首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The origin of and relationships among multiple forms of the estrogen receptor from rat uteri were investigated using electrophoretic and conventional hydrodynamic methods of analysis. Evidence is presented that the molybdate-stabilized, multimeric receptor (Stokes radius approximately 70A; S20,w approximately 9.5 S; Mr approximately 290,000) corresponds to an acidic form of the receptor that has relatively high electrophoretic mobility. This discrete form, which appears to represent the untransformed state that does not bind to DNA, was converted to a number of derived forms by exposure to conditions that result in receptor transformation and/or subunit dissociation. In crude cytosol, transformation always generated receptor forms that were excluded from polyacrylamide gels, and it was shown that these are large heterogeneous aggregates. This explains previous failed attempts to analyze the receptor by polyacrylamide gel electrophoresis. Transformation of partially purified, molybdate-stabilized receptor never led to aggregate formation, but resulted instead in the generation of two relatively basic estrogen-binding species of low electrophoretic mobility. These components may represent the free or dissociated estrogen-binding subunits. Together, the results suggest a model for the molybdate-stabilized receptor wherein at least one of its components is an acidic, nonestrogen-binding subunit.  相似文献   

2.
T W Hutchens  C M Li  P K Besch 《Biochemistry》1987,26(18):5608-5616
Estrogen receptors from calf uteri have been analyzed by high-performance size-exclusion chromatography, chromatofocusing, and DNA affinity chromatography using conditions designed to evaluate the relative contribution of hydrophobic interactions between the steroid-binding subunit and other receptor-associated proteins. The single large (untransformed) species of soluble estrogen-receptor consistently (n = 9) found in calf uteri displayed a rapid change in Stokes radius from 8.0 to 3.5 nm upon exposure to elevated ionic strengths (0.4 M KCl). However, equilibration of the estrogen-receptor complex into urea (up to 6 M) did not dissociate the untransformed receptor into the 3.5-nm receptor form (subunit) observed in hypertonic (0.4 M KCl) buffers. Exposure to 6 M urea did result in conversion of the untransformed receptor (8.0 nm) to a 6.0-6.5-nm receptor form not previously observed in either hypotonic or hypertonic buffers. In the presence of both 6 M urea and 0.4 M KCl, the untransformed estrogen-receptor complex was converted to a smaller receptor form intermediate in apparent size (4.5-5.0 nm) to that observed in 6 M urea or 0.4 M KCl alone. The formation of this 4.5-5.0-nm receptor form was partially estrogen dependent as determined by parallel analyses of unliganded receptor in urea/KCl buffer. The urea-induced change in apparent size (8 nm to 6.0-6.5 nm) at low ionic strength was accompanied by little or no detectable change in net surface charge as determined by chromatofocusing but a complete exposure of the DNA-binding site as evidenced by nearly quantitative interaction with DNA-agarose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
A low concentration estrogen-derivatized affinity resin has been used in a rapid, single step purification of the untransformed estrogen receptor from calf uterine cytosols prepared without sodium molybdata. The procedure isolates the Mr 65,000 estrogen receptor in association with the bovine heat shock protein hsp90. Small amounts of proteolyzed receptor ranging in size from Mr 50,000 to 60,000 are also present in the purified extracts. Results from affinity chromatography of receptor cytosols either untreated or presaturated with estradiol suggest that two proteins of Mr 22,000 and 38,000 are co-purified with the untransformed receptor complex and may represent additional nonhormone-binding components of the native receptor form. Some indication of the stability of protein-protein interactions within the oligomeric complex has been derived from differential salt elution studies with heparin-sepharose and affinity gel-immobilized untransformed receptor. On size exclusion high performance liquid chromatography the untransformed complex eluted with a Stokes radius of 75 +/- 2 A (n = 18), but was shown to be sensitive to extended ultracentrifugal analysis dissociating to the receptor homodimer, sedimentation coefficient 5.3 +/- 0.3 s (n = 5). Preliminary data on urea- and heat-induced transformation of the isolated receptor to the DNA-binding state is presented.  相似文献   

