首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Non-occlusal, buccal tooth microwear variability has been studied in 68 fossil humans from Europe and the Near East. The microwear patterns observed suggest that a major shift in human dietary habits and food processing techniques might have taken place in the transition from the Middle to the Late Pleistocene populations. Differences in microwear density, average length, and orientation of striations indicate that Middle Pleistocene humans had more abrasive dietary habits than Late Pleistocene populations. Both dietary and cultural factors might be responsible for the differences observed. In addition, the Middle Paleolithic Neanderthal specimens studied show a highly heterogeneous pattern of microwear when compared to the other samples considered, which is inconsistent with a hypothesis of all Neanderthals having a strictly carnivorous diet. The high density of striations observed in the buccal surfaces of several Neanderthal teeth might be indicative of the inclusion of plant foods in their diet. The buccal microwear variability observed in the Neanderthals is compatible with an overall exploitation of both plant and meat foods on the basis of food availability. A preliminary analysis of the relationship between buccal microwear density and climatic conditions prevailing in Europe during the Late Pleistocene has been attempted. Cold climatic conditions, as indicated by oxygen isotope stage data, seem to be responsible for higher densities of microwear features, whereas warmer periods could correspond to a reduced pattern of scratch density. Such a relationship would be indicative of less abrasive dietary habits, perhaps more meat dependent, during warmer periods.  相似文献   

2.
Buccal-dental microwear depends on the abrasive content of chewed foodstuffs and can reveal long-term dietary trends in human populations. However, in vivo experimental analyses of buccal microwear formation processes are scarce. Here, we report the effects of an abrasive diet on microwear rates in two adult volunteers at intervals of 8 days over a period of 1 month and document long-term turnover over 5 consecutive years in the same subjects under an ad libitum Mediterranean diet. Buccal microwear was analyzed on mandibular first molars using high-resolution replicas and scanning electron microscopy. Microwear turnover was assessed by recording the scratches lost and gained at each time point. Our results indicate that scratch formation on enamel surfaces increased with a highly abrasive diet compared to both pre-test and post-test ad libitum dietary controls. In the long-term analysis, scratch turnover was higher than expected, but no significant long-term trends in microwear density or length were observed, because microwear formation was compensated by scratch disappearance. Our results confirm that buccal microwear patterns on mandibular molars show a dynamic formation process directly related to the chewing of abrasive particles along with ingested food. In addition, the observed long-term stability of buccal microwear patterns makes them a reliable indicator of overall dietary habits.  相似文献   

3.
Buccal microwear patterns on teeth are good indicators of the abrasiveness of foodstuffs and have been used to trace the dietary habits of fossil species, including primates and hominids. However, few studies have addressed the variability of this microwear. The abrasiveness of dietary components depends not only on the hardness of the particles ingested, but also on the presence of dust and other exogenous elements introduced during food processing. These elements are responsible for the microwear typology observed on the enamel surfaces of primate teeth. Here we analyzed the variability of buccal microwear patterns in African Great Apes (Gorilla gorilla and Pan troglodytes), using tooth molds obtained from the original specimens held in several osteological collections. Our results suggest that ecological adaptations at subspecies or population level account for differences in microwear patterns, which are attributed to habitat and ecological conditions within populations rather than differences between species. The findings from studies on the variability of buccal dental microwear in extant species will contribute to a better understanding of extinct hominids’ diet and ecology.  相似文献   

4.
This paper reports a palaeodietary investigation of the human remains found in the collective Bronze Age burial cave from Vall d′Uixó (Castelló, Spain). Dental pathology, tooth wear as well as buccal dental microwear were analysed. Percentages of dental pathologies were compared with Chalcolithic and Bronze Age sites from the same territory. Dental caries, ante-mortem tooth loss, periodontal disease and abscess frequencies indicate a diet rich in carbohydrate foods. However, dental calculus percentages and macroscopic wear patterns suggest a diet not exclusively relying on agricultural resources. In addition, buccal dental microwear density and length by orientation recorded on micrographs using a scanning electron microscope showed inter-group differences with regard to carnivorous hunter-gatherers and farming populations related to the amount of abrasives in the diet that could correspond to a different dependence on agricultural resources or food preparation technology.  相似文献   

