首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identification of coding regions in DNA sequences remains challenging. Various methods have been proposed, but these are limited by species-dependence and the need for adequate training sets. The elements in DNA coding regions are known to be distributed in a quasi-random way, while those in non-coding regions have typical similar structures. For short sequences, these statistical characteristics cannot be extracted correctly and cannot even be detected. This paper introduces a new way to solve the problem: balanced estimation of diffusion entropy (BEDE).  相似文献   

2.
Putative synapomorphy assessment (primary homology assessment) is distinct for DNA strings having a codon structure (hereafter, coding DNA) versus those lacking it (hereafter, non-coding DNA). The first requires the identification of a reading frame and of usually few in-frame insertions and deletions. In non-coding DNA, where length variation is much more common, putative synapomorphy assessment is considerably less straightforward and highly depends on the alignment method. Appreciating the existence of evolutionary constraints, alignments that consider patterns associated with specific putative evolutionary events are favored. Once the sequences have been aligned, the postulated putative evolutionary events need to be coded as an additional step. In order for the alignments and the alignment coding to be falsifiable, they should be carried out using justified and explicitly formulated criteria. Alternative coding methods for the most common patterns present in alignments of non-coding DNA are discussed here. Simpler putative synapomorphy assessment will not always correlate to more reliable phylogenetic information because simplicity does not necessarily correlate to the degree of homoplasy. The use of non-coding DNA can result in more laborious coding, but at the same time in more corroborated hypotheses, mirroring their accuracy for phylogenetic inference.  相似文献   

3.
Interpolated markov chains for eukaryotic promoter recognition.   总被引:9,自引:0,他引:9  
MOTIVATION: We describe a new content-based approach for the detection of promoter regions of eukaryotic protein encoding genes. Our system is based on three interpolated Markov chains (IMCs) of different order which are trained on coding, non-coding and promoter sequences. It was recently shown that the interpolation of Markov chains leads to stable parameters and improves on the results in microbial gene finding (Salzberg et al., Nucleic Acids Res., 26, 544-548, 1998). Here, we present new methods for an automated estimation of optimal interpolation parameters and show how the IMCs can be applied to detect promoters in contiguous DNA sequences. Our interpolation approach can also be employed to obtain a reliable scoring function for human coding DNA regions, and the trained models can easily be incorporated in the general framework for gene recognition systems. RESULTS: A 5-fold cross-validation evaluation of our IMC approach on a representative sequence set yielded a mean correlation coefficient of 0.84 (promoter versus coding sequences) and 0.53 (promoter versus non-coding sequences). Applied to the task of eukaryotic promoter region identification in genomic DNA sequences, our classifier identifies 50% of the promoter regions in the sequences used in the most recent review and comparison by Fickett and Hatzigeorgiou ( Genome Res., 7, 861-878, 1997), while having a false-positive rate of 1/849 bp.  相似文献   

4.
Prediction of splice junctions in mRNA sequences.   总被引:8,自引:6,他引:2       下载免费PDF全文
K Nakata  M Kanehisa    C DeLisi 《Nucleic acids research》1985,13(14):5327-5340
A general method based on the statistical technique of discriminant analysis is developed to distinguish boundaries of coding and non-coding regions in nucleic acid sequences. In particular, the method is applied to the prediction of splicing sites in messenger RNA precursors. Information used for discrimination includes consensus sequence patterns around splice junctions, free energy of snRNA and mRNA base pairing, and statistical differences between coding and non-coding regions such as periodic appearance of specific bases in coding regions reflecting the non-random usage of degenerate codons. Given the reading frame of an exon (but not the exon/intron boundaries), the method will predict the following exon, namely, the intron to be excised out. When applied to human sequences in the GenBank database, the method correctly identified 80% of true splice junctions.  相似文献   