4.
The metal-binding properties of partially purified untransformed or salt-dissociated bovine estrogen receptors were studied using zinc-chelated iminodiacetic acid gels. Only the salt-dissociated 5S receptor is retained by the metal-chelated resin, and this interaction is dependent on the presence of dithiothreitol. The untransformed 9S receptor is not retained, indicating that the zinc-interacting amino acid residues may be masked by receptor-associated proteins such as 90K heat-shock protein or because of an unfavorable receptor conformation.  相似文献   

5.
The rate of the 4 to 5 S estrogen-binding protein (EBP) in vitro transformation was measured by sucrose gradient centrifugation analysis. The temperature-activated 4 to 5 S EBP transformation is found to be highly reproducible without loss of [3H]estradiol-binding activity in a buffer containing an excess of [3H]estradiol, 40 mM Tris, 1 mM dithiothreitol, and 1 M urea at pH 7.4. The presence of [3H]estradiol is necessary for the 4 to 5 EBP transformation. A kinetic analysis of the 4 to 5 EBP transformation shows that it is a bimolecular reaction, the dimerization of the 4 S EBP with a second (similar or dissimilar) monomer or subunit. In buffers containing 0.4 M KCl the apparent second order rate constant is 2.3 plus or minus 0-2 times 10-7 M minus 1 min minus 1 at 28 degrees. The reaction is independent of the initial receptor concentration, suggesting that the 4 S EBP is dissociated into monomeric units in buffers of high ionic strength. In buffers without KCl or with 0.1 M KCl the apparent second order rate constant of receptor transformation increases with decreasing receptor concentration. This suggests that the 4 S EBP is associated weakly with another macromolecule (or macromolecules) in buffers of low ionic strength. The rate of 4 to 5 S EBP transformation shows a 200-fold increase between 0 and 35 degrees. The Arrhenius energy of activation is 21.3 kcal mol minus 1 in buffer without KCl and 19.1 kcal mol minus 1 in buffer with 0.4 M KCl. Following the temperature-activated dimerization, the avidity of binding between the 4 S EBP and its complementary subunit is increased, 0.4 M KCl can no longer cause dissociation, and the 5 S EBP dimer appears. This kinetic analysis indicates that the avidity of binding between the subunits of the estrogen receptor is modulated by estradiol, temperature, and ionic strength. We propose that these interactions of the estrogen receptor's subunits reflect conformational changes involved in receptor activation.  相似文献   

6.
E W Bergink  J L Wittliff 《Biochemistry》1975,14(14):3115-3121
[3-H]Estradiol-17beta and [3-H]dihydrotestosterone binding proteins in the cytosol fraction of liver from both male and female Xenopus laevis were characterized by electrophoresis on polyacrylamide gels. These binding proteins, which were indistinguishable based upon their mobilities on gels of different acrylamide concentrations, migrated as single components with a molecular weight of 2.0 x 10-4. Separation of native or sodium dodecyl sulfate denatured specific estrogen-binding components on dodecyl sulfate free acrylamide gels gave similar results, i.e., a single species of molecular weight 2.0-2.5 x 10-4. The same molecular weight also was obtained when cytosol was prepared in the presence of either diisopropyl fluorophosphate or phenylmethanesulfonyl fluoride, protease inhibitors. Evidence that the liver components binding either [3-H]estradiol-17-beta or [3-H]dihydrotestosterone were not plasma contaminants was provided by the observation that the plasma sex-steroid binding globulin of Xenopus had a different mobility when separated by polyacrylamide gel electrophoresis.  相似文献   