5.
Pygmy hunter-gatherers from Central Africa have shared a network of socioeconomic interactions with non-Pygmy Bantu speakers since agropastoral lifestyle spread across sub-Saharan Africa. Ethnographic studies have reported that their diets differ in consumption of both animal proteins and starch grains. Hunted meat and gathered plant foods, especially underground storage organs (USOs), are dietary staples for pygmies. However, scarce information exists about forager–farmer interaction and the agricultural products used by pygmies. Since the effects of dietary preferences on teeth in modern and past pygmies remain unknown, we explored dietary history through quantitative analysis of buccal microwear on cheek teeth in well-documented Baka pygmies. We then determined if microwear patterns differ among other Pygmy groups (Aka, Mbuti, and Babongo) and between Bantu-speaking farmer and pastoralist populations from past centuries. The buccal dental microwear patterns of Pygmy hunter-gatherers and non-Pygmy Bantu pastoralists show lower scratch densities, indicative of diets more intensively based on nonabrasive foodstuffs, compared with Bantu farmers, who consume larger amounts of grit from stoneground foods. The Baka pygmies showed microwear patterns similar to those of ancient Aka and Mbuti, suggesting that the mechanical properties of their preferred diets have not significantly changed through time. In contrast, Babongo pygmies showed scratch densities and lengths similar to those of the farmers, consistent with sociocultural contacts and genetic factors. Our findings support that buccal microwear patterns predict dietary habits independent of ecological conditions and reflect the abrasive properties of preferred or fallback foods such as USOs, which may have contributed to the dietary specializations of ancient human populations.  相似文献   

6.
The utility of orthodentine microwear analysis as a proxy for dietary reconstruction in xenarthrans (tree sloths, armadillos) was quantitatively and statistically accessed via low‐magnification stereomicroscopy. Features such as number of scratches and pits, as well as presence of gouges, hypercoarse scratches, > four large pits, > four cross scratches, and fine, mixed or coarse scratch texture were recorded in 255 teeth from 20 extant xenarthran species. Feature patterns are consistent with scar formation through abrasional (tooth–food) and attritional (tooth–tooth) contact. Number of scratches is the most dietary diagnostic microwear variable for xenarthrans, with herbivorous sloths characterized by > ten scratches and nonherbivorous armadillos by < ten scratches. Discriminant function analysis differentiated arboreal folivores (sloths) and frugivore‐folivores (sloths) both from each other and from fossorial carnivore‐omnivores (armadillos) and insectivores (armadillos). Microwear patterns in carnivore‐omnivores and insectivores are difficult to distinguish between; armadillo microwear may reflect a fossorial lifestyle (grit consumption) rather than primary diet. Cabassous centralis is anomalous in its microwear signal relative to all other insectivores. To test the utility of orthodentine microwear analysis as an indicator of palaeodiet in extinct xenarthrans, microwear in the ground sloth Nothrotheriops shastensis was quantitatively and statistically compared to microwear in extant taxa. Microwear patterns in N. shastensis are most comparable to extant folivores based on scratch number and hierarchical cluster analysis. This strongly supports an herbivorous diet for N. shastensis that is corroborated by multiple independent lines of evidence. Thus, orthodentine microwear analysis can be used to reconstruct diet in extinct xenarthrans. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 156 , 201–222.  相似文献   

7.
Most functional analyses of primate tooth form have been limited to linear or area measurements. Such studies have offered but a limited glimpse at differences in occlusal relief among taxa. Such differences in dental topography may relate to tooth function and, so, have considerable implications for the inference of diet from fossil teeth. In this article, we describe a technique to model and compare primate molars in three dimensions using Geographic Resources Analysis Support System (GRASS) software. We examine unworn lower second molars of three extant hominoids with known differences in diet (Gorilla gorilla, Pan troglodytes, and Pongo pygmaeus), and two fossil forms, (Afropithecus turkanesis and Dryopithecus laietanus). First, we obtained approximately 400 landmarks on the occlusal surfaces of each tooth using an electromagnetic digitizer. Raster “terrain models” of occlusal surfaces were then created by interpolation of the coordinate data. We used GRASS terrain analysis automated techniques to quantify the volumes and slopes of individual cusps. We also used the GRASS watershed technique to identify the volume of liquid that would accumulate in each tooth's basin (a measure of basin area), and the directions and intensity of drainage over the occlusal surface. In sum, GRASS shows considerable potential for the characterization and comparison of tooth surfaces. Furthermore, techniques described here are not limited to the study of teeth, but may be broadly applicable to studies of skulls, joints, and other biological structures. Am J Phys Anthropol 107:137–142, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
Phytosaurs are a group of large, semi‐aquatic archosaurian reptiles from the Middle–Late Triassic. They have often been interpreted as carnivorous or piscivorous due to their large size, morphological similarity to extant crocodilians and preservation in fluvial, lacustrine and coastal deposits. However, these dietary hypotheses are difficult to test, meaning that phytosaur ecologies and their roles in Triassic food webs remain incompletely constrained. Here, we apply dental microwear textural analysis to the three‐dimensional sub‐micrometre scale tooth surface textures that form during food consumption to provide the first quantitative dietary constraints for five species of phytosaur. We furthermore explore the impacts of tooth position and cranial robustness on phytosaur microwear textures. We find subtle systematic texture differences between teeth from different positions along phytosaur tooth rows, which we interpret to be the result of different loading pressures experienced during food consumption, rather than functional partitioning of food processing along tooth rows. We find rougher microwear textures in morphologically robust taxa. This may be the result of seizing and processing larger prey items compared to those captured by gracile taxa, rather than dietary differences per se. We reveal relatively low dietary diversity between our study phytosaurs and that individual species show a lack of dietary specialization. Species are predominantly carnivorous and/or piscivorous, with two taxa exhibiting slight preferences for ‘harder’ invertebrates. Our results provide strong evidence for higher degrees of ecological convergence between phytosaurs and extant crocodilians than previously appreciated, furthering our understanding of the functioning and evolution of Triassic ecosystems.  相似文献   

