首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein oxidation and tyrosine nitration are two major post-translational modifications of protein by reactive nitrogen oxide species, which are mainly produced by peroxynitrite and heme peroxidases (hemin)-H(2)O(2)-NO(2)(-) system. We report herein some novel phenomena between hemin-H(2)O(2)-NO(2)(-) and 3-morpholinosydnonimine hydrochloride (SIN-1)-mediated oxidation and nitration reactions of glutamate dehydrogenase (GDH). Hemin-H(2)O(2) could effectively induce GDH protein oxidation and reduce its activity. Although the addition of low concentration of nitrite promoted protein oxidation, protein oxidation was weakened with the increase of nitrite concentration, meanwhile, tyrosine nitration was increased and the enzyme activity was partially restored. However, with the increase of SIN-1 concentration, protein oxidation and tyrosine nitration were increased, enzyme activity was decreased. The presence of desferrioxamine and/or catechin inhibit tyrosine nitration both in hemin-H(2)O(2)-NO(2)(-) and in SIN-1, but they promoted protein oxidation and reduced the enzyme activity in hemin-H(2)O(2)-NO(2)(-) system, while inhibited protein oxidation and recover the enzyme activity in SIN-1 system. These results reveal both hemin-H(2)O(2)-NO(2)(-) and SIN-1 can cause inactivation of GDH through protein oxidation and tyrosine nitration, but the impact of the effect of protein oxidation (not thiol oxidation) on enzyme activity is stronger than that of protein tyrosine nitration. Moreover, mass spectrometric analysis indicated that nitrated tyrosine residues by hemin-H(2)O(2)-NO(2)(-) were Tyr262 and Tyr471 while by SIN-1 were Tyr401 and Tyr493. It meant that protein oxidation and tyrosine nitration of GDH induced by hemin-H(2)O(2)-NO(2)(-) were different from those induced by SIN-1.  相似文献   

2.
Proteins are targets of reactive nitrogen species such as peroxynitrite and nitrogen dioxide. Among the various amino acids in proteins, tryptophan residues are especially susceptible to attack by reactive nitrogen species. We carried out experiments on the reactions of peroxynitrite and other reactive nitrogen species with N-acetyl-L-tryptophan under various conditions. Four major products were identified as 1-nitroso-N-acetyl-L-tryptophan, 1-nitro-N-acetyl-L-tryptophan, 6-nitro-N-acetyl-L-tryptophan, and N-acetyl-N'-formyl-L-kynurenine on the basis of their mass and UV spectra. The reactions with SIN-1 (a peroxynitrite generator), Angeli's salt (a nitroxyl donor), and spermine NONOate (a nitric oxide donor) generated the nitroso derivative but not the nitro derivatives. A myeloperoxidase-H(2)O(2)-NO(2)(-) system generated the nitro derivatives but not the nitroso derivative. Under physiological conditions 6-nitro-N-acetyl-L-tryptophan was stable, whereas the 1-nitroso and 1-nitro derivatives decomposed with half-lives of 1.5 and 18 h, respectively. After treatment with various reactive nitrogen species, bovine serum albumin was enzymatically hydrolyzed and analyzed for 6-nitro-L-tryptophan and 3-nitro-L-tyrosine by HPLC with electrochemical detection. Levels of 6-nitro-L-tryptophan and 3-nitro-L-tyrosine were similar in the nitrated protein. 6-Nitro-L-tryptophan in proteins can be measured as an additional biomarker of protein nitration.  相似文献   