7.
Target tissues for steroid hormones are responsive by virtue of and to the extent of their content of functional intracellular receptors. Recent years have seen a shift in considerations of the cellular dynamics and distribution of these receptors, with current views favoring predominant intranuclear localization in the intact cell. This paper summarizes our analyses of the microsomal estrogen and androgen binding capability of rat uterine and ventral prostate tissue, respectively; these studies have revealed a set of high affinity sites that may act as a conduit for estrogen traversing the cell en route to the nucleus. These sites have many properties in common with cytosolic receptors, with the salient difference of a failure to activate to a more avid DNA-binding form under conditions which permit such activation of cytosolic receptors. The microsomal estrogen-binding proteins also have appreciable affinity for progesterone, another distinction from other known cellular estrogen receptor species. Various experimental approaches were employed to demonstrate that the microsomal receptors were not simply cytosol contaminants; the most convincing evidence is the recent successful separation of the cytosolic and microsomal forms by differential ammonium sulfate precipitation. Discrete subfractionation of subcellular components on successive sucrose gradients, with simultaneous assessments of binding capability and marker enzyme concentrations, indicates that the major portion of the binding is localized within the vesicles of the endoplasmic reticulum free of significant plasma membrane contamination. The microsomal receptors are readily solubilized by extraction with high- or low-salt-containing buffers or with steroid. The residual microsomes following such extraction have the characteristics of saturable acceptor sites for cytosolic estrogen-receptor complexes. The extent to which these sites will accept the cytosolic complexes is equal to the concentration of microsomal binding sites extracted. These observations suggest three possible roles for the microsomal receptor-like proteins: (a) modulation of estrogen access to nuclear binding sites; (b) formation of functional complexes which diffuse to other extranuclear sites to alter non-genomic cellular processes; (c) regulation of nuclear concentration of estrogen-receptor complexes by virtue of producing microsomal acceptor sites for uptake of free or loosely associated nuclear complexes, previously thought to exist in the cytoplasm.  相似文献   

8.
Lower assayed levels of heifer uterine estrogen receptor (ER) occur at physiologic ionic strength when ER is separated from [3H]estradiol by Dextran-coated charcoal treatments, or by gel filtration on Sephadex or polyacrylamide resins. The assayed level of charged ER in buffers containing 150-200 mM ionic strength is approximately one-half that of ER levels assayed in buffers either at 0-50 or 400-450 mM ionic strength. Treatment of ER with trypsin or molybdate eliminates this observed reduction. Evidence is presented that the decrease results from a preferential adsorption of ER to the assay resins at 150-200 mM ionic strength. This adsorption is likely to be mediated by a hydrophobic region of the ER, which is removed by trypsin cleavage.  相似文献   

9.
Although rapid signaling by estrogen at the plasma membrane is established, it is controversial as to the nature of the receptor protein. Estrogen may bind membrane proteins comparable to classical nuclear estrogen receptors (ERs), but some studies identify nonclassical receptors, such as G protein-coupled receptor (GPR)30. We took several approaches to define membrane-localized estrogen-binding proteins. In endothelial cells (ECs) from ERalpha/ERbeta combined-deleted mice, estradiol (E2) failed to specifically bind, and did not activate cAMP, ERK, or phosphatidyinositol 3-kinase or stimulate DNA synthesis. This is in contrast to wild-type ECs, indicating the lack of any functional estrogen-binding proteins in ERalpha/ERbeta combined-deleted ECs. To directly determine the identity of membrane and nuclear-localized ER, we isolated subcellular receptor pools from MCF7 cells. Putative ER proteins were trypsin digested and subjected to tandem array mass spectrometry. The output analysis identified membrane and nuclear E2-binding proteins as classical human ERalpha. We also determined whether GPR30 plays any role in E2 rapid actions. MCF7 (ER and GPR30 positive) and SKBR-3 (ER negative, GPR30 positive) cells were incubated with E2. Only MCF7 responded with significantly increased signaling. In MCF7, the response to E2 was not different in cells transfected with small interfering RNA to green fluorescent protein or GPR30. In contrast, interfering RNA to ERalpha or ER inhibition prevented rapid signaling and resulting biology in MCF7. In breast cancer and ECs, nuclear and membrane ERs are the same proteins. Furthermore, classical ERs mediate rapid signals induced by E2 in these cells.  相似文献   

10.
Micromolar concentrations of the proteinase inhibitor, aprotinin, produced a dose-dependent inhibition in the binding capacity of the estrogen receptor from calf uterus. Aprotinin inhibition was greater at 28 degrees C than at 4 degrees C and only occurred when conditions allowed the receptor transformation. When aprotinin was tested in the presence of transformation inhibitors, its effect was no longer seen. The binding capacity of the highly purified estrogen-binding subunit was similarly inhibited.  相似文献   