9.
The microscopic traces of use wear on teeth have been extensively studied to provide information that will assist in elucidating the dietary habits of extinct hominin species. 1 - 13 It has been amply documented that dental microwear provides information pertaining to diet for living animals, where there is a strong and consistent association between dental microwear patterns and different types of foods that are chewed. The details of occlusal surface wear patterns are capable of distinguishing among diets when the constituent food items differ in their fracture properties. 14 - 20 For example, the microwear traces left on the teeth of mammals that crush hard, brittle foods such as nuts are generally dominated by pits, whereas traces left on the teeth of mammals that shear tough items such as leaves tend to be characterized by scratches. These microwear features result from and thus record actual chewing events. As such, microwear patterns are expected to be variably ephemeral, as individual features are worn away and replaced or overprinted by others as the tooth wears down in subsequent bouts of mastication. Indeed, it has been demonstrated, both in the laboratory and the wild, that short‐term dietary variation can result in the turnover of microwear. 17 , 21 - 23 Because occlusal microwear potentially reflects an individual's diet for a short time (days, weeks, or months, depending on the nature of the foods being masticated), tooth surfaces sampled at different times will display differences that relate to temporal (for example, seasonal) differences in diet. 24  相似文献   

10.
Food consumption causes distinct microwear patterns on teeth, especially in mammals that actively masticate food. Here we perform a microwear analysis to assess the relationships between diet and microwear features of diverse Carnivora. Our database includes approximately 230 individuals of 17 extant species having different diets. We analyse both slicing and grinding facets of M1 and m1. The proposed method is reproducible and allows the differentiation, especially on slicing facets, of microwear poles that are significantly distinct from one another. In carnivorans, the microwear features mainly result from their foraging behavior and the proportion of certain food items consumed. We applied our method to extinct taxa such as the amphicyonid Amphicyon major. The results on the m1 slicing facet indicate dietary similarities between this large Miocene predator and the extant red fox; results from the m1 grinding facet do not have equivalent in extant taxa, however.  相似文献   

11.
Most studies of microscopic wear on non-human primate teeth have focused on the occlusal surfaces of molars. Recent analyses of the buccal surfaces of human cheek teeth have demonstrated an association between diet and dental microwear on the these surfaces as well. In the current study, we examine microwear on both the buccal and lingual surfaces of non-human primate molars to assess the potential of these surfaces to reveal information concerning anthropoid feeding behaviors. We compare frequency of microwear occurrence in 12 extant and 11 fossil anthropoid species. Among the living primates, the occurrence of microwear on non-occlusal surfaces appears to relate to both diet and degree of terrestriality. The implications of this research for the inference of feeding behaviors and substrate use in fossil cercopithecoids are discussed. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Examination of incisor microwear in three species of Colobus revealed that the predominantly folivorous C. badius more closely resembles C. satanas, a seed predator/folivore, than C. guereza, another predominantly folivorous species. This demonstrates that species of the same broad dietary category can have very different patterns of incisor microwear, indicative of differences in food procurement behavior and/or the physical properties of dietary items for some portion of the diet. Conversely, species of different categories can have microwear patterns that, superficially at least, are quite similar. The dissimilarity in incisor microwear between C. badius and C. guereza is mirrored to a certain extent in molar microwear, although the differences are not nearly so great on the molars. The differences between C. badius and C. guereza may involve different food items in the major, folivorous portions of their diets, or they may relate to differences in the very minor fruit and bark components. The similar microwear patterns of C. badius and C. satanas demonstrate that incisor microwear by itself is unreliable for assigning fossil species to broad dietary categories. Incisor microwear can be used to infer finer dietary distinctions in fossil species for which dietary category has been determined by other means.  相似文献   

