首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With development of massively parallel sequencing technologies, there is a substantial need for developing powerful rare variant association tests. Common approaches include burden and non-burden tests. Burden tests assume all rare variants in the target region have effects on the phenotype in the same direction and of similar magnitude. The recently proposed sequence kernel association test (SKAT) (Wu, M. C., and others, 2011. Rare-variant association testing for sequencing data with the SKAT. The American Journal of Human Genetics 89, 82-93], an extension of the C-alpha test (Neale, B. M., and others, 2011. Testing for an unusual distribution of rare variants. PLoS Genetics 7, 161-165], provides a robust test that is particularly powerful in the presence of protective and deleterious variants and null variants, but is less powerful than burden tests when a large number of variants in a region are causal and in the same direction. As the underlying biological mechanisms are unknown in practice and vary from one gene to another across the genome, it is of substantial practical interest to develop a test that is optimal for both scenarios. In this paper, we propose a class of tests that include burden tests and SKAT as special cases, and derive an optimal test within this class that maximizes power. We show that this optimal test outperforms burden tests and SKAT in a wide range of scenarios. The results are illustrated using simulation studies and triglyceride data from the Dallas Heart Study. In addition, we have derived sample size/power calculation formula for SKAT with a new family of kernels to facilitate designing new sequence association studies.  相似文献   

2.
While progress has been made in identifying common genetic variants associated with human diseases, for most of common complex diseases, the identified genetic variants only account for a small proportion of heritability. Challenges remain in finding additional unknown genetic variants predisposing to complex diseases. With the advance in next-generation sequencing technologies, sequencing studies have become commonplace in genetic research. The ongoing exome-sequencing and whole-genome-sequencing studies generate a massive amount of sequencing variants and allow researchers to comprehensively investigate their role in human diseases. The discovery of new disease-associated variants can be enhanced by utilizing powerful and computationally efficient statistical methods. In this paper, we propose a functional analysis of variance (FANOVA) method for testing an association of sequence variants in a genomic region with a qualitative trait. The FANOVA has a number of advantages: (1) it tests for a joint effect of gene variants, including both common and rare; (2) it fully utilizes linkage disequilibrium and genetic position information; and (3) allows for either protective or risk-increasing causal variants. Through simulations, we show that FANOVA outperform two popularly used methods – SKAT and a previously proposed method based on functional linear models (FLM), – especially if a sample size of a study is small and/or sequence variants have low to moderate effects. We conduct an empirical study by applying three methods (FANOVA, SKAT and FLM) to sequencing data from Dallas Heart Study. While SKAT and FLM respectively detected ANGPTL 4 and ANGPTL 3 associated with obesity, FANOVA was able to identify both genes associated with obesity.  相似文献   

3.
Recent developments in sequencing technologies have made it possible to uncover both rare and common genetic variants. Genome-wide association studies (GWASs) can test for the effect of common variants, whereas sequence-based association studies can evaluate the cumulative effect of both rare and common variants on disease risk. Many groupwise association tests, including burden tests and variance-component tests, have been proposed for this purpose. Although such tests do not exclude common variants from their evaluation, they focus mostly on testing the effect of rare variants by upweighting rare-variant effects and downweighting common-variant effects and can therefore lose substantial power when both rare and common genetic variants in a region influence trait susceptibility. There is increasing evidence that the allelic spectrum of risk variants at a given locus might include novel, rare, low-frequency, and common genetic variants. Here, we introduce several sequence kernel association tests to evaluate the cumulative effect of rare and common variants. The proposed tests are computationally efficient and are applicable to both binary and continuous traits. Furthermore, they can readily combine GWAS and whole-exome-sequencing data on the same individuals, when available, and are also applicable to deep-resequencing data of GWAS loci. We evaluate these tests on data simulated under comprehensive scenarios and show that compared with the most commonly used tests, including the burden and variance-component tests, they can achieve substantial increases in power. We next show applications to sequencing studies for Crohn disease and autism spectrum disorders. The proposed tests have been incorporated into the software package SKAT.  相似文献   