11.
Receptor-estradiol complexes (RE2) formed at 0 degree C in hypotonic buffers bind poorly to nuclei (nonactivated state); their sedimentation coefficient in low or high salt sucrose density gradients (SDG) is 8 S or 4 S, respectively (untransformed state); estradiol dissociates from untransformed RE2 at a high rate (k-1 = 0.44 min-1). Brief heating (28 degrees C, 30 min) induces activation (increased binding of RE2 to nuclei and polyanions), transformation (formation of receptor dimers which sediment at 6 S in 0.4 M KCl/borate SDG) and RE2 transition into a state from which E2 dissociates at a lower rate (k-2 = 8 X 10(-3) min-1). We have examined the role of arginyl residues in the above changes in receptor properties. It is well established (Patthy, L., and Smith, E. L. (1975) J. Biol. Chem. 250, 557-564; 565-569) that 1,2-cyclohexanedione (1,2-CHD) is a highly specific arginine-modifying agent; in borate buffer at 28 degrees C, but not at 0 degrees C, peptide arginyls are covalently modified. RE2 complexes heated in the presence of 1,2-CHD (50 mM) bind poorly to nuclei; 1,4-cyclohexamedione and 1,2-cyclohexanediol had no effect. This reagent also prevents the temperature-induced transition of RE2 into a state with slow E2 dissociation rates although it does not interfere with heat transformation (formation of 6 S dimer). Modification of heat-activated and transformed RE2 by 1,2-CHD causes a loss in receptor binding to nuclei and alters RE2 from a state with slow into a state with fast E2 dissociation rates, although the receptor remains unaltered in the transformed 6 S state. At 0 degree C, i.e. in the absence of covalent arginyl modification, 1,2-CHD promotes dissociation of the 8 S aggregate into 4.6 S subunits which bind to nuclei to the same extent as heat-transformed control RE2. Heating of the molybdate-stabilized 8 S receptor in the presence of 1,2-CHD yields a nonactivated 8 S receptor (4.6 S on high salt SDG); removal of molybdate and unreacted 1,2-CHD by gel filtration at 0 degree C followed by exposure to high ionic strength causes 8 S to 4 S dissociation; these 4 S subunits, however, do not bind to nuclei, suggesting that their nucleotropic domain was accessible to 1,2-CHD modification while the receptor was in the aggregated 8 S state. It is proposed that the nuclear binding site of the estrogen receptor contains arginyl residues. Furthermore, a distinct set of arginyl residues appears to be related to the estrogen-binding domain; its integrity is required for the heat-induced formation and maintenance of the RE2 state with slow E2 dissociation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The Vervet monkey (Cercopithecus aethiops pygerythrus) uterine estrogen receptor was partially characterised. The effect of the molybdate oxyanion on various molecular properties of the receptor was investigated. Molybdate appeared to affect the subunit structure and apparent heterogeneity of the receptor. Anion exchange chromatography of uterine cytosols yielded two ligand binding subunits in a 1:1 ratio in the absence of sodium molybdate, while only a single labelled complex could be demonstrated in cytosols prepared in molybdate containing buffers. Chromatofocussing of the nonstabilized cytosols revealed substantial receptor heterogeneity (7 peaks) while a much simpler pattern (2 peaks) could be observed in the presence of the molybdate. Likewise, iso-electric focussing of labelled cytosols on agarose gels yielded at least 3 high affinity binding components (pI:6.8, 6.2, 5.9) in the absence and only one major band in the presence of sodium molybdate (pI 5.9).  相似文献   