13.
The early Miocene catarrhine fossil record of East Africa represents a diverse and extensive adaptive radiation. It is well accepted that these taxa encompass a dietary range similar to extant hominoids, in addition to some potentially novel dietary behaviour. There have been numerous attempts to infer diet for these taxa from patterns of dental allometry and incisor and molar microwear, however, morphometric analyses until now have been restricted to the post-canine dentition. It has already been demonstrated that given the key functional role of the incisors in pre-processing food items prior to mastication, there is a positive correlation between diet and incisal curvature (Deane, A.S., Kremer, E.P., Begun, D.R., 2005. A new approach to quantifying anatomical curvatures using High Resolution Polynomial Curve Fitting (HR-PCF). Am. J. Phys. Anthropol. 128(3), 630-638.; Deane, A.S., 2007. Inferring dietary behaviour for Miocene hominoids: A high-resolution morphometric approach to incisal crown curvature. Ph.D. Dissertation. The University of Toronto.). This study seeks to re-examine existing dietary hypotheses for large-bodied early Miocene fossil catarrhines by contrasting the incisal curvature for these taxa with comparative models derived from prior studies of the correlation between extant hominoid incisor curvature and feeding behaviour. Incisor curvature was quantified for 78 fossil incisors representing seven genera, and the results confirm that early Miocene fossil catarrhines represent a dietary continuum ranging from more folivorous (i.e., Rangwapithecus) to more frugivorous (i.e., Proconsul) diets, as well as novel dietary behaviours that are potentially similar to extant ceboids (i.e., Afropithecus). Additionally, early Miocene fossil catarrhine incisors are less curved than extant hominoid incisors, indicating a general pattern of increasing mesio-distal and labial curvature through time. This pattern of morphological shifting is consistent with the Red Queen Effect (Van Valen, L., 1973. A new evolutionary law. Evol. Theory 1, 1-30), which predicts that taxa that are removed from one another by geological time, although potentially having similar diets, may exhibit differing degrees of a similar dietary adaptation (i.e., differing degrees of incisal curvature).  相似文献   

14.
Tooth microwear was analyzed for a large sample of wild-shot barren-ground caribou (Rangifer tarandus groenlandicus) from the Kaminuriak population of eastern Canada. This sample was compared to the microwear of specimens from three Pleistocene localities in North America (Alaska) and western Europe (Caune de l’Arago in France and Salzgitter in Germany). The results show that the extant samples from eastern Canada have seasonal variation in microwear and presumably in diet. The differences in microwear between the various seasons may reflect a cyclic migration of the population within a year. The extinct population from Alaska has extremely blunt teeth (mesowear), as blunt as those of modern zebras and bison. This observation is corroborated by the lowest number of microwear pits. The findings are untypical, as most typical caribou teeth have sharper apices, and we interpret this as an indication of a local habitat that was different with animals feeding on non-typical vegetation. The combination of Rangifer from Caune de l’Arago and Salzgitter reveals a pattern in microwear variability. The Salzgitter is interglacial and shows a greater diversity of browsing (broad spectrum on average number of pits) than the glacial Caune de l’Arago. The interglacial population from Salzgitter is interesting because it shows several different types of browsing. Collectively all the Rangifer teeth show that diet of a brachydont taxon can vary across most of the dietary morphospace of ungulates as represented by tooth microwear. The three Pleistocene samples exhibit microwear that is different from the extant population in question. This observation implies that the recent diet of Rangifer has changed from the typical caribou diet in the past. This indicates dietary change within a species. This is important because it represents dietary evolution without changes in tooth morphology.  相似文献   

