首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water-borne transmission has been suggested as an important transmission mechanism for Influenza A (IA) viruses in wild duck populations; however, relatively few studies have attempted to detect IA viruses from aquatic habitats. Water-isolated viruses have rarely been genetically characterized and evaluation for persistence in water and infectivity in natural hosts has never been documented. In this study, we focused on two IA viruses (H3N8 and H4N6 subtypes) isolated from surface lake water in Minnesota, USA. We investigated the relative prevalence of the two virus subtypes in wild duck populations at the sampling site and their genetic relatedness to IA viruses isolated in wild waterbirds in North America. Viral persistence under different laboratory conditions (temperature and pH) and replication in experimentally infected Mallards (Anas platyrhynchos) were also characterized. Both viruses were the most prevalent subtype one year following their isolation in lake water. The viruses persisted in water for an extended time period at constant temperature (several weeks) but infectivity rapidly reduced under multiple freeze-thaw cycles. Furthermore, the two isolates efficiently replicated in Mallards. The complete genome characterization supported that these isolates originated from genetic reassortments with other IA viruses circulating in wild duck populations during the year of sampling. Based on phylogenetic analyses, we couldn't identify genetically similar viruses in duck populations in the years following their isolation from lake water. Our study supports the role for water-borne transmission for IA viruses but also highlights that additional field and experimental studies are required to support inter-annual persistence in aquatic habitats.  相似文献   

2.
Investigations of mortalities involving wild mallard ducks (Anas platyrhynchos) revealed the presence of a herpesvirus associated with skin lesions on the plantar surface of the foot web of one duck. Ultrastructurally, the paracrystalline arrays of viral core particles and unencapsidated nucleoids in the nucleus, and the enveloped viruses in cytoplasmic vacuoles are compatible with a herpesvirus. This appears to be the first report of cutaneous lesions in a mallard duck attributable to a herpesvirus. Whether this lesion is due to duck virus enteritis (DVE), suggesting that cutaneous shedding is possible, or due to another uncharacterized herpesvirus of ducks is unclear.  相似文献   

3.
For decades, southern China has been considered to be an important source for emerging influenza viruses since key hosts live together in high densities in areas with intensive agriculture. However, the underlying conditions of emergence and spread of avian influenza viruses (AIV) have not been studied in detail, particularly the complex spatiotemporal interplay of viral transmission between wild and domestic ducks, two major actors of AIV epidemiology. In this synthesis, we examine the risks of avian influenza spread in Poyang Lake, an area of intensive free-ranging duck production and large numbers of wild waterfowl. Our synthesis shows that farming of free-grazing domestic ducks is intensive in this area and synchronized with wild duck migration. The presence of juvenile domestic ducks in harvested paddy fields prior to the arrival and departure of migrant ducks in the same fields may amplify the risk of AIV circulation and facilitate the transmission between wild and domestic populations. We provide evidence associating wild ducks migration with the spread of H5N1 in the spring of 2008 from southern China to South Korea, Russia, and Japan, supported by documented wild duck movements and phylogenetic analyses of highly pathogenic avian influenza H5N1 sequences. We suggest that prevention measures based on a modification of agricultural practices may be implemented in these areas to reduce the intensity of AIV transmission between wild and domestic ducks. This would require involving all local stakeholders to discuss feasible and acceptable solutions.  相似文献   

4.
Since 2002, H5N1 highly pathogenic avian influenza (HPAI) viruses have caused mortality in numerous species of wild birds; this is atypical for avian influenza virus (AIV) infections in these avian species, especially for species within the order Anseriformes. Although these infections document the susceptibility of wild birds to H5N1 HPAI viruses and the spillover of these viruses from infected domestic birds to wild birds, it is unknown whether H5N1 HPAI viruses can persist in free-living avian populations. In a previous study, we established that wood ducks (Aix sponsa) are highly susceptible to infection with H5N1 HPAI viruses. To quantify this susceptibility and further evaluate the likelihood of H5N1 HPAI viral maintenance in a wild bird population, we determined the concentration of virus required to produce infection in wood ducks. To accomplish this, 25 wood ducks were inoculated intranasally at 12-16 wk of age with decreasing concentrations of a H5N1 HPAI virus (A/Whooper Swan/Mongolia/244/05 [H5N1]). The median infectious dose and the lethal dose of H5N1 HPAI virus in wood ducks were very low (10(0.95) and 10(1.71) median embryo infectious dose [EID(50)]/ml, respectively) and less than that of chickens (10(2.80) and 10(2.80) EID(50)/ml). These results confirm that wood ducks are highly susceptible to infection with H5N1 HPAI virus. The data from this study, combined with what is known experimentally about H5N1 HPAI virus infection in wood ducks and viral persistence in aquatic environments, suggest that the wood duck would represent a sensitive indicator species for H5N1 HPAI. Results also suggest that the potential for decreased transmission efficiency associated with reduced viral shedding (especially from the cloaca) and a loss of environmental fitness (in water), may be offset by the ability of this virus to be transmitted through a very low infectious dose.  相似文献   

