首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of docosahexaenoic acid (22:6w3) by 15-lipoxygenase activity of washed human platelets was investigated. Platelets produced 17-hydroxydocosahexaenoic acid (HDHE) when incubated with 22:6w3. Similarly, 15-hydroxyeicosatetraenoic acid (HETE) and 13- and 9-hydroxyoctadecadienoic acids (HODD) were produced when incubated with 20:4w6 and 18:2w6, respectively. However, these products were observed only as minor components in the platelet incubation mixture. Control studies with carefully purified platelets and mononuclear cells indicated that these products were formed by the platelets. Chiral phase HPLC analysis indicated that these compounds were mainly in the S configuration with the exception of the 9-HODD, thus, confirming that a lipoxygenase is responsible for their production. The 9-HODD produced by platelets was a racemic mixture.  相似文献   

2.
Lipoxygenation of Docosahexaenoic Acid by the Rat Pineal Body   总被引:3,自引:0,他引:3  
Abstract: Based on the inhibitor profile, production rate, and stereochemical purity of the hydroxylated products, it was demonstrated that lipoxygenation in rat brain occurs only in the pineal. Both positional and stereochemical specificities of the hydroxylation were observed only in pineal, clearly indicating that only the pineal is capable of lipoxygenating polyunsaturated fatty acids among the rat brain regions examined. Cerebral cortex also produced hydroxy products; however, they were racemic mixtures, indicating that peroxidation was responsible for their production. Rat pineal homogenate, obtained after the brain was perfused, metabolized [14C]docosahexaenoic acid ([1–14C]22:6n3) to monohydroxy derivatives, primarily by the 12-and, to a lesser extent, by the 15-lipoxygenase (LO) reaction. The resulting metabolites were 14(S)-and 17(S)-hydroxydocosahexaenoic acid (HDoHE), as determined by reversed-phase HPLC, chiral-phase HPLC, thermospray liquid chromatography-mass spectrometry, and gas chromatography-mass spectrometry. Because blood was removed by perfusion of the brain before incubation, it was clear that the observed LO activity was not due to contamination with blood cell components. The production rate of 17-HDoHE from 22:6n3 was higher than that of 15-hydroxyperoxy-5,8,11,13-eicosatetraenoic acid from 20:4n6, whereas 12-LO activity toward these two substrates was comparable. These monohydroxy metabolites were also detected in the pineal body lipid extract using negative ion chemical ionization mass spectrometry. This is the first observation of endogenous production of hydroxylated compounds in pineal. The ratio of endogenous 15-LO to 12-LO products was considerably higher than that of the in vitro production from exogenous substrate. In some cases, 15-LO products were the major LO metabolites present in the lipid extract of pineal body for both 20:4n6 and 22:6n3. Both 12-and 15-LO activities were recovered mainly in the microsomal plus cytosolic fraction. In addition to monohydroxy products, epoxy, hydroxy derivatives were formed from 22:6n3 by the pineal. The major isomer was identified as 12-hydroxy-13, 14-epoxy-22:5n3. Key Words : Lipoxygenation-Docosahexaenoic acid (22:6n3)—Pineal—Rat brain—Hydroxydocosahexaenoic acid—Hepoxilin-like compound.  相似文献   

3.
Two docosapolyenoic acids (22:5(n-3) and 22:5(n-6)) were isolated from the liver of normal and 18:3(n-3)-deficient trout, respectively. They were prepared by combined thin-layer chromatography (TLC) and reversed-phase high performance liquid chromatography (HPLC). Their purity, checked by capillary gas liquid chromatography, was greater than 95%. Each fatty acid was oxygenated into monohydroxy derivatives by human platelets. The hydroxy compounds were purified by TLC and HPLC and then derivatized for gas chromatography-mass spectrometry analysis. Whereas 22:5(n-6) was only converted into 14-OH-22:5, three hydroxy derivatives (11, 13 and 14) were obtained from 22:5(n-3). However, 13-hydroxy was not formed in the presence of aspirin, indicating that platelet lipoxygenase catalyses the formation of both 11- and 14-hydroxy derivatives from 22:5(n-3), as described previously, from 22:6(n-3). Further studies showed that 22:4(n-6) and 20:5(n-3) were only converted into 14- and 12-hydroxy derivatives. We conclude then that, besides the well-known n-9 oxygenation, lipoxygenase of human platelets is able to catalyse an n-12 oxygenation on docosapolyenoic acids of the n-3 family.  相似文献   