3.
The iron chelating agent desferrioxamine inhibits peroxynitrite-mediated oxidations and attenuates nitric oxide and oxygen radical-dependent oxidative damage both in vitro and in vivo. The mechanism of protection is independent of iron chelation and has remained elusive over the past decade. Herein, stopped-flow studies revealed that desferrioxamine does not react directly with peroxynitrite. However, addition of peroxynitrite to desferrioxamine in both the absence and the presence of physiological concentrations of CO2 and under excess nitrite led to the formation of a one-electron oxidation product, the desferrioxamine nitroxide radical, consistent with desferrioxamine reacting with the peroxynitrite-derived species carbonate (CO3*-) and nitrogen dioxide (*NO2) radicals. Desferrioxamine inhibited peroxynitrite-dependent free radical-mediated processes, including tyrosine dimerization and nitration, oxyhemoglobin oxidation in the presence of CO2, and peroxynitrite plus carbonate-dependent chemiluminescence. The direct two-electron oxidation of glutathione by peroxynitrite was unaffected by desferrioxamine. The reactions of desferrioxamine with CO3*- and *NO2 were unambiguously confirmed by pulse radiolysis studies, which yielded second-order rate constants of 1.7 x 10(9) and 7.6 x 10(6) M(-1) s(-1), respectively. Desferrioxamine also reacts with tyrosyl radicals with k = 6.3 x 10(6) M(-1) s(-1). However, radical/radical combination reactions between tyrosyl radicals or of tyrosyl radical with *NO2 outcompete the reaction with desferrioxamine and computer-assisted simulations indicate that the inhibition of tyrosine oxidation can be fully explained by scavenging of the peroxynitrite-derived radicals. The results shown herein provide an alternative mechanism to account for some of the biochemical and pharmacological actions of desferrioxamine via reactions with CO3*- and *NO2 radicals.  相似文献   

4.
Human recombinant MnSOD and CuZnSOD were both inactivated when exposed to simultaneous fluxes of superoxide (JO(2)(*-)) and nitric oxide (J*NO). The inactivation was also observed with varying J*NO/JO(2)(*-) ratios. Protein-derived radicals were detected in both CuZn and MnSOD by immuno-spin trapping. The formation of protein radicals was followed by tyrosine nitration in the case of MnSOD. When MnSOD was exposed to J*NO and JO(2)(*-) in the presence of uric acid, a scavenger of peroxynitrite-derived free radicals, nitration was decreased but inactivation was not prevented. On the other hand, glutathione, known to react with both peroxynitrite and nitrogen dioxide, totally protected MnSOD from inactivation and nitration on addition of authentic peroxynitrite but, notably, it was only partially inhibitory in the presence of the more biologically relevant J*NO and JO(2)(*-). The data are consistent with the direct reaction of peroxynitrite with the Mn center and a metal-catalyzed nitration of Tyr-34 in MnSOD. In this context, we propose that inactivation is also occurring through a *NO-dependent nitration mechanism. Our results help to rationalize MnSOD tyrosine nitration observed in inflammatory conditions in vivo in the presence of low molecular weight scavengers such as glutathione that otherwise would completely consume nitrogen dioxide and prevent nitration reactions.  相似文献   

5.
Formation of 3-nitrotyrosine by the reaction between reactive nitrogen species (RNS) and tyrosine residues in proteins has been analyzed extensively and it is used widely as a biomarker of pathophysiological and physiological conditions mediated by RNS. In contrast, few studies on the nitration of tryptophan have been reported. This review provides an overview of the studies on tryptophan modifications by RNS and points out the possible importance of its modification in pathophysiological and physiological conditions. Free tryptophan can be modified to several nitrated products (1-, 4-, 5-, 6-, and 7-), 1-N-nitroso product, and several oxidized products by reaction with various RNS, depending on the conditions used. Among them, 1-N-nitrosotryptophan and 6-nitrotryptophan (6-NO(2)Trp) have been found as the abundant products in the reaction with peroxynitrite, and 6-NO(2)Trp has been the most abundant product in the reaction with the peroxidase/hydrogen peroxide/nitrite systems. 6-NO(2)Trp has also been observed as the most abundant nitrated product of the reactions between peroxynitrite or myeloperoxidase/hydrogen peroxide/nitrite and tryptophan residues both in human Cu,Zn-superoxide dismutase and in bovine serum albumin, as well as the reaction of peroxynitrite with myoglobin and hemoglobin. Several oxidized products have also been identified in the modified Cu,Zn-SOD. However, no 1-N-nitrosotryptophan and 1-N-nitrotryptophan has been observed in the proteins reacted with peroxynitrite or the myeloperoxidase/H(2)O(2)/nitrite system. The modification of tryptophan residues in proteins may occur at a more limited number of sites in vivo than that of tyrosine residues, since tryptophan residues are more buried inside proteins and exist less frequently in proteins, generally. However, surface-exposed tryptophan residues tend to participate in the interaction with the other molecules, therefore the modification of those tryptophans may result in modulation of the specific interaction of proteins and enzymes with other molecules.  相似文献   

