyme belonging to family I.3 of lipolytic enzymes that has an important biotechnological application in the production of a chiral precursor for the coronary vasodilator diltiazem. Like other family I.3 lipases, LipA is secreted by Gram-negative bacteria via a type I secretion system and possesses 13 copies of a calcium binding tandem repeat motif, GGXGXDXUX (U, hydrophobic amino acids), in the C-terminal part of the polypeptide chain. The 1.8-A crystal structure of LipA reveals a close relation to eukaryotic lipases, whereas family I.1 and I.2 enzymes appear to be more distantly related. Interestingly, the structure shows for the N-terminal lipase domain a variation on the canonical alpha/beta hydrolase fold in an open conformation, where the putative lid helix is anchored by a Ca(2+) ion essential for activity. Another novel feature observed in this lipase structure is the presence of a helical hairpin additional to the putative lid helix that exposes a hydrophobic surface to the aqueous medium and might function as an additional lid. The tandem repeats form two separated parallel beta-roll domains that pack tightly against each other. Variations of the consensus sequence of the tandem repeats within the second beta-roll result in an asymmetric Ca(2+) binding on only one side of the roll. The analysis of the properties of the beta-roll domains suggests an intramolecular chaperone function.  相似文献   

10.
In several lipases access to the enzyme active site is regulated by the position of a mobile structure named the lid. The role of this region in modulating lipase function is reviewed in this paper analysing the results obtained with three different recombinant lipases modified in the lid sequence: Candida rugosa lipase isoform 1 (CRL1), Pseudomonas fragi lipase (PFL) and Bacillus subtilis lipase A (BSLA). A CRL chimera enzyme obtained by replacing its lid with that of another C. rugosa lipase isoform (CRL1LID3) was found to be affected in both activity and enantioselectivity in organic solvent. Variants of the PFL protein in which three polar lid residues were replaced with amino acids strictly conserved in homologous lipases displayed altered chain length preference profile and increased thermostability. On the other hand, insertion of lid structures from structurally homologous enzymes into BSLA, a lipase that naturally does not possess such a lid structure, caused a reduction in the enzyme activity and an altered substrate specificity. These results strongly support the concept that the lid plays an important role in modulating not only activity but also specifity, enantioselectivity and stability of lipase enzymes.  相似文献   

11.
The activation of lipases has been postulated to proceed by interfacial activation, temperature switch activation, or aqueous activation. Recently, based on molecular dynamics (MD) simulation experiments, the T1 lipase activation mechanism was proposed to involve aqueous activation in addition to a double-flap mechanism. Because the open conformation structure is still unavailable, it is difficult to validate the proposed theory unambiguously to understand the behavior of the enzyme. In this study, we try to validate the previous reports and uncover the mystery behind the activation process using structural analysis and MD simulations. To investigate the effects of temperature and environmental conditions on the activation process, MD simulations in different solvent environments (water and water-octane interface) and temperatures (20, 50, 70, 80, and 100°C) were performed. Based on the structural analysis of the lipases in the same family of T1 lipase (I.5 lipase family), we proposed that the lid domain comprises α6 and α7 helices connected by a loop, thus forming a helix-loop-helix motif involved in interfacial activation. Throughout the MD simulations experiments, lid displacements were only observed in the water-octane interface, not in the aqueous environment with respect to the temperature effect, suggesting that the activation process is governed by interfacial activation coupled with temperature switch activation. Examining the activation process in detail revealed that the large structural rearrangement of the lid domain was caused by the interaction between the hydrophobic residues of the lid with octane, a nonpolar solvent, and this conformation was found to be thermodynamically favorable.  相似文献   

12.
The advantages of enzymatic reactions in compressed gases such as supercritical CO2 are limited due to the enzyme inactivation. But recent experimental observations reported the high activity of enzymes such as lipases in compressed propane. But there are no clear reasons at the molecular levels for such behavior. In this work using molecular dynamic simulation, we showed for the first time the possibility of interfacial activation of lipases in a compressed gas. The analysis showed that in compressed propane the lid of the lipase was opened and so the active conformation of the enzyme was resulted. Moreover it is found that in the compressed propane, similar to the aqueous solution, the enzyme has native conformation.  相似文献   

13.
The triglyceride (TG) lipase gene subfamily, consisting of LPL, HL, and endothelial lipase (EL), plays a central role in plasma lipoprotein metabolism. Compared with LPL and HL, EL is relatively more active as a phospholipase than as a TG lipase. The amino acid loop or "lid" covering the catalytic site has been implicated as the basis for the difference in substrate specificity between HL and LPL. To determine the role of the lid in the substrate specificity of EL, we studied EL in comparison with LPL by mutating specific residues of the EL lid and exchanging their lids. Mutation studies showed that amphipathic properties of the lid contribute to substrate specificity. Exchanging lids between LPL and EL only partially shifted the substrate specificity of the enzymes. Studies of a double chimera possessing both the lid and the C-terminal domain (C-domain) of EL in the LPL backbone showed that the role of the lid in determining substrate specificity does not depend on the nature of the C-domain of the lipase. Using a kinetic assay, we showed an additive effect of the EL lid on the apparent affinity for HDL(3) in the presence of the EL C-domain.  相似文献   