4.
Lipoxygenation in rat brain?   总被引:5,自引:0,他引:5  
It has been previously claimed that rodent brain possesses lipoxygenase activity, based upon the structure of products which were formed from arachidonic acid and the inhibition of this activity by "lipoxygenase inhibitors." Our studies confirm that various positional isomers of hydroxyeicosatetraenoic acids (HETE) are formed (e.g., 15-, 12-, 11-, 9-, 8- and 5-HETE) by brain homogenate and that their production is inhibited by certain lipoxygenase inhibitors, such as nordihydroguaiaretic acid (NDGA) but not by cyclooxygenase or cytochrome P-450 inhibitors. However, stereochemical analysis indicated racemic distributions of these products suggesting that they were not formed by a lipoxygenase enzyme but rather by a peroxidative process. It should also be noted that the presence of 12(S)-lipoxygenase activity could be demonstrated by stereochemical analysis only when the brain was not perfused properly, indicating this activity was due to blood cell contamination. It is known that many lipoxygenase inhibitors are also capable of inhibiting peroxidative reactions apparently due to their free radical scavenging properties. For these reasons, it is essential that the stereochemical purity of purported lipoxygenase products be determined and that previous claims of lipoxygenase activity in mammalian brain be reexamined.  相似文献   

5.
Human platelets incubated in the presence of 54 microM [1-14C]22:6 produced hydroxydocosahexaenoic acid (HDHE) at about half the rate with which 12-hydroxy-5,8,10,14-eicosatetraenoic acid is produced from [1-14C]arachidonic acid. More than 90% of the radioactivity in HDHE was distributed among two major isomers, 14-HDHE and 11-HDHE. The production of HDHEs was unaffected by indomethacin but completely inhibited by 5,8,11,14-heneicosatetraynoic acid, which suggests that the hydroxy fatty acids are produced by lipoxygenase. The proportions of HDHE isomers varied with the concentration of 22:6. The ratio 14-HDHE/11-HDHE was higher at 6.8 microM 22:6 than when platelets were incubated with 54 microM 22:6. It is suggested that the amounts of these isomers produced will depend both on the availability of 22:6 as well as by competition of this acid with other acids for lipoxygenase.  相似文献   

6.
Elongated, highly polyunsaturated derivatives of linoleic acid (18:2 omega-6) and linolenic acid (18:3 omega-3) accumulate in brain, but their sites of synthesis are not fully characterized. To investigate whether neurons themselves are capable of essential fatty acid elongation and desaturation or are dependent upon the support of other brain cells, primary cultures of rat neurons and astrocytes were incubated with [1-14C] 18:2 omega-6, [1-14C]20:4 omega-6, [1-14C]18:3 omega-3, or [1-14C]20:5 omega-3 and their elongation/desaturation products determined. Neuronal cultures were routinely incapable of producing significant amounts of delta 4-desaturase products. They desaturated fatty acids very poorly at every step of the pathway, producing primarily elongation products of the 18- and 20-carbon precursors. In contrast, astrocytes actively elongated and desaturated the 18- and 20-carbon precursors. The major metabolite of 18:2 omega-6 was 20:4 omega-6, whereas the primary products from 18:3 omega-3 were 20:5 omega-3, 22:5 omega-3, and 22:6 omega-3. The majority of the long-chain fatty acids formed by astrocyte cultures, particularly 20:4 omega-6 and 22:6 omega-3, was released into the extracellular fluid. Although incapable of producing 20:4 omega-6 and 22:6 omega-3 from precursor fatty acids, neuronal cultures readily took up these fatty acids from the medium. These findings suggest that astrocytes play an important supportive role in the brain by elongating and desaturating omega-6 and omega-3 essential fatty acid precursors to 20:4 omega-6 and 22:6 omega-3, then releasing the long-chain polyunsaturated fatty acids for uptake by neurons.  相似文献   