6.
NAD(P)H acts as a two-electron reductant in physiological, enzyme-controlled processes. Under nonenzymatic conditions, a couple of one-electron oxidants easily oxidize NADH to the NAD(.) radical. This radical reduces molecular oxygen to the superoxide radical (O-(2)) at a near to the diffusion-controlled rate, thereby subsequently forming hydrogen peroxide (H(2)O(2)). Because peroxynitrite can act as a one-electron oxidant, the reaction of NAD(P)H with both authentic peroxynitrite and the nitric oxide ((. )NO) and O-(2) releasing compound 3-morpholinosydnonimine N-ethylcarbamide (SIN-1) was studied. Authentic peroxynitrite oxidized NADH with an efficiency of approximately 25 and 8% in the absence and presence of bicarbonate/carbon dioxide (HCO(3)(-)/CO(2)), respectively. NADH reacted 5-100 times faster with peroxynitrite than do the known peroxynitrite scavengers glutathione, cysteine, and tryptophan. Furthermore, NADH was found to be highly effective in suppressing peroxynitrite-mediated nitration reactions even in the presence of HCO(3)(-)/CO(2). Reaction of NADH with authentic peroxynitrite resulted in the formation of NAD(+) and O-(2) and, thus, of H(2)O(2) with yields of about 3 and 10% relative to the added amounts of peroxynitrite and NADH, respectively. Peroxynitrite generated in situ from SIN-1 gave virtually the same results; however, two remarkable exceptions were recognized. First, the efficiency of NADH oxidation increased to 60-90% regardless of the presence of HCO(3)(-)/CO(2), along with an increase of H(2)O(2) formation to about 23 and 35% relative to the amounts of added SIN-1 and NADH. Second, and more interesting, the peroxynitrite scavenger glutathione (GSH) was needed in a 75-fold surplus to inhibit the SIN-1-dependent oxidation of NADH half-maximal in the presence of HCO(3)(-)/CO(2). Similar results were obtained with NADPH. Hence, peroxynitrite or radicals derived from it (such as, e.g. the bicarbonate radical or nitrogen dioxide) indeed oxidize NADH, leading to the formation of NAD(+) and, via O-(2), of H(2)O(2). When peroxynitrite is generated in situ in the presence of HCO(3)(-)/CO(2), i.e. under conditions mimicking the in vivo situation, NAD(P)H effectively competes with other known scavengers of peroxynitrite.  相似文献   

7.
Alpha-lipoic acid (LA) and dihydrolipoic acid (DHLA) may have a role as antioxidants against nitric oxide-derived oxidants. We previously reported that peroxynitrite reacts with LA and DHLA with second-order rate constants of 1400 and 500 M(-1) s(-1), respectively, but indicated that these direct reactions are not fast enough to protect against peroxynitrite-mediated damage in vivo. Moreover, the mechanism of the reaction of peroxynitrite with LA has been recently challenged (J. Biol. Chem.279:9693-9697; 2004). Pulse radiolysis studies indicate that LA and DHLA react with peroxynitrite-derived nitrogen dioxide (*NO2) (k2 = 1.3 x 10(6) and 2.9 x 10(7) M(-1) s(-1), respectively) and carbonate radicals (CO(3-)) (k2 = 1.6 x 10(9) and 1.7 x 10(8) M(-1) s(-1), respectively). Carbonate radical-mediated oxidation of LA led to the formation of the potent one-electron oxidant LA radical cation. LA inhibited peroxynitrite-mediated nitration of tyrosine and of a hydrophobic tyrosine analog, N-t-BOC L-tyrosine tert-butyl ester (BTBE), incorporated into liposomes but enhanced tyrosine dimerization. Moreover, while LA competitively inhibited the direct oxidation of glutathione by peroxynitrite, it was poorly effective against the radical-mediated thiol oxidation. The mechanisms of reaction defined herein allow to rationalize the biochemistry of peroxynitrite based on direct and free radical-mediated processes and contribute to the understanding of the antioxidant actions of LA and DHLA.  相似文献   