14.
In an effort to explore the feasibility of converting a lipase into an esterase by modifying the lid region, we designed and characterized two novel Rhizopus chinensis lipase variants by lid swapping. The substrate specificity of an R. chinensis lipase was successfully modified toward water-soluble substrates, that is, turned into an esterase, by replacing the hydrophobic lid with a hydrophilic lid from ferulic acid esterase from Aspergillus niger. Meanwhile, as a comparison, the lid of R. chinensis lipase was replaced by a hydrophobic lid from Rhizomucor miehei lipase, which did not alter its substrate specificity but led to a 5.4-fold higher catalytic efficiency (k*cat/K*m) toward p-nitrophenyl laurate. Based on the analysis of structure-function relationships, it suggests that the amphipathic nature of the lid is very important for the substrate specificity. This study provides new insight into the structural basis of lipase specificities and a way to tune the substrate preference of lipases.  相似文献   

15.
Five key amino acid residues from human pancreatic lipase (HPL) are mutated in some pancreatic lipase-related proteins 2 (PLRP2) that are not reactivated by colipase in the presence of bile salts. One of these residues (Y403) is involved in a direct interaction between the HPL C-terminal domain and colipase. The other four residues (R256, D257, Y267, and K268) are involved in the interactions stabilizing the open conformation of the lid domain, which also interacts with colipase. Here we produced and characterized three HPL mutants: HPL Y403N, an HPL four-site mutant (R256G, D257G, Y267F, and K268E), and an HPL five-site mutant (R256G, D257G, Y267F, K268E, and Y403N), in which the HPL amino acids were replaced by those present in human PLRP2. Colipase reactivated both the HPL Y403N mutant and HPL, and Y403 is therefore not essential for lipase-colipase interactions. Both the HPL four-site and five-site mutants showed low activity on trioctanoin, were inhibited by bile salts (sodium taurodeoxycholate, NaTDC) and were not reactivated by colipase. The interfacial binding of the HPL four-site mutant to a trioctanoin emulsion was suppressed in the presence of 4 mM NaTDC and was not restored by addition of colipase. Protein blotting/protein overlay immunoassay revealed that the HPL four-site mutant-colipase interactions are not abolished, and therefore, the absence of reactivation of the HPL four-site mutant is probably due to a lid domain conformation that prevents the interfacial binding of the lipase-colipase complex. The effects of colipase were also studied with HPL(-lid), an HPL mutant showing an 18-residue deletion within the lid domain, which therefore has only one colipase interaction site. HPL(-lid) showed a low activity on trioctanoin, was inhibited by bile salts, and recovered its lipase activity in the presence of colipase. Reactivation of HPL(-lid) by colipase was associated with a strong interfacial binding of the mutant to a trioctanoin emulsion. The lid domain is therefore not essential for either the interfacial binding of HPL or the lipase-colipase interactions.  相似文献   

16.
The bacterial thermoalkalophilic lipases optimally hydrolyze saturated fatty acids at elevated temperatures. They also have significant sequence homology with staphylococcal lipases, and both the thermoalkalophilic and staphylococcal lipases are grouped as the lipase family I.5. We report here the first crystal structure of the lipase family I.5, the structure of a thermoalkalophilic lipase from Bacillus stearothermophilus L1 (L1 lipase) determined at 2.0-A resolution. The structure is in a closed conformation, and the active site is buried under a long lid helix. Unexpectedly, the structure exhibits a zinc-binding site in an extra domain that accounts for the larger molecular size of the family I.5 enzymes in comparison to other microbial lipases. The zinc-coordinated extra domain makes tight interactions with the loop extended from the C terminus of the lid helix, suggesting that the activation of the family I.5 lipases may be regulated by the strength of the interactions. The unusually long lid helix makes strong hydrophobic interactions with its neighbors. The structural information together with previous biochemical observations indicate that the temperature-mediated lid opening is triggered by the thermal dissociation of the hydrophobic interactions.  相似文献   

17.
Pancreatic lipase is a soluble globular protein that must undergo structural modifications before it can hydrolyze oil droplets coated with bile salts. The binding of colipase and movement of the lipase lid open access to the active site. Mechanisms triggering lid mobility are unclear. The *KNILSQIVDIDGI* fragment of the lid of the human pancreatic lipase is predicted by molecular modeling to be a tilted peptide. Tilted peptides are hydrophobicity motifs involved in membrane fusion and more globally in perturbations of hydrophobic/hydrophilic interfaces. Analysis of this lid fragment predicts no clear consensus of secondary structure that suggests that its structure is not strongly sequence determined and could vary with environment. Point mutations were designed to modify the hydrophobicity profile of the [240-252] fragment and their consequences on the lipase-mediated catalysis were tested. Two mutants, in which the tilted peptide motif was lost, also have poor activity on bile salt-coated oil droplets and cannot be reactivated by colipase. Conversely, one mutant in which a different tilted peptide is created retains colipase dependence. These results suggest that the tilted hydrophobicity pattern of the [240-252] fragment is neither important for colipase binding to lipase, nor for interfacial binding but is important to trigger the maximal catalytic efficiency of lipase in the presence of bile salt.  相似文献   