5.
Wild waterfowl, particularly dabbling ducks such as mallards (Anas platyrhynchos), are considered the main reservoir of low-pathogenic avian influenza viruses (LPAIVs). They carry viruses that may evolve and become highly pathogenic for poultry or zoonotic. Understanding the ecology of LPAIVs in these natural hosts is therefore essential. We assessed the clinical response, viral shedding and antibody production of juvenile mallards after intra-esophageal inoculation of two LPAIV subtypes previously isolated from wild congeners. Six ducks, equipped with data loggers that continually monitored body temperature, heart rate and activity, were successively inoculated with an H7N7 LPAI isolate (day 0), the same H7N7 isolate again (day 21) and an H5N2 LPAI isolate (day 35). After the first H7N7 inoculation, the ducks remained alert with no modification of heart rate or activity. However, body temperature transiently increased in four individuals, suggesting that LPAIV strains may have minor clinical effects on their natural hosts. The excretion patterns observed after both re-inoculations differed strongly from those observed after the primary H7N7 inoculation, suggesting that not only homosubtypic but also heterosubtypic immunity exist. Our study suggests that LPAI infection has minor clinically measurable effects on mallards and that mallard ducks are able to mount immunological responses protective against heterologous infections. Because the transmission dynamics of LPAIVs in wild populations is greatly influenced by individual susceptibility and herd immunity, these findings are of high importance. Our study also shows the relevance of using telemetry to monitor disease in animals.  相似文献   

6.
Although wild ducks are recognized reservoirs for avian influenza viruses (AIVs) and avian paramyxoviruses (APMVs), information related to the prevalence of these viruses in breeding and migratory duck populations on North American wintering grounds is limited. Wintering (n=2,889) and resident breeding (n=524) ducks were sampled in North Carolina during winter 2004-2006 and summer 2005-2006, respectively. Overall prevalence of AIV was 0.8% and restricted to the winter sample; however, prevalence in species within the genus Anas was 1.3% and was highest in Black Ducks (7%; Anas rubripes) and Northern Shovelers (8%; Anas clypeata). Of the 24 AIVs, 16 subtypes were detected, representing nine hemagglutinin and seven neuraminidase subtypes. Avian paramyxoviruses detected in wintering birds included 18 APMV-1s, 15 APMV-4s, and one APMV-6. During summers 2005 and 2006, a high prevalence of APMV-1 infection was observed in resident breeding Wood Ducks (Aix sponsa) and Mallards (Anas platyrhynchos).  相似文献   

7.
Avian influenza viruses are circulating continuously in ducks, inducing a mostly asymptomatic infection, while chickens are accidental hosts highly susceptible to respiratory disease. This discrepancy might be due to a different host response to the virus between these two bird species and in particular to a different susceptibility to reinfection. In an attempt to address this question, we analyzed, in ducks and in chickens, the viral load in infected tissues and the humoral immune response after experimental primary and secondary challenge infections with either homologous or heterologous low pathogenicity avian influenza viruses (LPAIV). Following homologous reinfection, ducks were only partially protected against viral shedding in the lower intestine in conjunction with a moderate antibody response, whereas chickens were totally protected against viral shedding in the upper respiratory airways and developed a stronger antibody response. On the contrary, heterologous reinfection was not followed by a reduced viral excretion in the upper airways of chickens, while ducks were still partially protected from intestinal excretion of the virus, with no correlation to the antibody response. Our comparative study provides a comprehensive demonstration of the variation of viral tropism and control of the host humoral response to LPAIV between two different bird species with different degrees of susceptibility to avian influenza.  相似文献   