8.
Inducible nitric oxide synthetase plays an essential role in insulin resistance induced by a high-fat diet. The reaction of nitric oxide with superoxide leads to the formation of peroxynitrite (ONOO-), which can modify several proteins. In this study, we investigated whether peroxynitrite impairs insulin-signalling pathway. Our experiments showed that 3-(4-morpholinyl)sydnonimine hydrochloride (SIN-1), a constitutive producer of peroxynitrite, dose-dependently inhibited insulin-stimulated glucose uptake. While SIN-1 did not affect the insulin receptor protein level and tyrosine phosphorylation, it reduced the insulin receptor substrate-1 (IRS-1) protein level, and IRS-1 associated phosphatidylinositol-3 kinase (PI-3 kinase) activity. Although SIN-1 did not induce Ser307 phosphorylation of IRS-1, tyrosine nitration of IRS-1 was detected in SIN-1-treated-Rat1 fibroblasts expressing human insulin receptors. Mass spectrometry showed that peroxynitrite induced at least four nitrated tyrosine residues in rat IRS-1, including Tyr939, which is critical for association of IRS-1 with the p85 subunit of PI-3 kinase. Our results suggest that peroxynitrite reduces the IRS-1 protein level and decreases phosphorylation of IRS-1 concurrent with nitration of its tyrosine residues.  相似文献   

9.
Peroxynitrite is a reactive nitrogen species that can mediate protein tyrosine nitration, inactivating many proteins. We show that yeast mitochondrial peroxiredoxin (Prx1p), which belongs to the group 1-Cys-Prx, has thioredoxin-dependent peroxynitrite reductase activity. This activity was characterised in vitro with the recombinant mitochondrial Prx1p, the thioredoxin reductase Trr2p and the thioredoxin Trx3p, using a generator of peroxynitrite (SIN-1). Purified mitochondria from wild-type and null Prx1p or Trx3p yeast strains, exposed to SIN-1, showed a differential inactivation of manganese-containing superoxide dismutase activity. The above yeast strains were exposed to SIN-1 and examined under confocal microscopy. Prx1p or Trx3p-null cells showed a greater accumulation of peroxynitrite than wild-type ones. Our results indicate that this 1-Cys-Prx is a peroxynitrite reductase activity that uses reducing equivalents from NADPH through the mitochondrial thioredoxin system. Therefore, mitochondrial 1-Cys-peroxiredoxin/thioredoxin system constitutes an essential antioxidant defence against oxidative and nitrosative stress in yeast mitochondria.  相似文献   

10.
Mitochondria are primary loci for the intracellular formation and reactions of reactive oxygen and nitrogen species including superoxide (O???), hydrogen peroxide (H?O?) and peroxynitrite (ONOO?). Depending on formation rates and steady-state levels, the mitochondrial-derived short-lived reactive species contribute to signalling events and/or mitochondrial dysfunction through oxidation reactions. Among relevant oxidative modifications in mitochondria, the nitration of the amino acid tyrosine to 3-nitrotyrosine has been recognized in vitro and in vivo. This post-translational modification in mitochondria is promoted by peroxynitrite and other nitrating species and can disturb organelle homeostasis. This study assesses the biochemical mechanisms of protein tyrosine nitration within mitochondria, the main nitration protein targets and the impact of 3-nitrotyrosine formation in the structure, function and fate of modified mitochondrial proteins. Finally, the inhibition of mitochondrial protein tyrosine nitration by endogenous and mitochondrial-targeted antioxidants and their physiological or pharmacological relevance to preserve mitochondrial functions is analysed.  相似文献   

11.
Accumulating evidence suggests that enhanced peroxynitrite formation occurs during diabetes. This report describes the effect of peroxynitrite on insulin receptor (IR) function. Addition of peroxynitrite to purified IR resulted in concentration-dependent tyrosine nitration and thiol oxidation. Interestingly, the basal and insulin-stimulated IR autophosphorylation and tyrosine kinase activity were upregulated at low peroxynitrite concentrations, but downregulated at high peroxynitrite concentrations. Concomitantly, peroxynitrite dramatically reduced 125I-insulin binding capacity and phosphotyrosine phosphatase activity of IR preparations. Moreover, SIN-1 administration decreased blood glucose levels in normal mice via upregulation of IR/IRS-1 tyrosine phosphorylation. In contrast, SIN-1 markedly increased blood glucose levels in diabetic mice concomitant with downregulation of IR/IRS-1 tyrosine phosphorylation. Taken together, these data provide new insights regarding how peroxynitrite influences IR function in vitro and in vivo, suggesting that peroxynitrite plays a dual role in regulation of IR autophosphorylation and tyrosine kinase activity, and SIN-1 has hyperglycemic effect in diabetic mice.  相似文献   