18.
We have used continuum electrostatic methods to investigate the role of electrostatic interactions in the structure, function, and pH-dependent stability of the fungal Rhizomucor miehei lipase (RmL) family. We identify a functionally important electrostatic network which includes residues S144, D203, H257, Y260, H143, Y28, R80, and D91 (residue numbering is from RmL). This network consists of residues belonging to the catalytic triad (S144, D203, H257), residues located in proximity to the active site (Y260), residues stabilizing the geometry of the active site (Y28, H143), and residues located in the lid (D91) or close to the first hinge (R80). The lid and the first hinge are associated with the interfacial activation of lipases, where an alpha-helical lid opens up by rotating around two hinge regions. All network residues are well conserved in a set of 12 lipase homologues, and 6 of the network residues are located in sequence motifs. We observe that the effects of modeled mutations R86L, D91N, and H257F on the pH-dependent electrostatic free energies differ significantly in the closed and open conformations of RmL. Mutation R86L is especially interesting since it stabilizes the closed conformation but destabilizes the open one. Site-site electrostatic interaction energies reveal that interactions between R86 and D61, D113, and E117 stabilize the open conformation.  相似文献   

19.
We have studied the enzymatic hydrolysis of solutions and emulsions of vinyl propionate, vinyl butyrate and tripropionin by lipases of various origin and specificity. Kinetic studies of the hydrolysis of short-chain substrates by microbial triacylglycerol lipases from Rhizopus oryzae, Mucor miehei, Candida rugosa, Candida antarctica A and by (phospho)lipase from guinea-pig pancreas show that these lipolytic enzymes follow the Michaelis-Menten model. Surprisingly, the activity against solutions of tripropionin and vinyl esters ranges from 70% to 90% of that determined against emulsions. In contrast, a non-hyperbolic (sigmoidal) dependence of enzyme activity on ester concentration is found with human pancreatic lipase, triacylglycerol lipase from Humicola lanuginosa (Thermomyces lanuginosa) and partial acylglycerol lipase from Penicillium camembertii and the same substrates. In all cases, no abrupt jump in activity (interfacial activation) is observed at substrate concentration corresponding to the solubility limit of the esters. Maximal lipolytic activity is always obtained in the presence of emulsified ester. Despite progress in the understanding of structure-function of lipases, interpretation of the mode of action of lipases active against solutions of short-chain substrates remains difficult. Actually, it is not known whether these enzymes, which possess a lid structure, are in open or/and closed conformation in the bulk phase and whether the opening of the lid that gives access to the catalytic triad is triggered by interaction of the enzyme molecule with monomeric substrates or/and multimolecular aggregates (micelles) both present in the bulk phase. From the comparison of the behaviour of lipases used in this study which, in some cases, follow the Michaelis-Menten model and, in others, deviate from classical kinetics, it appears that the activity of classical lipases against soluble short-chain vinyl esters and tripropionin depends not only on specific interaction with single substrate molecules at the catalytic site of the enzyme but also on physico-chemical parameters related to the state of association of the substrate dispersed in the aqueous phase. It is assumed that the interaction of lipase with soluble multimolecular aggregates of tripropionin or short-chain vinyl esters or the formation of enzyme-substrate mixed micelles with ester bound to lipase, might represent a crucial step that triggers the structural transition to the open enzyme conformation by displacement of the lid.  相似文献   

20.
Lipases (EC 3.1.1.3) are ubiquitous hydrolases for the carboxyl ester bond of water-insoluble substrates, such as triacylglycerols, phospholipids, and other insoluble substrates, acting in aqueous as well as in low-water media, thus being of considerable physiological significance with high interest also for their industrial applications. The hydrolysis reaction follows a two-step mechanism, or “interfacial activation,” with adsorption of the enzyme to a heterogeneous interface and subsequent enhancement of the lipolytic activity. Among lipases, Candida antarctica lipase B (CALB) has never shown any significant interfacial activation, and a closed conformation of CALB has never been reported, leading to the conclusion that its behavior was due to the absence of a lid regulating the access to the active site. The lid open and closed conformations and their protonation states are observed in the crystal structure of CALB at 0.91 Å resolution. Having the open and closed states at atomic resolution allows relating protonation to the conformation, indicating the role of Asp145 and Lys290 in the conformation alteration. The findings explain the lack of interfacial activation of CALB and offer new elements to elucidate this mechanism, with the consequent implications for the catalytic properties and classification of lipases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号