首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Advanced glycation end products play major roles in diabetic complications. They act via their receptor RAGE to induce inflammatory genes such as cyclooxygenase-2 (COX-2). We examined the molecular mechanisms by which the RAGE ligand, S100b, induces COX-2 in monocytes. S100b significantly increased COX-2 mRNA accumulation in THP-1 monocytes at 2 h via mRNA stability. This was further confirmed by showing that S100b increased stability of luciferase-COX-2 3'-UTR mRNA. Chromatin immunoprecipitation and RNA immunoprecipitation revealed that S100b decreased occupancy of the DNA/RNA-binding protein, heterogeneous nuclear ribonuclear protein K (hnRNPK), at the COX-2 promoter but simultaneously increased its binding to the COX-2 3'-UTR. S100b treatment promoted the translocation of nuclear hnRNPK to cytoplasm, whereas a cytoplasmic translocation-deficient hnRNPK mutant inhibited S100b-induced COX-2 mRNA stability. Small interfering RNA-mediated specific knockdown of hnRNPK blocked S100b-induced COX-2 mRNA stability, whereas on the other hand, overexpression of hnRNPK increased S100b-induced COX-2 mRNA stability. S100b promoted the release of entrapped COX-2 mRNA from cytoplasmic processing bodies, sites of mRNA degradation. Furthermore, S100b significantly down-regulated the expression of a key microRNA, miR-16, which can destabilize COX-2 mRNA by binding to its 3'-UTR. MiR-16 inhibitor oligonucleotides increased, whereas, conversely, miR-16 mimic oligonucleotides decreased COX-2 mRNA stability in monocytes, further supporting the inhibitory effects of miR-16. Interestingly, hnRNPK knockdown increased miR-16 binding to COX-2 3'-UTR, indicating a cross-talk between them. These new results demonstrate that diabetic stimuli can efficiently stabilize inflammatory genes via opposing actions of key RNA-binding proteins and miRs.  相似文献   

2.
3.
To further understand the regulatory mechanisms involved in the process of angiogenesis, the present study was designed to determine the expression and regulation of interferon gamma-inducible protein 10 (IP-10) in peripheral blood monocytes and human umbilical vein endothelial cells (HUVECs). We found that the interaction of monocytes with HUVECs resulted in synergistic increases in IP-10 expression and secretion, which consequently inhibited endothelial tube formation in vitro. Induction of IP-10 was mediated via specific cell surface molecules, as indicated by the finding that IP-10 secretion was significantly inhibited by anti-CD40 ligand antibody, and to a lesser extent by anti-CD40 antibody. Furthermore, we examined the effects of soluble mediators, such as inflammatory and immune cytokines on IP-10 secretion. Addition of interleukin (IL)-1, as well as interferon gamma, induced a marked augmentation of IP-10 secretion by unstimulated monocytes, unstimulated HUVECs, and co-cultures of the two cell types. In contrast, IL-10, recognized as an anti-inflammatory cytokine, significantly inhibited IP-10 secretion by co-cultures. Our results suggest that the interaction of monocytes with endothelial cells results in synergistic increases in IP-10 expression and secretion, which contribute to the regulation of angiogenesis and initiation of inflammatory vascular diseases.  相似文献   