4.
Sequencing studies are increasingly being conducted to identify rare variants associated with complex traits. The limited power of classical single-marker association analysis for rare variants poses a central challenge in such studies. We propose the sequence kernel association test (SKAT), a supervised, flexible, computationally efficient regression method to test for association between genetic variants (common and rare) in a region and a continuous or dichotomous trait while easily adjusting for covariates. As a score-based variance-component test, SKAT can quickly calculate p values analytically by fitting the null model containing only the covariates, and so can easily be applied to genome-wide data. Using SKAT to analyze a genome-wide sequencing study of 1000 individuals, by segmenting the whole genome into 30 kb regions, requires only 7 hr on a laptop. Through analysis of simulated data across a wide range of practical scenarios and triglyceride data from the Dallas Heart Study, we show that SKAT can substantially outperform several alternative rare-variant association tests. We also provide analytic power and sample-size calculations to help design candidate-gene, whole-exome, and whole-genome sequence association studies.  相似文献   

5.
Two recently developed methods for the analysis of rare variants include the sequence kernel association test (SKAT) and the kernel-based adaptive cluster test (KBAC). While SKAT represents a type of variance component score test, and KBAC computes a weighted integral representing the difference in risk between variants, they appear to be developed using different initial principles. In this note, we show in fact that the KBAC can be modified to yield a test statistic with operating characteristics more similar to SKAT. Such a development relies on U- and V-statistic theory from mathematical statistics. Some simulation studies are used to evaluate the new proposed tests.  相似文献   

6.
Finnish samples have been extensively utilized in studying single-gene disorders, where the founder effect has clearly aided in discovery, and more recently in genome-wide association studies of complex traits, where the founder effect has had less obvious impacts. As the field starts to explore rare variants’ contribution to polygenic traits, it is of great importance to characterize and confirm the Finnish founder effect in sequencing data and to assess its implications for rare-variant association studies. Here, we employ forward simulation, guided by empirical deep resequencing data, to model the genetic architecture of quantitative polygenic traits in both the general European and the Finnish populations simultaneously. We demonstrate that power of rare-variant association tests is higher in the Finnish population, especially when variants’ phenotypic effects are tightly coupled with fitness effects and therefore reflect a greater contribution of rarer variants. SKAT-O, variable-threshold tests, and single-variant tests are more powerful than other rare-variant methods in the Finnish population across a range of genetic models. We also compare the relative power and efficiency of exome array genotyping to those of high-coverage exome sequencing. At a fixed cost, less expensive genotyping strategies have far greater power than sequencing; in a fixed number of samples, however, genotyping arrays miss a substantial portion of genetic signals detected in sequencing, even in the Finnish founder population. As genetic studies probe sequence variation at greater depth in more diverse populations, our simulation approach provides a framework for evaluating various study designs for gene discovery.  相似文献   

7.
The discovery of rare genetic variants through next generation sequencing is a very challenging issue in the field of human genetics. We propose a novel region‐based statistical approach based on a Bayes Factor (BF) to assess evidence of association between a set of rare variants (RVs) located on the same genomic region and a disease outcome in the context of case‐control design. Marginal likelihoods are computed under the null and alternative hypotheses assuming a binomial distribution for the RV count in the region and a beta or mixture of Dirac and beta prior distribution for the probability of RV. We derive the theoretical null distribution of the BF under our prior setting and show that a Bayesian control of the false Discovery Rate can be obtained for genome‐wide inference. Informative priors are introduced using prior evidence of association from a Kolmogorov‐Smirnov test statistic. We use our simulation program, sim1000G, to generate RV data similar to the 1000 genomes sequencing project. Our simulation studies showed that the new BF statistic outperforms standard methods (SKAT, SKAT‐O, Burden test) in case‐control studies with moderate sample sizes and is equivalent to them under large sample size scenarios. Our real data application to a lung cancer case‐control study found enrichment for RVs in known and novel cancer genes. It also suggests that using the BF with informative prior improves the overall gene discovery compared to the BF with noninformative prior.  相似文献   