7.
M Romano  C N Serhan 《Biochemistry》1992,31(35):8269-8277
Human platelets convert leukocyte-derived leukotriene (LT) A4 to lipoxins during transcellular lipoxin biosynthesis. Here, we examined lipoxin generation in intact human platelets and compared it with that elicited from permeabilized platelets. Conversion of LTA4 to lipoxins by permeabilized cells exceeded (10-15 times) that to peptidoleukotrienes, while intact cells exposed to thrombin generated similar amounts of these two series (LT/LX). Permeabilized platelets also generated 3-5 times more lipoxins than intact cells. Lipoxin A4 (LXA4), lipoxin B4 (LXB4), and their respective all-trans isomers were identified by physical methods including HPLC and GC-MS. Chiral analysis of platelet-derived all-trans-containing LXs revealed that greater than 69.5 +/- 0.5% carried alcohol groups in the R configuration at carbons 6 and 14 (e.g., 11-trans-LXA4 and 8-trans-LXB4), respectively. More than 50% of these all-trans LX were formed by isomerization of native LXA4 and LXB4 during isolation. Lipoxin formation with permeabilized platelets gave an apparent Km of 8.9 microM and Vmax of 83.3 ng/(min-10(9) platelets) with maximal conversion in pH range 7-9. In addition, permeabilized platelets converted 14,15-LTA4 and LTA5, but not LTA3, to lipoxins. Consecutive exposure to LTA4 did not alter LXA4 generation but inhibited LXB4 by 40-50%, suggesting that LXB4 formation can be regulated by suicide inactivation. Unlike platelets, human endothelial cells did not convert LTA4 to lipoxins. These results indicate that lipoxin formation is a major route of LTA4 metabolism in thrombin-activated platelets and those that have undergone a loss of membrane barriers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We have examined the fatty acid substrate specificity of arachidonoyl-CoA synthetase from human platelet membranes. A variety of positional isomers and chain-length analogs of arachidonic acid [20:4(5, 8, 11, 14)] were synthesized, and assayed for their ability to inhibit arachidonoyl-CoA formation or to serve as substrates for the synthetase. The chain-length specificity of the synthetase for delta 8,11,14 trienoic fatty acids was C19 greater than C18 = C20 much greater than C21 greater C22. Inhibition activity by positional isomers of arachidonate was 20:4(5, 8, 11, 14) approximately equal to 20:4(6, 9, 12, 15) = 20:4(7, 10, 13, 16) much greater than 20:4(4, 7, 10, 13), however, Vmax for arachidonate was greater than that for 20:4(6, 9, 12, 15). The enzyme apparently "counts" double bonds from the carboxyl terminus. As counted from the methyl terminus we found that several n-6,-9,-12 fatty acids were ineffective as inhibitors [18:3(6, 9, 12); 19:4)4, 7, 10, 13); 21:3(9, 12, 15)], whereas all methylene-interrupted tri- and tetraenoic fatty acids which contained delta 8 and delta 11 double bonds were potent inhibitors. The delta 11 double bond was best associated with optimal inhibition: 20:3(5, 11, 14) had a lower Ki than 20:3(5, 8, 14). 13-Methyl-20:3(8, 11, 14) did not inhibit the enzyme. Partially purified enzyme from calf brain, depleted of nonspecific long-chain acyl-CoA synthetase, exhibited the same fatty acid specificity as crude platelet enzyme.  相似文献   