13.
Our laboratory has previously reported that antiestrogen binding to molybdate-stabilized non-transformed estrogen receptor results in a larger form of the receptor in 0.3 M KCl when compared with estrogen bound receptor. Estradiol promoted the formation of monomers in the presence of 0.3 M KCl whereas antiestrogen appeared to promote dimer formation. We have extended these studies examining the rabbit uterine salt-transformed estrogen receptor partially purified by DEAE-cellulose chromatography. We previously demonstrated that estrogen receptor prepared in this way bound to different sites on partially deproteinized chromatin subfractions or reconstituted chromosomal protein/DNA fractions when the receptor was complexed with estrogen vs antiestrogen. Analysis of these receptor preparations indicated that DEAE-cellulose step-elution resulted in a peak fraction which sedimented as a single 5.9S peak in 5-20% sucrose density gradients containing 0.3 M KCl for receptor bound by the antiestrogens H1285 and trans-hydroxytamoxifen. However, receptor bound by estradiol sedimented as 4.5S. These receptor complexes bound DNA-cellulose indicating that these partially purified receptors were transformed. DEAE rechromatography or agarose gel filtration of the partially purified antiestrogen-receptor complexes resulted in significant dissociation of the larger complex into monomers. Incubations of 5.9S antiestrogen-receptor complexes with antibodies against nontransformed steroid receptor-associated proteins (the 59 and 90 kDa proteins) did not result in the interaction of this larger antiestrogen-receptor complex with these antibodies (obtained from L. E. Faber and D. O. Toft, respectively). Our results support the concept that antiestrogen binding induces a different receptor conformation which could affect monomer-dimer equilibrium, thus rendering the antiestrogen-receptor complex incapable of inducing complete estrogenic responses in target tissues.  相似文献   

14.
15.
There is a wealth of information regarding the import and export of nuclear proteins in general. Nevertheless, the available data that deals with the nucleocytoplasmic movement of steroid hormone receptors remains highly limited. Some research findings reported during the past five years have succeeded in identifying proteins related to the movement of estrogen receptor alpha from the cytoplasm to the nucleus. What is striking in these findings is the facilitatory role of estradiol in the transport process. A similar conclusion has been drawn from the studies on the plasma membrane-to nucleus movement of the alternative form of estrogen receptor, the non-activated estrogen receptor (naER). The internalization of naER from the plasma membrane takes place only in the presence of estradiol. While the gene regulatory functions of ER alpha appear to get terminated following its ubiquitinization within the nucleus, the naER, through its deglycosylated form, the nuclear estrogen receptor II (nER II) continues to remain functional even beyond its existence within the nucleus. Recent studies have indicated the possibility that the estrogen receptor that regulates the nucleo cytoplasmic transport of m RNP is the nERII. This appears to be the result of the interaction between nERII and three proteins belonging to a group of small nuclear ribonucleo proteins (snRNP). The interaction of nERII with two of this protein appears to activate the inherent Mg2+ ATPase activity of the complex, which leads to the exit of the RNP through the nuclear pore complex.  相似文献   

16.
A new antiestrogen affinity ligand for the covalent labeling of estrogen receptors, [3H]desmethylnafoxidine aziridine, has been used to investigate the salt- and temperature-independent formation of DNA-binding estrogen receptor forms from untransformed (300 kilodaltons) receptor. Calf uterine estrogen receptor proteins labeled with [3H]estradiol or [3H]desmethylnafoxidine aziridine were quantitatively transformed (greater than 90%) to their DNA-binding configuration in low ionic strength buffers by brief exposure to 3 M urea at 0 C. The urea effect was hormone-dependent and partially reversible. The transformed receptors were purified (ca 250-fold) by affinity chromatography on single-stranded DNA-agarose in the continued presence of 3 M urea to prevent transformation reversal. Scatchard analyses revealed a single class of high affinity radioligand binding sites (Kd = 0.34 nM) unchanged by urea-induced transformation and purification. The DNA-binding receptor form labeled with [3H]desmethylnafoxidine aziridine was stable as a probable dimer in 3 M urea with 0.4 M KCl and displayed no evidence of size (Stokes radius 7.3 to 7.5 nm; 4.2 to 4.3 S; Mr = 136,800) heterogeneity. Sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis indicated the presence of an intact 67 kDa steroid-binding receptor subunit. Reverse-phase chromatography of the covalently labeled receptor on C4 and phenyl stationary phases revealed no evidence of structural heterogeneity. The surface charge of the estrogen- and antiestrogen-receptor complexes, however, was distinctly different in both the presence and absence of 3 M urea. Thus, exposure to urea was an effective salt- and temperature-independent means for achieving the complete transformation of receptor to its stable DNA-binding dimer configuration. The ligand-induced differences in receptor surface charge and the urea effects on DNA-binding (but not hormone-binding) suggest that both electrostatic and hydrophobic or hydrogen bonding receptor domains are influenced by ligand binding.  相似文献   