8.
Genome-wide association studies have found thousands of common genetic variants associated with a wide variety of diseases and other complex traits. However, a large portion of the predicted genetic contribution to many traits remains unknown. One plausible explanation is that some of the missing variation is due to the effects of rare variants. Nonetheless, the statistical analysis of rare variants is challenging. A commonly used method is to contrast, within the same region (gene), the frequency of minor alleles at rare variants between cases and controls. However, this strategy is most useful under the assumption that the tested variants have similar effects. We previously proposed a method that can accommodate heterogeneous effects in the analysis of quantitative traits. Here we extend this method to include binary traits that can accommodate covariates. We use simulations for a variety of causal and covariate impact scenarios to compare the performance of the proposed method to standard logistic regression, C-alpha, SKAT, and EREC. We found that i) logistic regression methods perform well when the heterogeneity of the effects is not extreme and ii) SKAT and EREC have good performance under all tested scenarios but they can be computationally intensive. Consequently, it would be more computationally desirable to use a two-step strategy by (i) selecting promising genes by faster methods and ii) analyzing selected genes using SKAT/EREC. To select promising genes one can use (1) regression methods when effect heterogeneity is assumed to be low and the covariates explain a non-negligible part of trait variability, (2) C-alpha when heterogeneity is assumed to be large and covariates explain a small fraction of trait's variability and (3) the proposed trend and heterogeneity test when the heterogeneity is assumed to be non-trivial and the covariates explain a large fraction of trait variability.  相似文献   

9.
Although many methods are available to test sequence variants for association with complex diseases and traits, methods that specifically seek to identify causal variants are less developed. Here we develop and evaluate a Bayesian hierarchical regression method that incorporates prior information on the likelihood of variant causality through weighting of variant effects. By simulation studies using both simulated and real sequence variants, we compared a standard single variant test for analyzing variant-disease association with the proposed method using different weighting schemes. We found that by leveraging linkage disequilibrium of variants with known GWAS signals and sequence conservation (phastCons), the proposed method provides a powerful approach for detecting causal variants while controlling false positives.  相似文献   

10.
The recent development of sequencing technology allows identification of association between the whole spectrum of genetic variants and complex diseases. Over the past few years, a number of association tests for rare variants have been developed. Jointly testing for association between genetic variants and multiple correlated phenotypes may increase the power to detect causal genes in family-based studies, but familial correlation needs to be appropriately handled to avoid an inflated type I error rate. Here we propose a novel approach for multivariate family data using kernel machine regression (denoted as MF-KM) that is based on a linear mixed-model framework and can be applied to a large range of studies with different types of traits. In our simulation studies, the usual kernel machine test has inflated type I error rates when applied directly to familial data, while our proposed MF-KM method preserves the expected type I error rates. Moreover, the MF-KM method has increased power compared to methods that either analyze each phenotype separately while considering family structure or use only unrelated founders from the families. Finally, we illustrate our proposed methodology by analyzing whole-genome genotyping data from a lung function study.  相似文献   

11.
Although whole-genome association studies using tagSNPs are a powerful approach for detecting common variants, they are underpowered for detecting associations with rare variants. Recent studies have demonstrated that common diseases can be due to functional variants with a wide spectrum of allele frequencies, ranging from rare to common. An effective way to identify rare variants is through direct sequencing. The development of cost-effective sequencing technologies enables association studies to use sequence data from candidate genes and, in the future, from the entire genome. Although methods used for analysis of common variants are applicable to sequence data, their performance might not be optimal. In this study, it is shown that the collapsing method, which involves collapsing genotypes across variants and applying a univariate test, is powerful for analyzing rare variants, whereas multivariate analysis is robust against inclusion of noncausal variants. Both methods are superior to analyzing each variant individually with univariate tests. In order to unify the advantages of both collapsing and multiple-marker tests, we developed the Combined Multivariate and Collapsing (CMC) method and demonstrated that the CMC method is both powerful and robust. The CMC method can be applied to either candidate-gene or whole-genome sequence data.  相似文献   