4.
This study was designed to evaluate the effects of dimerumic acid (DMA) on receptor for advanced glycation endproducts (RAGE) signal activation and THP-1 monocyte inflammation treated with S100b, a specific ligand of RAGE. We found that DMA inhibited inflammatory cytokine production via upregulation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and alleviated oxidative stress through attenuation of p47phox translocation to the membrane of S100b-treated THP-1 monocytes. We found that DMA activated Nrf2 mediated by the p38 kinase pathway in THP-1 monocytes. However, anti-inflammatory activity of DMA was attenuated by Nrf2 siRNA treatment. In an animal model, methylglyoxal (MG; 200 mg/kg bw) was chosen to induce diabetes in Balb/C mice (6 weeks) in this work. The in vivo verification of anti-inflammation in peripheral blood mononuclear cells by DMA treatment was confirmed by tumor necrosis factor-α and interleukin-1β measurements. Oral glucose tolerance test, insulin tolerance test, hyperinsulinemia, and hyperglycemia were improved in MG-treated mice by DMA treatment and these effects were greater than those of silymarin and N-acetylcysteine. Furthermore, DMA increased hepatic glyoxalase mRNA and glutathione mediated by Nrf2 activation to metabolize MG into d-lactic acid, thereby reducing serum and hepatic AGE levels and suppressing inflammatory factor generation in MG-treated mice. However, DMA did not exert the antiglycation activity in MG–bovine serum albumin incubation. Taken together, the results indicate that DMA is a novel antioxidant and Nrf2 activator that lowers AGE levels and may prove to be an effective treatment for diabetes.  相似文献   

5.
We hypothesized that impaired nitric oxide (NO)-dependent dilation (endothelial dysfunction) in type 2 diabetes results, in part, from elevated production of superoxide (O(2)(*-)) induced by the interaction of advanced glycation end products (AGE)/receptor for AGE (RAGE) and TNF-alpha signaling. We assessed the role of AGE/RAGE and TNF-alpha signaling in endothelial dysfunction in type 2 diabetic (Lepr(db)) mice by evaluation of endothelial function in isolated coronary resistance vessels of normal control (nondiabetic, m Lepr(db)) and diabetic mice. Although dilation of vessels to the endothelium-independent vasodilator sodium nitroprusside (SNP) was not different between diabetic and control mice, dilation to the endothelium-dependent agonist acetylcholine (ACh) was reduced in diabetic vs. control mice. The activation of RAGE with RAGE agonist S100b eliminated SNP-potentiated dilation to ACh in Lepr(db) mice. Administration of a soluble form of RAGE (sRAGE) partially restored dilation in diabetic mice but did not affect dilation in control mice. The expression of RAGE in coronary arterioles was markedly increased in diabetic vs. control mice. We also observed in diabetic mice that augmented RAGE signaling augmented expression of TNF-alpha, because this increase was attenuated by sRAGE or NF-kappaB inhibitor MG132. Protein and mRNA expression of NAD(P)H oxidase subunits including NOX-2, p22(phox), and p40(phox) increased in diabetic compared with control mice. sRAGE significantly inhibited the expression of NAD(P)H oxidase in diabetic mice. These results indicate that AGE/RAGE signaling plays a pivotal role in regulating the production/expression of TNF-alpha, oxidative stress, and endothelial dysfunction in type 2 diabetes.  相似文献   

6.
7.
Proper distribution of immune cells in the uterus is a prerequisite for successful implantation and subsequent placentation, but biochemical signals that govern such events have not been well characterized. In the present study, the cDNA of a chemokine, interferon (IFN)-gamma-inducible protein 10 kDa (IP-10), was identified from a cDNA subtraction study between uterine endometrial tissues from Day 17 pregnant and Day 15 cyclic ewes. The effect of IFN-tau on IP-10 expression and the involvement of IP-10 in the recruitment of immune cells were then investigated. Northern blot analysis revealed that large amounts of IP-10 mRNA were present during conceptus attachment to maternal endometrium and early placentation. IP-10 mRNA was localized to monocytes distributed in the subepithelial stroma of pregnant but not cyclic uteri. This finding was supported by the discovery of IP-10 mRNA expression in monocytes but not in lymphocytes, uterine epithelial cells, or stromal cells. Moreover, the expression of IP-10 mRNA by the monocytes was stimulated by IFN-alpha, IFN-gamma, and IFN-tau in a dose-dependent manner, but the expression of IP-10 mRNA by the endometrial explants was most stimulated by IFN-tau. In a chemotaxis assay, migration of peripheral blood mononuclear cells was stimulated by the addition of IFN-tau stimulated-endometrial culture medium, and the effect was significantly reduced by neutralization with an anti-IP-10 antibody. These results suggest that endometrial IP-10 regulated by conceptus IFN-tau regulates recruitment and/or distribution of immune cells seen in the early pregnant uterus.  相似文献   