9.
Washed cells of normal human ejaculates were incubated with [14C]arachidonic acid (20:4(n - 6] at 37 degrees C for 30-40 min and the main product was characterized as 15(S)-hydroxy-5,8,11,13-eicosatetraenoic acid by reverse phase, straight phase and chiral phase high performance liquid chromatography (HPLC) and by capillary gas chromatography-mass spectrometry. The biosynthesis of 15(S)-hydroxy-5,8,11,13-eicosatetraenoic acid from exogenous 20:4(n - 6) was inhibited by nordihydroguaiaretic acid and abolished by heat inactivation, but it appeared to be unaffected by the ionophore A23187 and Ca2+. Human spermatozoa were partly purified from contaminating material by the swim-up procedure and incubated with 14C-labelled 18:2(n - 6), 20:4(n - 6), 22:5(n - 6) and 22:6(n - 3) for 30-40 min at 37 degrees C. The main radiolabelled products, which were obtained in low yields, co-chromatographed with the Ls (n - 6)-hydroxy fatty acid of each substrate on reverse phase, straight phase and chiral phase HPLC. The (n - 6)-lipoxygenase was also present in ejaculates with oligozoospermia or azoospermia. The seminal fluid contains membrane-surrounded organelles (e.g., 'prostasomes' secreted by the prostate gland) and the (n - 6)-lipoxygenase was present and appeared to be relatively prominent in almost cell-free preparations of organelles of seminal fluid. The (n - 6)-lipoxygenase activity associated with the spermatozoa may thus be explained by the presence of prostasomes or other organelles, which may conceivably bind to the spermatozoon through hydrophobic interactions.  相似文献   

10.
Twenty four oxygenated triterpenoids, including eight pairs of stereoisomers and five pairs of positional isomers, could be separated by reversed phase HPLC. The capacity factors obtained in methanol-water and acetonitrile-water solvent systems made it possible to correlate the molecular polarities due to the presence of multiple oxygenated functional groups in these compounds. It was found that the number and position of functional groups as well as the stereochemistry of these functional groups played important roles in governing the polarity of these lanostanoid acids. The polarity weighting factors were in the following order: 3 beta-OH greater than 3 alpha-OH greater than 3 alpha-OAc greater than 3 beta-OAc. The contribution to polarity due to 15 alpha-OAc and 22 beta-OAc was probably very similar. The unique stereochemical character and eluting sequences of the lanostanoid acids provide information to generate empirical rules for predicting the role of individual polar functional groups in the chromatographic behavior in reversed phase HPLC.  相似文献   

11.
An enantiospecific route for the synthesis of 11,12-dihydroxyeicosatetraenoic acids was developed and used to synthesize 11,12-dihydroxy-5(Z),7(E),9(E),14(Z)-eicosatetraenoic acids. The 11,12-DHETEs were synthesized with the stereochemistry of the hydroxyl group being 11(R),12(S) and 11(S),12(S). The synthetic compounds were used to elucidate the structure of 11,12-DHETEs formed in human platelets by comparison of the chromatographic retention time in HPLC and GC as well as their ion fragmentation pattern in GC-MS. The major 11,12-DHETE formed in human platelets was found to be identical with 11(R),12(S)-dihydroxy-5(Z),7(E),9(E),14(Z)-eicosatetraenoic acid. Two more compounds were tentatively identified as 11(S),12(S)-dihydroxy-5(Z),7(E),9(E),14(Z)-eicosatetraenoic acid and 11,12-dihydroxy-5(E),7(E),9(E),14(Z)-eicosatetraenoic acid. Furthermore, the 11(S),12(S)-dihydroxy-5(Z),7(E),9(E),14(Z)-eicosatetraenoic acid was found to possess biological activity on neutrophil functional responses. However, the major compound, 11(R),12(S)-dihydroxy-5(Z),7(E),9(E),14(Z)-eicosatetraenoic acid, formed in platelets lacks biological activity in the test systems used. The present data further support that 11,12-dihydroxy-eicosatetraenoic acids are formed in human platelets via a leukotriene like mechanism presumably by the 12-lipoxygenase. Furthermore, the biological effects of one of the compounds showed a unique activity profile compared to other lipoxygenase products.  相似文献   