12.
Abstract

Protein tyrosine nitration is an oxidative postranslational modification that can affect protein structure and function. It is mediated in vivo by the production of nitric oxide-derived reactive nitrogen species (RNS), including peroxynitrite (ONOO?) and nitrogen dioxide (?NO2). Redox-active transition metals such as iron (Fe), copper (Cu), and manganese (Mn) can actively participate in the processes of tyrosine nitration in biological systems, as they catalyze the production of both reactive oxygen species and RNS, enhance nitration yields and provide site-specificity to this process. Early after the discovery that protein tyrosine nitration can occur under biologically relevant conditions, it was shown that some low molecular weight transition-metal centers and metalloproteins could promote peroxynitrite-dependent nitration. Later studies showed that nitration could be achieved by peroxynitrite-independent routes as well, depending on the transition metal-catalyzed oxidation of nitrite (NO2?) to ?NO2 in the presence of hydrogen peroxide. Processes like these can be achieved either by hemeperoxidase-dependent reactions or by ferrous and cuprous ions through Fenton-type chemistry. Besides the in vitro evidence, there are now several in vivo studies that support the close relationship between transition metal levels and protein tyrosine nitration. So, the contribution of transition metals to the levels of tyrosine nitrated proteins observed under basal conditions and, specially, in disease states related with high levels of these metal ions, seems to be quite clear. Altogether, current evidence unambiguously supports a central role of transition metals in determining the extent and selectivity of protein tyrosine nitration mediated both by peroxynitrite-dependent and independent mechanisms.  相似文献   

13.
Peroxynitrite and nitrogen dioxide (NO2) are reactive nitrogen species that have been implicated as causal factors in neurodegenerative conditions. Peroxynitrite-induced nitration of tyrosine residues in tyrosine hydroxylase (TH) may even be one of the earliest biochemical events associated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced damage to dopamine neurons. Exposure of TH to peroxynitrite or NO2 results in nitration of tyrosine residues and modification of cysteines in the enzyme as well as inactivation of catalytic activity. Dopamine (DA), its precursor 3,4-dihydroxyphenylalanine, and metabolite 3,4-dihydroxyphenylacetic acid completely block the nitrating effects of peroxynitrite and NO2 on TH but do not relieve the enzyme from inhibition. o-Quinones formed in the reaction of catechols with either peroxynitrite or NO2 react with cysteine residues in TH and inhibit catalytic function. Using direct, real-time evaluation of tyrosine nitration with a green fluorescent protein-TH fusion protein stably expressed in intact cells (also stably expressing the human DA transporter), DA was also found to prevent NO2-induced nitration while leaving TH activity inhibited. These results show that peroxynitrite and NO2 react with DA to form quinones at the expense of tyrosine nitration. Endogenous DA may therefore play an important role in determining how DA neurons are affected by reactive nitrogen species by shifting the balance of their effects away from tyrosine nitration and toward o-quinone formation.  相似文献   

14.
Nitration of proteins by peroxynitrite may alter protein function. We hypothesized that reactive nitrogen species modulate fibronectin-induced fibroblast migration. To test this hypothesis, we evaluated fibroblast migration induced by fibronectin incubated with and without peroxynitrite. Peroxynitrite attenuated fibronectin-induced fibroblast migration in a dose-dependent manner but did not attenuate complement-activated serum-induced fibroblast migration. The reducing agents, deferoxamine and dithiothreitol (DTT), and L-tyrosine reversed the inhibition by peroxynitrite. PAPA-NONOate, a nitric oxide (NO) donor, and superoxide generated by the action of xanthine oxidase on lumazine or xanthine, also showed an inhibitory effect on fibroblast migration. The peroxynitrite generator, 3-morpholinosydnonimine (SIN-1), caused a concentration-dependent inhibition of fibroblast migration. Peroxynitrite reduced fibronectin binding to fibroblasts and resulted in nitrotyrosine formation. These findings are consistent with nitration of tyrosine by peroxynitrite with subsequent inhibition of fibronectin binding to fibroblasts and suggest that peroxynitrite may play a role in regulation of fibroblast migration.  相似文献   