8.
IFN-gamma-inducible protein-10 (IP-10) is a chemokine, which plays an important role in mediating inflammation by attracting activated T cells, and it has been demonstrated in inflammatory skin diseases and cutaneous T cell lymphomas. Keratinocytes can abundantly produce IP-10 mRNA after IFN-gamma treatment. In this study we explored possibilities to downregulate IP-10 expression using human cultured keratinocytes as a model system. Decreased IP-10 mRNA levels were found using specific inhibitors of protein kinase (PK)-C (H-7 and Calphostin C). Moreover, depletion of PK-C by pretreatment of the cells with phorbol myristate (PMA) also down-regulated IP-10 mRNA expression. In addition, elevated cAMP levels were shown to inhibit IP-10 mRNA expression as could be concluded from experiments with forskolin and W-7, substances which, directly or indirectly, raise the intracellular cAMP level. With Genistein, an inhibitor of tyrosine kinase, the IFN-gamma-induced IP-10 mRNA expression was also found to be diminished. These data suggest that inhibitors of the IP-10 mRNA expression in cultured keratinocytes may be potentially of clinical relevance to suppress inflammatory processes in the skin.  相似文献   

9.
10.
IP-10, but not RANTES,is upregulated by leptin in monocytic cells   总被引:1,自引:0,他引:1  
We and others have previously shown that leptin has direct effects on the function of monocytes and macrophages. Since obesity is associated with an increased cardiovascular risk, as well as with markedly elevated circulating leptin levels, we examined whether leptin has any pro-inflammatory effects on the function of monocytes. Leptin strongly enhanced the expression and secretion of the interferon-gamma-inducible protein (IP-10) in a human monocytic cell line, as well as in peripheral blood mononuclear cells. In contrast, no significant effect on other inflammatory proteins was observed, such as metalloproteinases and other chemokines. In summary, we have demonstrated that leptin selectively induces the expression and secretion of IP-10 in human monocytic cells, potentially contributing to the vascular complications associated with hyperleptinemic obesity in humans.  相似文献   

11.

Objective

In diabetes, vascular dysfunction is characterized by impaired endothelial function due to increased oxidative stress. Empagliflozin, as a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i), offers a novel approach for the treatment of type 2 diabetes by enhancing urinary glucose excretion. The aim of the present study was to test whether treatment with empagliflozin improves endothelial dysfunction in type I diabetic rats via reduction of glucotoxicity and associated vascular oxidative stress.

Methods

Type I diabetes in Wistar rats was induced by an intravenous injection of streptozotocin (60 mg/kg). One week after injection empagliflozin (10 and 30 mg/kg/d) was administered via drinking water for 7 weeks. Vascular function was assessed by isometric tension recording, oxidative stress parameters by chemiluminescence and fluorescence techniques, protein expression by Western blot, mRNA expression by RT-PCR, and islet function by insulin ELISA in serum and immunohistochemical staining of pancreatic tissue. Advanced glycation end products (AGE) signaling was assessed by dot blot analysis and mRNA expression of the AGE-receptor (RAGE).

Results

Treatment with empagliflozin reduced blood glucose levels, normalized endothelial function (aortic rings) and reduced oxidative stress in aortic vessels (dihydroethidium staining) and in blood (phorbol ester/zymosan A-stimulated chemiluminescence) of diabetic rats. Additionally, the pro-inflammatory phenotype and glucotoxicity (AGE/RAGE signaling) in diabetic animals was reversed by SGLT2i therapy.