12.
With the advent of next-generation sequencing technology, rare variant association analysis is increasingly being conducted to identify genetic variants associated with complex traits. In recent years, significant effort has been devoted to develop powerful statistical methods to test such associations for population-based designs. However, there has been relatively little development for family-based designs although family data have been shown to be more powerful to detect rare variants. This study introduces a blocking approach that extends two popular family-based common variant association tests to rare variants association studies. Several options are considered to partition a genomic region (gene) into “independent” blocks by which information from SNVs is aggregated within a block and an overall test statistic for the entire genomic region is calculated by combining information across these blocks. The proposed methodology allows different variants to have different directions (risk or protective) and specification of minor allele frequency threshold is not needed. We carried out a simulation to verify the validity of the method by showing that type I error is well under control when the underlying null hypothesis and the assumption of independence across blocks are satisfied. Further, data from the Genetic Analysis Workshop are utilized to illustrate the feasibility and performance of the proposed methodology in a realistic setting.  相似文献   

13.
Current family-based association tests for sequencing data were mainly developed for identifying rare variants associated with a complex disease. As the disease can be influenced by the joint effects of common and rare variants, common variants with modest effects may not be identified by the methods focusing on rare variants. Moreover, variants can have risk, neutral, or protective effects. Association tests that can effectively select groups of common and rare variants that are likely to be causal and consider the directions of effects have become important. We developed the Ordered Subset - Variable Threshold - Pedigree Disequilibrium Test (OVPDT), a combination of three algorithms, for association analysis in family sequencing data. The ordered subset algorithm is used to select a subset of common variants based on their relative risks, calculated using only parental mating types. The variable threshold algorithm is used to search for an optimal allele frequency threshold such that rare variants below the threshold are more likely to be causal. The PDT statistics from both rare and common variants selected by the two algorithms are combined as the OVPDT statistic. A permutation procedure is used in OVPDT to calculate the p-value. We used simulations to demonstrate that OVPDT has the correct type I error rates under different scenarios and compared the power of OVPDT with two other family-based association tests. The results suggested that OVPDT can have more power than the other tests if both common and rare variants have effects on the disease in a region.  相似文献   

14.
BackgroundIt has become common practice to analyse large scale sequencing data with statistical approaches based around the aggregation of rare variants within the same gene. We applied a novel approach to rare variant analysis by collapsing variants together using protein domain and family coordinates, regarded to be a more discrete definition of a biologically functional unit.MethodsUsing Pfam definitions, we collapsed rare variants (Minor Allele Frequency ≤ 1%) together in three different ways 1) variants within single genomic regions which map to individual protein domains 2) variants within two individual protein domain regions which are predicted to be responsible for a protein-protein interaction 3) all variants within combined regions from multiple genes responsible for coding the same protein domain (i.e. protein families). A conventional collapsing analysis using gene coordinates was also undertaken for comparison. We used UK10K sequence data and investigated associations between regions of variants and lipid traits using the sequence kernel association test (SKAT).ResultsWe observed no strong evidence of association between regions of variants based on Pfam domain definitions and lipid traits. Quantile-Quantile plots illustrated that the overall distributions of p-values from the protein domain analyses were comparable to that of a conventional gene-based approach. Deviations from this distribution suggested that collapsing by either protein domain or gene definitions may be favourable depending on the trait analysed.ConclusionWe have collapsed rare variants together using protein domain and family coordinates to present an alternative approach over collapsing across conventionally used gene-based regions. Although no strong evidence of association was detected in these analyses, future studies may still find value in adopting these approaches to detect previously unidentified association signals.  相似文献   