12.
Diacetyl long-chain 1(3)- and 2-acyl-sn-glycerols containing either [9,10-3H]oleic acid or [1-14C]palmitic acid were synthesized by partial hydrolysis of the corresponding labelled triacylglycerols and acetylation. They were obtained in a high degree of stereochemical purity by preparative h.p.l.c. on a column containing a diol bonded phase. Each compound was rapidly metabolized by adipocyte preparations in vitro, and a high proportion of the label was recovered in the unesterified fatty acid and triacylglycerol fractions. Negligible amounts of intermediate products of hydrolysis were detected. Triacylglycerols were formed from [9,10-3H]oleic acid and from diacetyl-1(3)-[9,10-3H]oleoyl glycerol precursors at about the same rate, but the 2-isomer was metabolized rather more slowly. The results were consistent with the hypothesis that essentially complete hydrolysis occurred in the medium or at the plasma membrane, through the actions of lipoprotein lipase and monoacylglycerol lipase, and that subsequent esterification took place within the cell. To confirm that no putative intermediate monoacylglycerols were utilized for triacylglycerol biosynthesis via the monacylglycerol pathway, the positional distributions of fatty acids in triacylglycerols from each substrate were determined. No positional selectivity was observed. It was concluded that monoacylglycerols, of an origin exogenous to the tissue, e.g. those derived from plasma triacylglycerols, were not utilized to a significant degree for triacylglycerol biosynthesis in adipose tissue. The diacetyl derivatives of monoacylglycerols may serve as useful stereochemical probes in studies of triacylglycerol biosynthesis via the monoacylglycerol pathway in other tissues.  相似文献   

13.
The extent of mitochondrial and peroxisomal contribution to beta-oxidation of 18-, 20- and 24-carbon n-3 and n-6 polyunsaturated fatty acids (PUFAs) in intact rat hepatocytes is not fully clear. In this study, we analyzed radiolabeled acid soluble oxidation products by HPLC to identify mitochondrial and peroxisomal oxidation of 24:5n-3, 18- and 20-carbon n-3 and n-6 PUFAs. Mitochondrial fatty acid oxidation produced high levels of ketone bodies, tricarboxylic acid cycle intermediates and CO(2), while peroxisomal beta-oxidation released acetate. Inhibition of mitochondrial fatty acid oxidation with 2-tetradecylglycidic acid (TDGA), high amounts of [14C]acetate from oxidation of 24:5n-3, 18- and 20-carbon PUFAs were observed. In the absence of TDGA, high amounts of [14C]-labeled mitochondrial oxidation products were formed from oxidation of 24:5n-3, 18- and 20-carbon PUFAs. With 18:1n-9, high amounts of mitochondrial oxidation products were formed in the absence of TDGA, and TDGA strongly suppressed the oxidation of this fatty acid. Data of this study indicated that a shift in the partitioning from mitochondrial to peroxisomal oxidation differed for each individual fatty acid and is a specific property of 24:5n-3, 18- and 20-carbon n-3 and n-6 PUFAs.[14C]22:6n-3 was detected with [3-14C]24:5n-3, but not with [1-14C]24:5n-3 as the substrate, while [14C]16:0 was detected with [1-14C]24:5n-3, but not with [3-14C]24:5n-3 as the substrate. Furthermore, the amounts of 14CO(2) were similar when cells were incubated with [3-14C]24:5n-3 versus [1-14C]24:5n-3. These findings indicated that the proportion of 24:5n-3 oxidized in mitochondria was high, and that 24:5n-3 and 24:6n-3 were mostly beta-oxidized only one cycle in peroxisomes.  相似文献   

14.
H Yamasaki  K Shimizu 《Steroids》1973,22(5):637-658
When [7α-3H] dehydroepiandrosterone was incubated with the adrenal homogenates of human fetus at 22 to 26 weeks gestational age, 16α-hydroxydehydroepiandrosterone and/or its sulfate was formed as the only detectable metabolite. The 16α-hydroxylase activity was concentrated in the microsomal fraction of the adrenal homogenate.[1,2-3H]Androstenedione, [4-14C] pregnenolone and [7α-3H] progesterone were also 16α-hydroxylated by incubation with the microsomal fraction. Amoung these substrates, progesterone gave the highest yield of 16α-hydroxylated products. By incubation with the microsomal fraction, formation of following steroids were also established: 6β-hydroxyandrostenedione from androstenedione; 17-hydroxypregnenolone, 17,21-dihydroxypregnenolone and dehydroepiandrosterone from pregnenolone; 17-hydroxy-progesterone, deoxycorticosterone, 11-deoxycortisol and androstenedione from progesterone.  相似文献   