Conclusions

Empagliflozin improves hyperglycemia and prevents the development of endothelial dysfunction, reduces oxidative stress and improves the metabolic situation in type 1 diabetic rats. These preclinical observations illustrate the therapeutic potential of this new class of antidiabetic drugs.  相似文献   

12.
The receptor for advanced-glycation-end-products (RAGE) has been implicated as a pro-inflammatory factor in chronic inflammatory conditions such as diabetes mellitus and rheumatoid arthritis. The aim of this study was to investigate the inhibitory effect of the soluble-RAGE (sRAGE), the extracellular domain of RAGE, on RAGE expression and NF-κB translocation in human-salivary gland-cell-lines (HSG). Cells were stimulated with agonist S100A4, fusion protein of RAGE encompassing the extracellular domain of RAGE (ex-RAGE), ex-RAGE followed by S100A4, or S100A4 followed by ex-RAGE. Our study indicates that RAGE expression was highest at 150 µg/µl of S100A4 and efficiently down-regulated by 1.8-fold (P < 0.05) when ex-RAGE was incubated prior to agonist S100A4. RAGE protein was also consistently down-regulated by 20–40% with pre-incubation of ex-RAGE. More importantly, nuclear translocation of p65 and p52 of NF-κB by S100A4 was inhibited in the presence of ex-RAGE, confirming anti-inflammatory function of ex-RAGE. In conclusion, ex-RAGE down-regulates RAGE expression and inhibits p65 and p52 activation in HSG, providing evidence that ex-RAGE functions as a “decoy” to RAGE–ligand interaction and thus potentially dampening inflammatory conditions. J. Cell. Physiol. 221: 430–434, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

13.
Chemokines play an essential role in the progression of rheumatoid arthritis (RA). In the present study we examined the expression and regulatory mechanisms of IFN-gamma inducible protein (IP)-10 in RA synovitis. RA synovial fluid contained greater amounts of IP-10 than did synovial fluid from patients with osteoarthritis. Immunolocalization analysis indicated that IP-10 was associated mainly with infiltrating macrophage-like cells, and fibroblast-like cells in the RA synovium. The interaction of activated leukocytes with fibroblast-like synoviocytes resulted in marked increases in IP-10 expression and secretion. Moreover, induction of IP-10 was mediated via specific adhesion molecules, as indicated by the finding that both anti-integrin (CD11b and CD18) and intercellular adhesion molecule-1 antibodies significantly inhibited IP-10 induction. These results suggest that IP-10 expression within inflamed joints appears to be regulated not only by inflammatory cytokines but also by the physical interaction of activated leukocytes with fibroblast-like synoviocytes, and that IP-10 may contribute to the recruitment of specific subpopulations of T cells (Th1 type) from the bloodstream into the synovial joints.  相似文献   

14.
The receptor for advanced glycation end products (RAGE), a multiligand receptor of the immunoglobulin superfamily, has been implicated in the inflammatory response, diabetic angiopathy and neuropathy, neurodegeneration, cell migration, tumor growth, neuroprotection, and neuronal differentiation. We show here that (i) RAGE is expressed in skeletal muscle tissue and its expression is developmentally regulated and (ii) RAGE engagement by amphoterin (HMGB1), a RAGE ligand, in rat L6 myoblasts results in stimulation of myogenic differentiation via activation of p38 mitogen-activated protein kinase (MAPK), up-regulation of myogenin and myosin heavy chain expression, and induction of muscle creatine kinase. No such effects were detected in myoblasts transfected with a RAGE mutant lacking the transducing domain or myoblasts transfected with a constitutively inactive form of the p38 MAPK upstream kinase, MAPK kinase 6, Cdc42, or Rac-1. Moreover, amphoterin counteracted the antimyogenic activity of the Ca(2+)-modulated protein S100B, which was reported to inhibit myogenic differentiation via inactivation of p38 MAPK, and basic fibroblast growth factor (bFGF), a known inhibitor of myogenic differentiation, in a manner that was inversely related to the S100B or bFGF concentration and directly related to the extent of RAGE expression. These data suggest that RAGE and amphoterin might play an important role in myogenesis, accelerating myogenic differentiation via Cdc42-Rac-1-MAPK kinase 6-p38 MAPK.  相似文献   