8.
Cloacal swabs were collected from teal (Anas crecca, Anas cyanoptera, Anas discors), mottled duck (Anas fulvigula) and northern pintail (Anas acuta) in Brazoria County, Texas, USA, during February 2001, mottled ducks during August 2001, and blue-winged teal (A. discors) during February 2002. Prevalence of avian influenza virus (AIV) infections during each sampling period were 11, 0, and 15%, respectively. The hemagglutinin (H) subtypes H2 and H7 were detected in both years, while the H8 subtype was detected in 2001 and the H1 subtype was detected in 2002. Avian paramyxovirus type 1 (APMV-1) was isolated from 13% of mottled ducks sampled in August 2001 and 30.7% of teal in February 2002. The season of isolation of both viruses and the majority of the AIV subtypes detected in this study are not typical based on previous reports of these viruses from North American ducks.  相似文献   

9.
The role wild bird species play in the transmission and ecology of avian influenza virus (AIV) is well established; however, there are significant gaps in our understanding of the worldwide distribution of these viruses, specifically about the prevalence and/or significance of AIV in Central and South America. As part of an assessment of the ecology of AIV in Guatemala, we conducted active surveillance in wild birds on the Pacific and Atlantic coasts. Cloacal and tracheal swab samples taken from resident and migratory wild birds were collected from February 2007 to January 2010.1913 samples were collected and virus was detected by real time RT-PCR (rRT-PCR) in 28 swab samples from ducks (Anas discors). Virus isolation was attempted for these positive samples, and 15 isolates were obtained from the migratory duck species Blue-winged teal. The subtypes identified included H7N9, H11N2, H3N8, H5N3, H8N4, and H5N4. Phylogenetic analysis of the viral sequences revealed that AIV isolates are highly similar to viruses from the North American lineage suggesting that bird migration dictates the ecology of these viruses in the Guatemalan bird population.  相似文献   

10.
The annual recurrence of the influenza epidemic is considered to be primarily associated with immune escape due to changes to the virus. In 2011–2012, the influenza B epidemic in Taiwan was unusually large, and influenza B was predominant for a long time. To investigate the genetic dynamics of influenza B viruses during the 2011–2012 epidemic, we analyzed the sequences of 4,386 influenza B viruses collected in Taiwan from 2004 to 2012. The data provided detailed insight into the flux patterns of multiple genotypes. We found that a re-emergent TW08-I virus, which was the major genotype and had co-circulated with the two others, TW08-II and TW08-III, from 2007 to 2009 in Taiwan, successively overtook TW08-II in March and then underwent a lineage switch in July 2011. This lineage switch was followed by the large epidemic in Taiwan. The whole-genome compositions and phylogenetic relationships of the representative viruses of various genotypes were compared to determine the viral evolutionary histories. We demonstrated that the large influenza B epidemic of 2011–2012 was caused by Yamagata lineage TW08-I viruses that were derived from TW04-II viruses in 2004–2005 through genetic drifts without detectable reassortments. The TW08-I viruses isolated in both 2011–2012 and 2007–2009 were antigenically similar, indicating that an influenza B virus have persisted for 5 years in antigenic stasis before causing a large epidemic. The results suggest that in addition to the emergence of new variants with mutations or reassortments, other factors, including the interference of multi-types or lineages of influenza viruses and the accumulation of susceptible hosts, can also affect the scale and time of an influenza B epidemic.  相似文献   

11.
Dong G  Luo J  Zhang H  Wang C  Duan M  Deliberto TJ  Nolte DL  Ji G  He H 《PloS one》2011,6(2):e17212
H9N2 influenza A viruses have become established worldwide in terrestrial poultry and wild birds, and are occasionally transmitted to mammals including humans and pigs. To comprehensively elucidate the genetic and evolutionary characteristics of H9N2 influenza viruses, we performed a large-scale sequence analysis of 571 viral genomes from the NCBI Influenza Virus Resource Database, representing the spectrum of H9N2 influenza viruses isolated from 1966 to 2009. Our study provides a panoramic framework for better understanding the genesis and evolution of H9N2 influenza viruses, and for describing the history of H9N2 viruses circulating in diverse hosts. Panorama phylogenetic analysis of the eight viral gene segments revealed the complexity and diversity of H9N2 influenza viruses. The 571 H9N2 viral genomes were classified into 74 separate lineages, which had marked host and geographical differences in phylogeny. Panorama genotypical analysis also revealed that H9N2 viruses include at least 98 genotypes, which were further divided according to their HA lineages into seven series (A-G). Phylogenetic analysis of the internal genes showed that H9N2 viruses are closely related to H3, H4, H5, H7, H10, and H14 subtype influenza viruses. Our results indicate that H9N2 viruses have undergone extensive reassortments to generate multiple reassortants and genotypes, suggesting that the continued circulation of multiple genotypical H9N2 viruses throughout the world in diverse hosts has the potential to cause future influenza outbreaks in poultry and epidemics in humans. We propose a nomenclature system for identifying and unifying all lineages and genotypes of H9N2 influenza viruses in order to facilitate international communication on the evolution, ecology and epidemiology of H9N2 influenza viruses.  相似文献   