17.
Rapid purification of calf uterine estrogen receptor (ER) to near homogeneity has been accomplished by use of sequence-specific DNA affinity resin. Very high selectivity for the estrogen receptor is achieved through the use of DNA-Sepharose containing eight tandem copies of a consensus estrogen response element (ERE) DNA sequence. The highly purified ER prepared by this new scheme may be labeled economically with ligands of high specific activity. This purification scheme selects for intact receptors retaining function in both estrogen-binding and DNA-binding domains. Purified receptor has an electrophoretic mobility consistent with a molecular weight of 68,000, sediments as a 5S species on sucrose gradients, and reacts with antibody specific to the human estrogen receptor.  相似文献   

18.
Human estrogen receptor forms multiple protein-DNA complexes   总被引:12,自引:0,他引:12  
A baculovirus expression system was used to overproduce the human estrogen receptor in insect cells. The estrogen receptor made in this system is full-length, binds estrogen specifically, and is recognized by a monoclonal antibody to the human estrogen receptor. The recombinant estrogen receptor binds the estrogen response element (ERE) in both the absence and presence of estrogen if the binding is carried out in the absence of Mg2+. In the presence of Mg2+, the estrogen receptor binds the ERE in a hormone-dependent fashion. This effect is more pronounced at higher temperatures. Tamoxifen, a nonsteroidal anti-estrogen, is able to stimulate ERE binding to the same extent and under the same conditions as estradiol. Estradiol stimulates formation of an estrogen receptor-ERE complex with an increased mobility in native gels as compared with the complex formed without hormone or with tamoxifen. These results demonstrate that specific DNA binding of the estrogen receptor is not absolutely dependent on the presence of hormone and that estradiol but not tamoxifen is able to induce a change in the estrogen receptor. This differential effect of estradiol and tamoxifen may be important in understanding the role of the receptor to activate target genes differentially.  相似文献   

19.
There is a wealth of information regarding the import and export of nuclear proteins in general. Nevertheless, the available data that deals with the nucleocytoplasmic movement of steroid hormone receptors remains highly limited. Some research findings reported during the past five years have succeeded in identifying proteins related to the movement of estrogen receptor from the cytoplasm to the nucleus. What is striking in these findings is the facilitatory role of estradiol in the transport process. A similar conclusion has been drawn from the studies on the plasma membrane-to nucleus movement of the alternative form of estrogen receptor, the non-activated estrogen receptor (naER). The internalization of naER from the plasma membrane takes place only in the presence of estradiol. While the gene regulatory functions of ER appear to get terminated following its ubiquitinization within the nucleus, the naER, through its deglycosylated form, the nuclear estrogen receptor II (nER II) continues to remain functional even beyond its existence within the nucleus. Recent studies have indicated the possibility that the estrogen receptor that regulates the nucleo cytoplasmic transport of m RNP is the nERII. This appears to be the result of the interaction between nERII and three proteins belonging to a group of small nuclear ribonucleo proteins (snRNP). The interaction of nERII with two of this protein appears to activate the inherent Mg2+ ATPase activity of the complex, which leads to the exit of the RNP through the nuclear pore complex.  相似文献   

20.
We have investigated the involvement of hydrophobic receptor domains during transformation of the native estrogen receptor to a form(s) with high affinity for immobilized DNA and ATP. In the presence of 6 M urea the intact estrogen-receptor complex was completely (greater than 90%, n = 12) transformed into a DNA-binding configuration but only partially (35-45%, n = 8) transformed into an ATP-binding state. Similar experiments performed with unliganded receptor preparations further distinguished the receptor's DNA and ATP binding properties. While the urea-induced increase in receptor affinity for DNA-agarose was estrogen-dependent, the urea-induced increase in affinity for ATP-agarose was steroid-independent. This is the first direct evidence that hydrophobic receptor domains may be involved in the steroid-dependent exposure of the DNA binding site. This event is partially reversible and suggests that electrostatic interactions alone may not be sufficient to accurately describe receptor recognition of specific DNA acceptor sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号