15.
RAGE and its ligands in retinal disease   总被引:1,自引:0,他引:1  
RAGE, the receptor for advanced glycation endproducts (AGEs), is a multiligand signal transduction receptor of the immunoglobulin superfamily of cell surface molecules that has been implicated in the pathogenesis of diabetic complications, neurodegenerative diseases, inflammatory disorders, and cancer. These diverse biologic disorders reflect the multiplicity of ligands capable of cellular interaction via RAGE that include, in addition to AGEs, amyloid-beta (Abeta) peptide, the S100/calgranulin family of proinflammatory cytokines, and amphoterin, a member of the High Mobility Group Box (HMGB) DNA-binding proteins. In the retina, RAGE expression is present in neural cells, the vasculature, and RPE cells, and it has also been detected in pathologic cellular retinal responses including epiretinal and neovascular membrane formation. Ligands for RAGE, in particular AGEs, have emerged as relevant to the pathogenesis of diabetic retinopathy and age-related macular disease. While the understanding of RAGE and its role in retinal dysfunction with aging, diabetes mellitus, and/or activation of pro-inflammatory pathways is less complete compared to other organ systems, increasing evidence indicates that RAGE can initiate and sustain significant cellular perturbations in the inner and outer retina. For these reasons, antagonism of RAGE interactions with its ligands may be a worthwhile therapeutic target in such seemingly disparate, visually threatening retinal diseases as diabetic retinopathy, age-related macular degeneration, and proliferative vitreoretinopathy.  相似文献   

16.
17.
S100A12 is a member of the S100 protein family, which are intracellular calcium-binding proteins. Although there are many reports on the involvement of S100A12 in inflammatory diseases, its presence in osteoarthritic cartilage has not been reported. The purpose of this study was to investigate the expression of S100A12 in human articular cartilage in osteoarthritis (OA) and to evaluate the role of S100A12 in human OA chondrocytes. We analyzed S100A12 expression by immunohistochemical staining of cartilage samples obtained from OA and non-OA patients. In addition, chondrocytes were isolated from knee cartilage of OA patients and treated with recombinant human S100A12. Real-time RT-PCR was performed to analyze mRNA expression. Protein production of matrix metalloproteinase 13 (MMP-13) and vascular endothelial growth factor (VEGF) in the culture medium were measured by ELISA. Immunohistochemical analyses revealed that S100A12 expression was markedly increased in OA cartilages. Protein production and mRNA expression of MMP-13 and VEGF in cultured OA chondrocytes were significantly increased by treatment with exogenous S100A12. These increases in mRNA expression and protein production were suppressed by administration of soluble receptor for advanced glycation end products (RAGE). Both p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) inhibitors also suppressed the increases in mRNA expression and protein production of MMP-13 and VEGF. We demonstrated marked up-regulation of S100A12 expression in human OA cartilages. Exogenous S100A12 increased the production of MMP-13 and VEGF in human OA chondrocytes. Our data indicate the possible involvement of S100A12 in the development of OA by up-regulating MMP-13 and VEGF via p38 MAPK and NF-κB pathways.  相似文献   

18.
Chemokines play an essential role in the progression of rheumatoid arthritis (RA). In the present study we examined the expression and regulatory mechanisms of IFN-γ inducible protein (IP)-10 in RA synovitis. RA synovial fluid contained greater amounts of IP-10 than did synovial fluid from patients with osteoarthritis. Immunolocalization analysis indicated that IP-10 was associated mainly with infiltrating macrophage-like cells, and fibroblast-like cells in the RA synovium. The interaction of activated leukocytes with fibroblast-like synoviocytes resulted in marked increases in IP-10 expression and secretion. Moreover, induction of IP-10 was mediated via specific adhesion molecules, as indicated by the finding that both anti-integrin (CD11b and CD18) and intercellular adhesion molecule-1 antibodies significantly inhibited IP-10 induction. These results suggest that IP-10 expression within inflamed joints appears to be regulated not only by inflammatory cytokines but also by the physical interaction of activated leukocytes with fibroblast-like synoviocytes, and that IP-10 may contribute to the recruitment of specific subpopulations of T cells (Th1 type) from the bloodstream into the synovial joints.  相似文献   