12.
Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI) viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus has been shown to modulate the outcome of a highly pathogenic avian influenza (HPAI) virus infection in multiple domestic avian species, but few studies have addressed this effect in wild birds. In this study, the effect of pre-exposure to homosubtypic (homologous hemagglutinin) and heterosubtypic (heterologous hemagglutinin) low pathogenic avian influenza (LPAI) viruses on the outcome of a H5N1 HPAI virus infection in wood ducks (Aix sponsa) was evaluated. Pre-exposure of wood ducks to different LPAI viruses did not prevent infection with H5N1 HPAI virus, but did increase survival associated with H5N1 HPAI virus infection. The magnitude of this effect on the outcome of the H5N1 HPAI virus infection varied between different LPAI viruses, and was associated both with efficiency of LPAI viral replication in wood ducks and the development of a detectable humoral immune response. These observations suggest that in naturally occurring outbreaks of H5N1 HPAI, birds with pre-existing immunity to homologous hemagglutinin or neuraminidase subtypes of AI virus may either survive H5N1 HPAI virus infection or live longer than naïve birds and, consequently, could pose a greater risk for contributing to viral transmission and dissemination. The mechanisms responsible for this protection and/or the duration of this immunity remain unknown. The results of this study are important for surveillance efforts and help clarify epidemiological data from outbreaks of H5N1 HPAI virus in wild bird populations.  相似文献   

13.
Song J  Feng H  Xu J  Zhao D  Shi J  Li Y  Deng G  Jiang Y  Li X  Zhu P  Guan Y  Bu Z  Kawaoka Y  Chen H 《Journal of virology》2011,85(5):2180-2188
During their circulation in nature, H5N1 avian influenza viruses (AIVs) have acquired the ability to kill their natural hosts, wild birds and ducks. The genetic determinants for this increased virulence are largely unknown. In this study, we compared two genetically similar H5N1 AIVs, A/duck/Hubei/49/05 (DK/49) and A/goose/Hubei/65/05 (GS/65), that are lethal for chickens but differ in their virulence levels in ducks. To explore the genetic basis for this difference in virulence, we generated a series of reassortants and mutants of these two viruses. The virulence of the reassortant bearing the PA gene from DK/49 in the GS/65 background increased 10(5)-fold relative to that of the GS/65 virus. Substitution of two amino acids, S224P and N383D, in PA contributed to the highly virulent phenotype. The amino acid 224P in PA increased the replication of the virus in duck embryo fibroblasts, and the amino acid 383D in PA increased the polymerase activity in duck embryo fibroblasts and delayed the accumulation of the PA and PB1 polymerase subunits in the nucleus of virus-infected cells. Our results provide strong evidence that the polymerase PA subunit is a virulence factor for H5N1 AIVs in ducks.  相似文献   