15.
Association tests that pool minor alleles into a measure of burden at a locus have been proposed for case-control studies using sequence data containing rare variants. However, such pooling tests are not robust to the inclusion of neutral and protective variants, which can mask the association signal from risk variants. Early studies proposing pooling tests dismissed methods for locus-wide inference using nonnegative single-variant test statistics based on unrealistic comparisons. However, such methods are robust to the inclusion of neutral and protective variants and therefore may be more useful than previously appreciated. In fact, some recently proposed methods derived within different frameworks are equivalent to performing inference on weighted sums of squared single-variant score statistics. In this study, we compared two existing methods for locus-wide inference using nonnegative single-variant test statistics to two widely cited pooling tests under more realistic conditions. We established analytic results for a simple model with one rare risk and one rare neutral variant, which demonstrated that pooling tests were less powerful than even Bonferroni-corrected single-variant tests in most realistic situations. We also performed simulations using variants with realistic minor allele frequency and linkage disequilibrium spectra, disease models with multiple rare risk variants and extensive neutral variation, and varying rates of missing genotypes. In all scenarios considered, existing methods using nonnegative single-variant test statistics had power comparable to or greater than two widely cited pooling tests. Moreover, in disease models with only rare risk variants, an existing method based on the maximum single-variant Cochran-Armitage trend chi-square statistic in the locus had power comparable to or greater than another existing method closely related to some recently proposed methods. We conclude that efficient locus-wide inference using single-variant test statistics should be reconsidered as a useful framework for devising powerful association tests in sequence data with rare variants.  相似文献   

16.
We propose a general statistical framework for meta-analysis of gene- or region-based multimarker rare variant association tests in sequencing association studies. In genome-wide association studies, single-marker meta-analysis has been widely used to increase statistical power by combining results via regression coefficients and standard errors from different studies. In analysis of rare variants in sequencing studies, region-based multimarker tests are often used to increase power. We propose meta-analysis methods for commonly used gene- or region-based rare variants tests, such as burden tests and variance component tests. Because estimation of regression coefficients of individual rare variants is often unstable or not feasible, the proposed method avoids this difficulty by calculating score statistics instead that only require fitting the null model for each study and then aggregating these score statistics across studies. Our proposed meta-analysis rare variant association tests are conducted based on study-specific summary statistics, specifically score statistics for each variant and between-variant covariance-type (linkage disequilibrium) relationship statistics for each gene or region. The proposed methods are able to incorporate different levels of heterogeneity of genetic effects across studies and are applicable to meta-analysis of multiple ancestry groups. We show that the proposed methods are essentially as powerful as joint analysis by directly pooling individual level genotype data. We conduct extensive simulations to evaluate the performance of our methods by varying levels of heterogeneity across studies, and we apply the proposed methods to meta-analysis of rare variant effects in a multicohort study of the genetics of blood lipid levels.  相似文献   

17.
Next-generation sequencing data will soon become routinely available for association studies between complex traits and rare variants. Sequencing data, however, are characterized by the presence of sequencing errors at each individual genotype. This makes it especially challenging to perform association studies of rare variants, which, due to their low minor allele frequencies, can be easily perturbed by genotype errors. In this article, we develop the quality-weighted multivariate score association test (qMSAT), a new procedure that allows powerful association tests between complex traits and multiple rare variants under the presence of sequencing errors. Simulation results based on quality scores from real data show that the qMSAT often dominates over current methods, that do not utilize quality information. In particular, the qMSAT can dramatically increase power over existing methods under moderate sample sizes and relatively low coverage. Moreover, in an obesity data study, we identified using the qMSAT two functional regions (MGLL promoter and MGLL 3'-untranslated region) where rare variants are associated with extreme obesity. Due to the high cost of sequencing data, the qMSAT is especially valuable for large-scale studies involving rare variants, as it can potentially increase power without additional experimental cost. qMSAT is freely available at http://qmsat.sourceforge.net/.  相似文献   