5.
MOTIVATION: Accurate prediction of genes in genomes has always been a challenging task for bioinformaticians and computational biologists. The discovery of existence of distinct scaling relations in coding and non-coding sequences has led to new perspectives in the understanding of the DNA sequences. This has motivated us to exploit the differences in the local singularity distributions for characterization and classification of coding and non-coding sequences. RESULTS: The local singularity density distribution in the coding and non-coding sequences of four genomes was first estimated using the wavelet transform modulus maxima methodology. Support vector machines classifier was then trained with the extracted features. The trained classifier is able to provide an average test accuracy of 97.7%. The local singularity features in a DNA sequence can be exploited for successful identification of coding and non-coding sequences. CONTACT: Available on request from bd.kulkarni@ncl.res.in.  相似文献   

6.
Frequency-domain analysis of biomolecular sequences   总被引:7,自引:0,他引:7  
MOTIVATION: Frequency-domain analysis of biomolecular sequences is hindered by their representation as strings of characters. If numerical values are assigned to each of these characters, then the resulting numerical sequences are readily amenable to digital signal processing. RESULTS: We introduce new computational and visual tools for biomolecular sequences analysis. In particular, we provide an optimization procedure improving upon traditional Fourier analysis performance in distinguishing coding from noncoding regions in DNA sequences. We also show that the phase of a properly defined Fourier transform is a powerful predictor of the reading frame of protein coding regions. Resulting color maps help in visually identifying not only the existence of protein coding areas for both DNA strands, but also the coding direction and the reading frame for each of the exons. Furthermore, we demonstrate that color spectrograms can visually provide, in the form of local 'texture', significant information about biomolecular sequences, thus facilitating understanding of local nature, structure and function.  相似文献   

7.
Most of the gene prediction algorithms for prokaryotes are based on Hidden Markov Models or similar machine-learning approaches, which imply the optimization of a high number of parameters. The present paper presents a novel method for the classification of coding and non-coding regions in prokaryotic genomes, based on a suitably defined compression index of a DNA sequence. The main features of this new method are the non-parametric logic and the costruction of a dictionary of words extracted from the sequences. These dictionaries can be very useful to perform further analyses on the genomic sequences themselves. The proposed approach has been applied on some prokaryotic complete genomes, obtaining optimal scores of correctly recognized coding and non-coding regions. Several false-positive and false-negative cases have been investigated in detail, which have revealed that this approach can fail in the presence of highly structured coding regions (e.g., genes coding for modular proteins) or quasi-random non-coding regions (e.g., regions hosting non-functional fragments of copies of functional genes; regions hosting promoters or other protein-binding sequences). We perform an overall comparison with other gene-finder software, since at this step we are not interested in building another gene-finder system, but only in exploring the possibility of the suggested approach.  相似文献   

8.
Heuristic approach to deriving models for gene finding.   总被引:21,自引:2,他引:19       下载免费PDF全文
Computer methods of accurate gene finding in DNA sequences require models of protein coding and non-coding regions derived either from experimentally validated training sets or from large amounts of anonymous DNA sequence. Here we propose a new, heuristic method producing fairly accurate inhomogeneous Markov models of protein coding regions. The new method needs such a small amount of DNA sequence data that the model can be built 'on the fly' by a web server for any DNA sequence >400 nt. Tests on 10 complete bacterial genomes performed with the GeneMark.hmm program demonstrated the ability of the new models to detect 93.1% of annotated genes on average, while models built by traditional training predict an average of 93.9% of genes. Models built by the heuristic approach could be used to find genes in small fragments of anonymous prokaryotic genomes and in genomes of organelles, viruses, phages and plasmids, as well as in highly inhomogeneous genomes where adjustment of models to local DNA composition is needed. The heuristic method also gives an insight into the mechanism of codon usage pattern evolution.  相似文献   

9.
10.
Periodicity in DNA coding sequences: implications in gene evolution   总被引:2,自引:0,他引:2  
In this paper we have employed Fourier analysis of DNA coding and non-coding sequences in an attempt to identify possible patterns in gene sequences. It was found that while intronic sequences show a rather random pattern, coding sequences show periodicities and in particular a periodicity of 3. We were able to reconstruct such patterns by assuming a gene having one codon occurring in about 40% of the sequence. This could indicate that the predominant presence of codons all starting from the same base could confer the observed periodicities. Indeed, it was found that proteins do obey this rule. Implications of this finding in gene evolution are discussed.  相似文献   