14.
Recent repeated isolation of H14 hemagglutinin subtype influenza A viruses (IAVs) in the New World waterfowl provides evidence to suggest that host and/or geographic ranges for viruses of this subtype may be expanding. In this study, we used genomic analyses to gain inference on the origin and evolution of H14 viruses in New World waterfowl and conducted an experimental challenge study in mallards (Anas platyrhynchos) to evaluate pathogenicity, viral replication, and transmissibility of a representative viral strain in a natural host species. Genomic characterization of H14 subtype IAVs isolated from New World waterfowl, including three isolates sequenced specifically for this study, revealed high nucleotide identity among individual gene segments (e.g. ≥95% shared identity among H14 HA gene segments). In contrast, lower shared identity was observed among internal gene segments. Furthermore, multiple neuraminidase subtypes were observed for H14 IAVs isolated in the New World. Gene segments of H14 viruses isolated after 2010 shared ancestral genetic lineages with IAVs isolated from wild birds throughout North America. Thus, genomic characterization provided evidence for viral evolution in New World waterfowl through genetic drift and genetic shift since purported introduction from Eurasia. In the challenge study, no clinical disease or lesions were observed among mallards experimentally inoculated with A/blue-winged teal/Texas/AI13-1028/2013(H14N5) or exposed via contact with infected birds. Titers of viral shedding for mallards challenged with the H14N5 IAV were highest at two days post-inoculation (DPI); however shedding was detected up to nine DPI using cloacal swabs. The distribution of viral antigen among mallards infected with H14N5 IAV was largely restricted to enterocytes lining the villi in the lower intestinal tract and in the epithelium of the bursa of Fabricius. Characterization of the infectivity of A/blue-winged teal/Texas/AI13-1028/2013(H14N5) in mallards provides support for similarities in viral replication and shedding as compared to previously described waterfowl-adapted, low pathogenic IAV strains in ducks.  相似文献   

15.
Waterfowl are the natural reservoir of all influenza A viruses, which are usually nonpathogenic in wild aquatic birds. However, in late 2002, outbreaks of highly pathogenic H5N1 influenza virus caused deaths among wild migratory birds and resident waterfowl, including ducks, in two Hong Kong parks. In February 2003, an avian H5N1 virus closely related to one of these viruses was isolated from two humans with acute respiratory distress, one of whom died. Antigenic analysis of the new avian isolates showed a reactivity pattern different from that of H5N1 viruses isolated in 1997 and 2001. This finding suggests that significant antigenic variation has recently occurred among H5N1 viruses. We inoculated mallards with antigenically different H5N1 influenza viruses isolated between 1997 and 2003. The new 2002 avian isolates caused systemic infection in the ducks, with high virus titers and pathology in multiple organs, particularly the brain. Ducks developed acute disease, including severe neurological dysfunction and death. Virus was also isolated at high titers from the birds' drinking water and from contact birds, demonstrating efficient transmission. In contrast, H5N1 isolates from 1997 and 2001 were not consistently transmitted efficiently among ducks and did not cause significant disease. Despite a high level of genomic homology, the human isolate showed striking biological differences from its avian homologue in a duck model. This is the first reported case of lethal influenza virus infection in wild aquatic birds since 1961.  相似文献   

16.
Since the recent spread of highly pathogenic (HP) H5N1 subtypes, avian influenza virus (AIV) dispersal has become an increasing focus of research. As for any other bird-borne pathogen, dispersal of these viruses is related to local and migratory movements of their hosts. In this study, we investigated potential AIV spread by Common Teal (Anas crecca) from the Camargue area, in the South of France, across Europe. Based on bird-ring recoveries, local duck population sizes and prevalence of infection with these viruses, we built an individual-based spatially explicit model describing bird movements, both locally (between wintering areas) and at the flyway scale. We investigated the effects of viral excretion duration and inactivation rate in water by simulating AIV spread with varying values for these two parameters. The results indicate that an efficient AIV dispersal in space is possible only for excretion durations longer than 7 days. Virus inactivation rate in the environment appears as a key parameter in the model because it allows local persistence of AIV over several months, the interval between two migratory periods. Virus persistence in water thus represents an important component of contamination risk as ducks migrate along their flyway. Based on the present modelling exercise, we also argue that HP H5N1 AIV is unlikely to be efficiently spread by Common Teal dispersal only.  相似文献   

17.
To evaluate the replication of a highly virulent avian influenza A virus in a potential reservoir host, mallard ducks (Anas platyrhynchos) were inoculated with the virulent strain A/Ty/Ont/7732/66 (H5N9). Viruses recovered from the ducks were analyzed by hemagglutination inhibition (HI) and enzyme-linked immunosorbent assay (ELISA) and found to possess antigenically altered viral hemagglutinins. Plaque formation on the Madin-Darby Canine Kidney (MDCK) cell line and on primary chicken embryo cells was investigated, and isolates recovered from the ducks differed from the wild type by being unable to form plaques on MDCK cells without trypsin. This phenotype did not appear to be due to inefficient cleavage of the hemagglutinin by host cell proteases since hemagglutinin immunoprecipitated from cell lysates was cleaved. Although the plaquing phenotype suggested attenuation of the isolates from the ducks, they were not significantly altered in their virulence for chickens shown by infectivity studies in vivo. These results indicate that replication of influenza A/Ty/Ont/7732/66 virus in ducks can produce antigenic and phenotypic variants which are still highly virulent for domestic poultry.  相似文献   