15.
The types of unsaturated fatty acids found in platelet phospholipids must be regulated by a series of controls which include specificity for activation and acylation as well as modification of circulating fatty acids by platelets prior to incubation into phospholipids. In this study we show that washed human platelets not only incorporate [1-14C]6,9,12-18:3, [1-14C]6,9,12,15-18:4, [1-14C]5,8,11-20:3, [1-14C]5,8,11,14-20:4, and [1-14C]5,8,11,14,17-20:5 into their phospholipids but also chain elongate each of these acids with subsequent acylation of the chain elongated products into phospholipids. Platelets incubated alone with 1-14C-labeled 5,8,11-20:3, 5,8,11,14-20:4, 5,8,11,14,17-20:5, 7,10,13,16,19-22:5, or 4,7,10,13,16,19-22:6 incorporated each of these acids into individual phosphoglycerides with phosphatidylinositol having the highest specific activity followed by phosphatidylcholine with phosphatidylserine approximately equal to phosphatidylethanolamine. The incorporation specificity of 4,7,10,13,16,19-22:6 was atypical since it was a relatively poor substrate for acylation into all phospholipids except phosphatidylethanolamine. The 20-carbon acids were better substrates for incorporation into phospholipids than were the 22-carbon compounds. Simultaneous incubation of 10 microM [1-14C]5,8,11,14-20:4 with increasing levels (5 to 15 microM) of each of the above five other 1-14C-labeled acids showed a concentration-dependent increase in the amount of the second fatty acid incorporated into platelet phospholipids. Dietary fat modification thus has the potential of increasing the plasma pool of 22-carbon acids for incorporation into platelets. In addition the activation of 20-carbon eicosanoid precursors by the high affinity platelet activating enzyme (Wilson, D. B., Prescott, S. M. and Majerus, P. W. (1982) J. Biol. Chem. 257, 3510-3515) will yield an acyl-CoA for both acylation and chain elongation followed by subsequent incorporation of 22-carbon acids into phosphoglycerides.  相似文献   

16.
The soil bacterium Stenotrophomonas maltophilia was found to transform various long-chain fatty acids selectively into 3-hydroxy fatty acids of shorter chain length. Their chiral evaluation was performed by multidimensional gas chromatography (MDGC) on modified cyclodextrin phase comparing the enantiodistribution of 1,3-diol formed without loss of stereochemical information from a representative microbial product with those of synthetic (3RS)- and (3S)-1,3-diols. Enantiomeric excesses of 84-98% (R) were determined for the microbially produced 3-hydroxy acids. In addition, the CD exciton chirality method was applied to determine their absolute configuration. Derivatization with 9-anthryldiazomethane and 2-naphthoylimidazole led to the required bichromophoric structures. Their CD spectra displayed a positive first Cotton effect around 254 nm and a negative second Cotton effect around 237 nm, which confirmed the (R)-configuration of the bacterial products.  相似文献   

17.
Abstract: We have recently shown that brain slices are capable of metabolizing arachidonic acid by the epoxy-genase pathway. The purpose of this study was to begin to determine the ability of individual brain cell types to form epoxygenase metabolites. We have examined the astrocyte epoxygenase pathway and have also confirmed metabolism by the cyclooxygenase and lipoxygenase enzyme systems. Cultured rat hippocampal astrocyte homogenate, when incubated with radiolabeled [3H]-arachidonic acid, formed products that eluted in four major groups designated as R17–30, R42–50, R51–82, and R83–90 based on their retention times in reverse-phase HPLC. These fractions were further segregated into as many as 13 peaks by normal-phase HPLC and a second reverse-phase HPLC system. The principal components in each peak were structurally characterized by gas chromatography/electron impact-mass spectrometry. Based on HPLC retention times and gas chromatography/electron impactmass spectrometry analysis, the more polar fractions (R17–30) contained prostaglandin D2 as the major cyclooxygenase product. Minor products included 6-keto prostaglandin F, prostaglandin E2, prostaglandin F, and thromboxane B2. Fractions R42–50, R51–82. and R83–90 contained epoxygenase and lipoxygenase-like products. The major metabolite in fractions R83–90 was 5, 6-epoxyeicosatrienoic acid (EET). Fractions R51–82 contained 14, 15-and 8, 9-EETs, 12-and 5-hydroxyeicosatetraenoic acids, and 8, 9-and 5, 6-dihydroxyeicosatrienoic acids (DHETs). In fractions R42–50, 14, 15-DHET was the major product. When radiolabeled [3H]14, 15-EET was incubated with astrocyte homogenate, it was rapidly metabolized to [3H]14, 15-DHET. The metabolism was inhibited by submicromolar concentration of 4-phenylchalcone oxide, a potent inhibitor of epoxide hydrolase activity. Formation of other polar metabolites such as triols or epoxyalcohols from 14, 15-DHET was not observed. In conclusion, astro-cytes readily metabolize arachidonic acid to 14, 15-EET, 5, 6-EET, and their vicinal-diols. Previous studies suggest these products may affect neuronal function and cerebral blood flow.  相似文献   