11.
A statistical analysis of occurrence of particular nucleotide runs (1 divided by 10 nucleotides long) in DNA sequences of different species has been carried out. There are considerable differences in run distributions in DNA sequences of prokaryotes, invertebrates and vertebrates. Distribution of various types of runs has been found to be different in coding and non-coding sequences. There is an abundance of short runs 1 divided by 2 nucleotides long in coding sequences, and there is a deficiency of such runs in the non-coding regions. However, some interesting exceptions from this rule exist: for run distribution of adenine in prokaryotes and for distribution of purine-pyrimidine runs in eukaryotes. This may be stipulated by the fact that the distribution of runs are predetermined by structural peculiarities of the entire DNA molecule. Runs of guanine or cytosine of three to six nucleotides long occur predominantly in the non-coding DNA regions in eukaryotes, especially in vertebrates.  相似文献   

12.
A fractal method to distinguish coding and non-coding sequences in a complete genome is proposed, based on different statistical behaviors between these two kinds of sequences. We first propose a number sequence representation of DNA sequences. Multifractal analysis is then performed on the measure representation of the obtained number sequence. The three exponents C(-1), C1 and C2 are selected from the result of multifractal analysis. Each DNA may be represented by a point in the three-dimensional space generated by these three-component vectors. It is shown that points corresponding to coding and non-coding sequences in the complete genome of many prokaryotes are roughly distributed in different regions. Fisher's discriminant algorithm can be used to separate these two regions in the spanned space. If the point (C(-1),C1,C2) for a DNA sequence is situated in the region corresponding to coding sequences, the sequence is discriminated as a coding sequence; otherwise, the sequence is classified as a non-coding one. For all 51 prokaryotes we considered , the average discriminant accuracies pc,pnc,qc and qnc reach 72.28%, 84.65%, 72.53% and 84.18%, respectively.  相似文献   

13.
DNA的图形编码是在几何意义下,在不同位置,用不同的标记符号及不同的方向线段,对DNA的序列进行编码.DNA图形编码相对于DNA的字符编码而言,具有直观、简明、形象和便于比较局部DNA序列的相似性等特点。在分析已知各类:DNA的图形表示模式的基础上,提出一种DNA序列的“双符三阶”图形编码,并以此对一些特异DNA编码序列进行分析。DNA图形编码与DNA字符编码呈一一对应关系,具有简便易行、编译方便、形象丰富、便于比较等优点。适用于DNA短序列的相似性检测与分析,在生物信息学上有一定的应用前景。  相似文献   

14.
15.
We study the length distribution functions for the 16 possible distinct dimeric tandem repeats in DNA sequences of diverse taxonomic partitions of GenBank (known human and mouse genomes, and complete genomes of Caenorhabditis elegans and yeast). For coding DNA, we find that all 16 distribution functions are exponential. For non-coding DNA, the distribution functions for most of the dimeric repeats have surprisingly long tails, that fit a power-law function. We hypothesize that: (i) the exponential distributions of dimeric repeats in protein coding sequences indicate strong evolutionary pressure against tandem repeat expansion in coding DNA sequences; and (ii) long tails in the distributions of dimers in non-coding DNA may be a result of various mutational mechanisms. These long, non-exponential tails in the distribution of dimeric repeats in non-coding DNA are hypothesized to be due to the higher tolerance of non-coding DNA to mutations. By comparing genomes of various phylogenetic types of organisms, we find that the shapes of the distributions are not universal, but rather depend on the specific class of species and the type of a dimer.  相似文献   