18.
Coinfection of wild birds by influenza A viruses is thought to be an important mechanism for the diversification of viral phenotypes by generation of reassortants. However, it is not known whether coinfection is a random event or follows discernible patterns with biological significance. In the present study, conducted with viruses collected throughout 15 years from a wild-duck population in Alberta, Canada, we identified three discrete distributions of coinfections. In about one-third of the events, which involved subtypes of viruses that appear to be maintained in this duck reservoir, coinfection occurred at rates either close to or significantly lower than one would predict from rates of single-virus infection. Apparently, the better adapted an influenza A virus is to an avian population, the greater is its ability to prevent coinfections. Conversely, poorly adapted, nonmaintained viruses were significantly overrepresented as coinfectants. Rarely encountered subtypes appear to represent viruses whose chances of successfully infiltrating avian reservoirs are increased by coinfection. Mallards (Anas platyrhynchos) and pintails (A. acuta) were significantly more likely to be infected by a single influenza A virus than were the other species sampled, but no species was significantly more likely to be coinfected. These observations provide the first evidence of nonrandom coinfection of wild birds by influenza A viruses, suggesting that reassortment of these viruses in a natural population does not occur randomly. These results suggest that even though infections may occur in a species, all subtypes are not maintained by all avian species. They also suggest that specific influenza A virus subtypes are differentially adapted to different avian hosts and that the fact that a particular subtype is isolated from a particular avian species does not mean that the virus is maintained by that species.  相似文献   

19.
Avian influenza (AI) viruses are believed to be transmitted within wild aquatic bird populations through an indirect faecal–oral route involving contaminated water. This study examined the influence of filter-feeding bivalves, Corbicula fluminea, on the infectivity of AI virus in water. Clams were placed into individual flasks with distilled water inoculated 1:100 with a low pathogenic (LP) AI virus (A/Mallard/MN/190/99 (H3N8)). Viral titres in water with clams were significantly lower at 24 and 48 h post-inoculation compared to LPAI-infected water without clams. To determine whether clams affected the infectivity of AI viruses, 18 wood ducks (Aix sponsa) were divided into test groups and inoculated with a variety of treatments of clam supernatants, whole clams and water exposed to a high pathogenic (HP) AI (A/whooper swan/Mongolia/244/05 (H5N1)). None of the wood ducks inoculated with HPAI-infected water that was filtered by clams or that was inoculated with or fed tissue from these clams exhibited morbidity or mortality. All wood ducks exposed to either HPAI-infected water without clams or the original viral inoculum died. These results indicate that filter-feeding bivalves can remove and reduce the infectivity of AI viruses in water and demonstrate the need to examine biotic environmental factors that can influence AI virus transmission.  相似文献   

20.
Wild birds are the natural reservoirs of avian influenza viruses, and surveillance and assessment of these viruses in wild birds provide valuable information for early warning and control of animal diseases. In this study, we isolated 19 H7N7 avian influenza viruses from wild bird between 2018 and 2020. Full genomic analysis revealed that these viruses bear a single basic amino acid in the cleavage site of their hemagglutinin gene, and formed four different genotypes by actively reassorting other avian influenza viruses circulating in wild birds and ducks. The H7N7 viruses bound to both avian-type and human-type receptors, although their affinity for human-type receptors was markedly lower than that for avian-type receptors. Moreover, we found that the H7N7 viruses could replicate efficiently in the upper respiratory tract and caecum of domestic ducks, and that the H5/H7 inactivated vaccine used in poultry in China provided complete protection against H7N7 wild bird virus challenge in ducks. Our findings demonstrate that wild bird H7N7 viruses pose a substantial threat to the poultry industry across the East Asian-Australian migratory flyway, emphasize the importance of influenza virus surveillance in both wild and domestic birds, and support the development of active control strategies against H7N7 virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号