19.
The immunosuppressant Protosappanin A (PrA), isolated from the medicinal herb, promotes cardiac allograft survival, diminishes inflammatory cell infiltration, and inhibits interferon γ-induced protein 10 kDa (IP-10) mRNA expression in rats cardiac grafts. Binding of the chemokine IP-10 to its cognate receptor, CXCR3, plays crucial roles in allograft immunity, especially by mediating the recruitment of effector T cells to allografted tissues. In this study, we attempted to determine whether PrA-mediated inhibition of IP-10 contributes to the effect of reduced T cell infiltration into cardiac allograft within a rat model. Administration of PrA (25 mg/kg daily) via oral gavage following heart transplantation significantly reduced the increase of IP-10 mRNA level in allograft and prevented IP-10 secretion by peripheral blood mononuclear cells (PBMC) isolated from recipient rats seven days posttransplantation. Furthermore, in vitro experiments demonstrated that PrA addition to control PBMC prevented IP-10 secretion. Chemotactic migration assays were utilized to evaluate recipient T cell migration towards PBMC supernatant. PrA administration impaired PBMC supernatant-induced T cell migration. Additional in vitro experiments revealed that PrA slightly reduced naïve T cell migration towards chemokines. The presence of IP-10 in PBMC supernatant prevented PrA from reducing T cell migration in PrA-treated recipients. Neither CXCR3 chemokine ligand Mig nor non-CXCR3 chemokine ligand SDF-1 had any effect on T cell migration in PrA-treated recipients. The addition of anti-CXCR3 antibody restored PrA-mediated inhibition of T cell migration. Immunofluorescence microscopy showed that IP-10 was expressed mainly in CD68 positive infiltrating monocytes. Furthermore, PrA consistently reduced CXCR3+T cell infiltration into cardiac allografts. The reduced intensity of CXCR3 staining in PrA-treated allografts contributed to the previously depressed naïve T cell migrating activity induced by PrA. Collectively, these data indicate that PrA inhibition of IP-10 activity reduced recipient T cell migration and infiltration of cardiac allografts, thus partially explaining the immunosuppressive effect of PrA.  相似文献   

20.
Ligation of the receptor for advanced glycation end products (RAGE) occurs during inflammation. Engagement of RAGE results in enhanced expression of addressins and it is therefore, not surprising that previous studies have shown a role of RAGE/ligand interactions in immune responses including cell/cell contact but the role of RAGE in spontaneous autoimmunity has not been clearly defined. To study the role of RAGE/ligand interactions in autoimmune diabetes, we tested the ability of soluble RAGE, a scavenger of RAGE ligands, in late stages of diabetes development in the NOD mouse-disease transferred with diabetogenic T cells and recurrent disease in NOD/scid recipients of syngeneic islet transplants. RAGE expression was detected on CD4(+), CD8(+), and B cells from diabetic mice and transferred to NOD/scid recipients. RAGE and its ligand, S100B, were found in the islets of NOD/scid mice that developed diabetes. Treatment of recipient NOD/scid mice with soluble RAGE prevented transfer of diabetes and delayed recurrent disease in syngeneic islet transplants. RAGE blockade was associated with increased expression of IL-10 and TGF-beta in the islets from protected mice. RAGE blockade reduced the transfer of disease with enriched T cells, but had no effect when diabetes was transferred with the activated CD4(+) T cell clone, BDC2.5. We conclude that RAGE/ligand interactions are involved in the differentiation of T cells to a mature pathogenic phenotype during the late stages of the development of diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号