15.
In a series of heme and non-heme proteins the nitration of tyrosine residues was assessed by complete pronase digestion and subsequent HPLC-based separation of 3-nitrotyrosine. Bolus addition of peroxynitrite caused comparable nitration levels in all tested proteins. Nitration mainly depended on the total amount of tyrosine residues as well as on surface exposition. In contrast, when superoxide and nitrogen monoxide (NO) were generated at equal rates to yield low steady-state concentrations of peroxynitrite, metal catalysis seemed to play a dominant role in determining the sensitivity and selectivity of peroxynitrite-mediated tyrosine nitration in proteins. Especially, the heme-thiolate containing proteins cytochrome P450(BM-3) (wild type and F87Y variant) and prostacyclin synthase were nitrated with high efficacy. Nitration by co-generated NO/O(2)(-) was inhibited in the presence of superoxide dismutase. The NO source alone only yielded background nitration levels. Upon changing the NO/O(2)(-) ratio to an excess of NO, a decrease in nitration in agreement with trapping of peroxynitrite and derived radicals by NO was observed. These results clearly identify peroxynitrite as the nitrating species even at low steady-state concentrations and demonstrate that metal catalysis plays an important role in nitration of protein-bound tyrosine.  相似文献   

16.
Mitochondria are the primary locus for the generation of reactive nitrogen species including peroxynitrite and subsequent protein tyrosine nitration. Protein tyrosine nitration may have important functional and biological consequences such as alteration of enzyme catalytic activity. In the present study, mouse liver mitochondria were incubated with peroxynitrite, and the mitochondrial proteins were separated by 1D and 2D gel electrophoresis. Nitrotyrosinylated proteins were detected with an anti-nitrotyrosine antibody. One of the major proteins nitrated by peroxynitrite was carbamoyl phosphate synthetase 1 (CPS1) as identified by LC-MS protein analysis and Western blotting. The band intensity of nitration normalized to CPS1 was increased in a peroxynitrite concentration-dependent manner. In addition, CPS1 activity was decreased by treatment with peroxynitrite in a peroxynitrite concentration- and time-dependent manner. The decreased CPS1 activity was not recovered by treatment with reduced glutathione, suggesting that the decrease of the CPS1 activity is due to tyrosine nitration rather than cysteine oxidation. LC-MS analysis of in-gel digested samples, and a Popitam-based modification search located 5 out of 36 tyrosine residues in CPS1 that were nitrated. Taken together with previous findings regarding CPS1 structure and function, homology modeling of mouse CPS1 suggested that nitration at Y1450 in an α-helix of allosteric domain prevents activation of CPS1 by its activator, N-acetyl-l-glutamate. In conclusion, this study demonstrated the tyrosine nitration of CPS1 by peroxynitrite and its functional consequence. Since CPS1 is responsible for ammonia removal in the urea cycle, nitration of CPS1 with attenuated function might be involved in some diseases and drug-induced toxicities associated with mitochondrial dysfunction.  相似文献   

17.
Muscle glycogen phosphorylase (GP) is a key enzyme in glucose metabolism, and its impairment can lead to muscle dysfunction. Tyrosine nitration of glycogen phosphorylase occurs during aging and has been suggested to be involved in progressive loss of muscle performance. Here, we show that GP (in its T and R form) is irreversibly impaired by exposure to peroxynitrite, a biological nitrogen species known to nitrate reactive tyrosine residues, and to be involved in physiological and pathological processes. Kinetic and biochemical analysis indicated that irreversible inactivation of GP by peroxynitrite is due to the fast (k(inact)=3 x 10(4) M(-1) s(-1)) nitration of a unique tyrosine residue of the enzyme. Endogenous GP was tyrosine nitrated and irreversibly inactivated in skeletal muscle cells upon exposure to peroxynitrite, with concomitant impairment of glycogen mobilization. Ligand protection assays and mass spectrometry analysis using purified GP suggested that the peroxynitrite-dependent inactivation of the enzyme could be due to the nitration of Tyr613, a key amino acid of the allosteric inhibitor site of the enzyme. Our findings suggest that GP functions may be regulated by tyrosine nitration.  相似文献   