18.
Astrocytes convert n-6 fatty acids primarily to arachidonic acid (20:4n-6), whereas n-3 fatty acids are converted to docosapentaenoic (22:5n-3) and docosahexaenoic (22:6n-3) acids. The utilization of 20-, 22- and 24-carbon n-3 and n-6 fatty acids was compared in differentiated rat astrocytes to determine the metabolic basis for this difference. The astrocytes retained 81% of the arachidonic acid ([(3)H]20:4n-6) uptake and retroconverted 57% of the docosatetraenoic acid ([3-(14)C]22:4n-6) uptake to 20:4n-6. By contrast, 68% of the eicosapentaenoic acid ([(3)H]20:5n-3) uptake was elongated, and only 9% of the [3-(14)C]22:5n-3 uptake was retroconverted to 20:5n-3. Both tetracosapentaenoic acid ([3-(14)C]24:5n-3) and tetracosatetraenoic acid ([3-(14)C]24:4n-6) were converted to docosahexaenoic acid (22:6n-3) and 22:5n-6, respectively. Therefore, the difference in the n-3 and n-6 fatty acid products formed is due primarily to differences in the utilization of their 20- and 22-carbon intermediates. This metabolic difference probably contributes to the preferential accumulation of docosahexaenoic acid in the brain.  相似文献   

19.
The principal oxidative metabolites formed from benz[a]anthracene (BA) by the rat liver microsomal monooxygenase system are the 5,6- and 8,9-arene oxides. In order to determine the enantiomeric composition and absolute configuration of these metabolically formed arene oxides, an HPLC procedure has been developed to separate the six isomeric glutathione conjugates obtained synthetically from the individual enantiomeric arene oxides. Both (+)- and (?)-BA 5,6-oxide gave the two possible positional isomers, but only one positional isomer was formed in each case from (+)- and (?)-BA 8,9-oxide. When [14C]-BA was incubated with a highly purified and reconstituted monooxygenase system containing cytochrome P-450c, and glutathione was allowed to react with the arene oxides formed, radio-active adducts were formed predominantly (>97%) from the (+)-(5S,6R) and (+)-(8R,9S) enantiomers. The present results are in accord with theoretical predictions of the steric requirements of the catalytic binding site of cytochrome P-450c.  相似文献   

20.
Platelets metabolize 7,10,13,16,19-docosapentaenoic acid (22:5(n-3] into 11-hydroxy-7,9,13,16,19- and 14-hydroxy-7,10,12,16,19-docosapentaenoic acid via an indomethacin-insensitive pathway. Time-dependent studies with 20 microM substrate show a lag in the synthesis of both the 11- and 14-isomers which was not observed for the synthesis of thromboxane B2 (TXB2), 5,8,10-heptadecatrienoic acid, and 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) from arachidonic acid. When platelets were incubated with increasing concentrations of 22:5(n-3), the 11- and 14-isomers were not produced until the substrate concentration exceeded 5 microM unless arachidonic acid was also added to the incubations. The stimulatory effect of arachidonic acid was not blocked by indomethacin thus suggesting that 12-hydroperoxyeicosatetraenoic acid or 12-HETE derived from arachidonic acid may activate the platelet lipoxygenase(s) which metabolize 22:5(n-3). Incubations containing 20 microM 22:5(n-3) and increasing levels of [1-14C]arachidonic acid show that the (n-3) acid inhibits the synthesis of both 5,8,10-heptadecatrienoic acid and TXB2 from arachidonic acid. At the same time, 12-HETE synthesis increased due to substrate shunting to the lipoxygenase pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号