18.
Pinpointing the small number of causal variants among the abundant naturally occurring genetic variation is a difficult challenge, but a crucial one for understanding precise molecular mechanisms of disease and follow-up functional studies. We propose and investigate two complementary statistical approaches for identification of rare causal variants in sequencing studies: a backward elimination procedure based on groupwise association tests, and a hierarchical approach that can integrate sequencing data with diverse functional and evolutionary conservation annotations for individual variants. Using simulations, we show that incorporation of multiple bioinformatic predictors of deleteriousness, such as PolyPhen-2, SIFT and GERP++ scores, can improve the power to discover truly causal variants. As proof of principle, we apply the proposed methods to VPS13B, a gene mutated in the rare neurodevelopmental disorder called Cohen syndrome, and recently reported with recessive variants in autism. We identify a small set of promising candidates for causal variants, including two loss-of-function variants and a rare, homozygous probably-damaging variant that could contribute to autism risk.  相似文献   

19.
Wang J  Shete S 《PloS one》2011,6(11):e27642
In case-control genetic association studies, cases are subjects with the disease and controls are subjects without the disease. At the time of case-control data collection, information about secondary phenotypes is also collected. In addition to studies of primary diseases, there has been some interest in studying genetic variants associated with secondary phenotypes. In genetic association studies, the deviation from Hardy-Weinberg proportion (HWP) of each genetic marker is assessed as an initial quality check to identify questionable genotypes. Generally, HWP tests are performed based on the controls for the primary disease or secondary phenotype. However, when the disease or phenotype of interest is common, the controls do not represent the general population. Therefore, using only controls for testing HWP can result in a highly inflated type I error rate for the disease- and/or phenotype-associated variants. Recently, two approaches, the likelihood ratio test (LRT) approach and the mixture HWP (mHWP) exact test were proposed for testing HWP in samples from case-control studies. Here, we show that these two approaches result in inflated type I error rates and could lead to the removal from further analysis of potential causal genetic variants associated with the primary disease and/or secondary phenotype when the study of primary disease is frequency-matched on the secondary phenotype. Therefore, we proposed alternative approaches, which extend the LRT and mHWP approaches, for assessing HWP that account for frequency matching. The goal was to maintain more (possible causative) single-nucleotide polymorphisms in the sample for further analysis. Our simulation results showed that both extended approaches could control type I error probabilities. We also applied the proposed approaches to test HWP for SNPs from a genome-wide association study of lung cancer that was frequency-matched on smoking status and found that the proposed approaches can keep more genetic variants for association studies.  相似文献   

20.

Background

Both common and rare genetic variants have been shown to contribute to the etiology of complex diseases. Recent genome-wide association studies (GWAS) have successfully investigated how common variants contribute to the genetic factors associated with common human diseases. However, understanding the impact of rare variants, which are abundant in the human population (one in every 17 bases), remains challenging. A number of statistical tests have been developed to analyze collapsed rare variants identified by association tests. Here, we propose a haplotype-based approach. This work inspired by an existing statistical framework of the pedigree disequilibrium test (PDT), which uses genetic data to assess the effects of variants in general pedigrees. We aim to compare the performance between the haplotype-based approach and the rare variant-based approach for detecting rare causal variants in pedigrees.

Results

Extensive simulations in the sequencing setting were carried out to evaluate and compare the haplotype-based approach with the rare variant methods that drew on a more conventional collapsing strategy. As assessed through a variety of scenarios, the haplotype-based pedigree tests had enhanced statistical power compared with the rare variants based pedigree tests when the disease of interest was mainly caused by rare haplotypes (with multiple rare alleles), and vice versa when disease was caused by rare variants acting independently. For most of other situations when disease was caused both by haplotypes with multiple rare alleles and by rare variants with similar effects, these two approaches provided similar power in testing for association.

Conclusions

The haplotype-based approach was designed to assess the role of rare and potentially causal haplotypes. The proposed rare variants-based pedigree tests were designed to assess the role of rare and potentially causal variants. This study clearly documented the situations under which either method performs better than the other. All tests have been implemented in a software, which was submitted to the Comprehensive R Archive Network (CRAN) for general use as a computer program named rvHPDT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号