16.
17.
Local folding in mRNAs is closely associated w ith biological functions. In this study, we reveal the whole distribution of local thermodynamic stability in the complete genome of the poliovirus P3/Leon/37 and the single-stranded RNA sequences that corresponds to the nucleotide sequence of the complete genome sequence (1 667 867 bp) of Helicobacter pylori (H. pylori) strain 26695. Local thermodynamic stability in the RNA sequences is measured by two standard z -scores, significance score and stability score. To estimate the distribution of thermodynamic stability, a model based on the non-central Student's t distribution has been developed. Significant patterns of extremes that are either much more stable or unstable than expected by chance are detected. Our results indicate that the highly stable and statistically more significant folding regions are predominantly in non-coding sequences in the two genome sequences. Moreover, the highly unstable folding regions, on the contrary, are predominantly in the protein coding sequences of H. pylori. The observed differences across the complete genomic sequences are statistically very significant by a chi2-test. These extreme patterns may be useful in searching for target sequences for long-chain antisense RNA and for locating potential RNA functional elements involved in the regulation of gene expression including translation, mRNA localization and metabolism.  相似文献   

18.
We introduce a novel approach for the detection of possible mutations leading to a reading frame (RF) shift in a gene. Deletions and insertions of DNA coding regions are considerable events for genes because an RF shift results in modifications of the extensive region of amino acid sequence coded by a gene. The suggested method is based on the phenomenon of triplet periodicity (TP) in coding regions of genes and its relative resistance to substitutions in DNA sequence. We attempted to extend 326 933 regions of continuous TP found in genes from the KEGG databank by considering possible insertions and deletions. We revealed totally 824 genes where such extension was possible and statistically significant. Then we generated amino acid sequences according to active (KEGG''s) and hypothetically ancient RFs in order to find confirmation of a shift at a protein level. Consequently, 64 sequences have protein similarities only for ancient RF, 176 only for active RF, 3 for both and 581 have no protein similarity at all. We aimed to have revealed lower bound for the number of genes in which a shift between RF and TP is possible. Further ways to increase the number of revealed RF shifts are discussed.  相似文献   

19.
With the exponential growth of genomic sequences, there is an increasing demand to accurately identify protein coding regions (exons) from genomic sequences. Despite many progresses being made in the identification of protein coding regions by computational methods during the last two decades, the performances and efficiencies of the prediction methods still need to be improved. In addition, it is indispensable to develop different prediction methods since combining different methods may greatly improve the prediction accuracy. A new method to predict protein coding regions is developed in this paper based on the fact that most of exon sequences have a 3-base periodicity, while intron sequences do not have this unique feature. The method computes the 3-base periodicity and the background noise of the stepwise DNA segments of the target DNA sequences using nucleotide distributions in the three codon positions of the DNA sequences. Exon and intron sequences can be identified from trends of the ratio of the 3-base periodicity to the background noise in the DNA sequences. Case studies on genes from different organisms show that this method is an effective approach for exon prediction.  相似文献   

20.
One approach to identify potentially important segments of the human genome is to search for DNA regions with nonrandom patterns of human sequence variation. Previous studies have investigated these patterns primarily in and around candidate gene regions. Here, we determined patterns of DNA sequence variation in 2.5 Mb of finished sequence from five regions on human chromosome 21. By sequencing 13 individual chromosomes, we identified 1460 single-nucleotide polymorphisms (SNPs) and obtained unambiguous haplotypes for all chromosomes. For all five chromosomal regions, we observed segments with high linkage disequilibrium (LD), extending from 1.7 to>81 kb (average 21.7 kb), disrupted by segments of similar or larger size with no significant LD between SNPs. At least 25% of the contig sequences consisted of segments with high LD between SNPs. Each of these segments was characterized by a restricted number of observed haplotypes,with the major haplotype found in over 60% of all chromosomes. In contrast, the interspersed segments with low LD showed significantly more haplotype patterns. The position and extent of the segments of high LD with restricted haplotype variability did not coincide with the location of coding sequences. Our results indicate that LD and haplotype patterns need to be investigated with closely spaced SNPs throughout the human genome, independent of the location of coding sequences, to reliably identify regions with significant LD useful for disease association studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号