18.
High temperature (HT) is considered a major abiotic stress that negatively affects both vegetative and reproductive growth. Whereas the metabolism of reactive oxygen species (ROS) is well established under HT, less is known about the metabolism of reactive nitrogen species (RNS). In sunflower (Helianthus annuus L.) seedlings exposed to HT, NO content as well as S-nitrosoglutathione reductase (GSNOR) activity and expression were down-regulated with the simultaneous accumulation of total S-nitrosothiols (SNOs) including S-nitrosoglutathione (GSNO). However, the content of tyrosine nitration (NO(2) -Tyr) studied by high-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS) and by confocal laser scanning microscope was induced. Nitroproteome analysis under HT showed that this stress induced the protein expression of 13 tyrosine-nitrated proteins. Among the induced proteins, ferredoxin-NADP reductase (FNR) was selected to evaluate the effect of nitration on its activity after heat stress and in vitro conditions using 3-morpholinosydnonimine (SIN-1) (peroxynitrite donor) as the nitrating agent, the FNR activity being inhibited. Taken together, these results suggest that HT augments SNOs, which appear to mediate protein tyrosine nitration, inhibiting FNR, which is involved in the photosynthesis process.  相似文献   

19.
Nitration of protein tyrosine residues to 3-nitrotyrosine (NO2Tyr) serves as both a marker and mediator of pathogenic reactions of nitric oxide (*NO), with peroxynitrite (ONOO-) and leukocyte peroxidase-derived nitrogen dioxide (*NO2) being proximal mediators of nitration reactions in vivo. Cytochrome c is a respiratory and apoptotic signaling heme protein localized exofacially on the inner mitochondrial membrane. We report herein a novel function for cytochrome c as a catalyst for nitrite (NO2-) and hydrogen peroxide (H2O2)-mediated nitration reactions. Cytochrome c catalyzes both self- and adjacent-molecule (hydroxyphenylacetic acid, Mn-superoxide dismutase) nitration via heme-dependent mechanisms involving tyrosyl radical and *NO2 production, as for phagocyte peroxidases. Although low molecular weight phenolic nitration yields were similar for cytochrome c and the proteolytic fragment of cytochrome c microperoxidase-11 (MPx-11), greater extents of protein nitration occurred when MPx-11 served as catalyst. Partial proteolysis of cytochrome c increased both the peroxidase and nitrating activities of cytochrome c. Extensive tyrosine nitration of Mn-superoxide dismutase occurred when exposed to either cytochrome c or MPx-11 in the presence of H2O2 and NO2-, with no apparent decrease in catalytic activity. These results reveal a post-translational tyrosine modification mechanism that is mediated by an abundant hemoprotein present in both mitochondrial and cytosolic compartments. The data also infer that the distribution of specific proteins capable of serving as potent catalysts of nitration can lend both spatial and molecular specificity to biomolecule nitration reactions.  相似文献   

20.
In this study, we investigated the effects of various nitrogen oxide (NO(x)) species on the extent of prostaglandin H(2) synthase-1 (PGHS-1) nitration in purified protein and in vascular smooth muscle cells. We also examined PGHS-1 activity under these conditions and found the degree of nitration to correlate inversely with enzyme activity. In addition, since NO(x) species are thought to invoke damage during the pathogenesis of atherosclerosis, we examined human atheromatous tissue for PGHS-1 nitration. Both peroxynitrite and tetranitromethane induced Tyr nitration of purified PGHS-1, whereas 1-hydroxy-2-oxo-3-(N-methyl-aminopropyl)-3-methyl-1-triazene (NOC-7; a nitric oxide-releasing compound) did not. Smooth muscle cells treated with peroxynitrite showed PGHS-1 nitration. The extent of nitration by specific NO(x) species was determined by electrospray ionization mass spectrometry. Tetranitromethane was more effective than peroxynitrite, NOC-7, and nitrogen dioxide at nitrating a tyrosine-containing peptide (12%, 5%, 1%, and <1% nitration, respectively). Nitrogen dioxide and, to a lesser extent, peroxynitrite, induced dityrosine formation. Using UV/Vis spectroscopy, it was estimated that the reaction of PGHS-1 with excess peroxynitrite yielded two nitrated tyrosines/PGHS-1 subunit. Finally, atherosclerotic tissue obtained from endarterectomy patients was shown to contain nitrated PGHS-1. Thus, prolonged exposure to elevated levels of peroxynitrite may cause oxidative damage through tyrosine nitration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号