15.
Recently, dental microwear analysis has been successfully employed to xenarthran teeth. Here, we present new data on use wear features on 16 molariforms of Orophodon hapaloides and Octodontotherium grande. These taxa count among the earliest sloths and are known from the Deseadan SALMA (late Oligocene). Modern phylogenetic analyses classify Octodontotherium and Orophodon within Mylodontoidea with whom they share lobate cheek teeth with an outer layer of cementum and a thick layer of orthodentine. Similar target areas of 100μm2 were analyzed on the orthodentine surface of each tooth by stereomicroscopic microwear and by SEM microwear. Results were unlike those of extant sloths (stereomicroscopic microwear: Bradypus, Choloepus) and published data from fossil sloths (SEM microwear: Acratocnus, Megalonyx, Megatherium, Thinobadistes); thus, both approaches independently indicate a different feeding ecology for the Oligocene taxa. The unique microwear results suggest that both taxa fed on plant material with low to moderate intrinsic toughness (foliage, twigs) but also proposes intake of tougher food items (e.g., seeds). Frequent gouging of the tooth surfaces can be explained by exogenous influence on microwear, such as possible intake of abrasive grit. We suggest an unspecialized herbivorous diet for Octodontotherium and Orophodon utilizing diverse food resources of their habitat. These interpretations support the reconstruction of (1) Deseadan environments as open habitats with spreading savannas/grasslands and (2) both taxa as wide-muzzled bulk feeders at ground level.  相似文献   

16.
龚宴欣 《古生物学报》2017,56(1):117-128
通过研究古哺乳动物的食性来探讨哺乳动物演化与古生态环境变化之间的关系是目前古生物学研究领域的一个热点,而牙齿磨痕分析是恢复古食性和重建古生态环境的重要手段。牙齿磨痕(dental wear)分析包括微痕(microwear)分析和中痕(mesowear)分析,两种方法均强调食性与牙齿磨痕模式的严格对应,即不同食性的动物具有不同的牙齿磨痕特征模式。近年来,牙齿磨痕分析方法以其简单、快捷和高效等优点已被广泛应用于奇蹄类、偶蹄类、啮齿类、长鼻类和食肉类等哺乳动物的食性研究。但哺乳动物的食性和摄食习性比较复杂,很可能会影响微痕和中痕分析对食性的分辨率。所以,为了获得更加详细的古食性信息和更高的食性分辨率,一方面要对微痕和中痕分析方法进行改进,增添稳定并具有食性识别意义的观测变量,另一方面,需要同时结合微痕和中痕分析,从而获得更加全面的食性信息。虽然牙齿磨痕分析目前主要应用于植食性哺乳动物的食性研究,但其原理对哺乳动物的其它类群也是适用的,随着磨痕分析方法的不断改进和其它类群磨痕数据库的建立,未来的牙齿磨痕分析将可以恢复更多类群的古食性,从而可以更加全面和准确地揭示古食性与古环境信息。  相似文献   

17.
The environment of the hominoid Dryopithecus brancoi at Rudabánya (Late Miocene of Hungary) is reconstructed here using the dietary traits of fossil ruminants and equids. Two independent approaches, dental micro- and meso-wear analyses, are applied to a sample of 73 specimens representing three ruminants: Miotragocerus sp. (Bovidae), Lucentia aff. pierensis (Cervidae), Micromeryx flourensianus (Moschidae), and one equid, Hippotherium intrans (Equidae). The combination of meso- and micro-wear signatures provides both long- and short-term dietary signals, and through comparisons with extant species, the feeding styles of the fossil species are reconstructed. Both approaches categorize the cervid as an intermediate feeder engaged in both browsing and grazing. The bovid Miotragocerus sp. is depicted as a traditional browser. Although the dental meso-wear pattern of the moschid has affinities with intermediate feeders, its dental micro-wear pattern also indicates significant intake of fruits and seeds. Hippotherium intrans was not a grazer and its dental micro-wear pattern significantly differs from that of living browsers, which may suggest that the fossil equid was engaged both in grazing and browsing. However, the lack of extant equids which are pure browsers prevents any definitive judgment on the feeding habits of Hippotherium. Based on these dietary findings, the Rudabánya paleoenvironment is reconstructed as a dense forest. The presence of two intermediate feeders indicates some clearings within this forest; however the absence of grazers suggests that these clearings were most likely confined. To demonstrate the ecological diversity among the late Miocene hominoids in Europe, the diet and habitat of Dryopithecus brancoi and Ouranopithecus macedoniensis (Greece) are compared.  相似文献   

18.
Low-magnification microwear techniques have been used effectively to infer diets within many unrelated mammalian orders, but the extent to which patterns are comparable among such different groups, including long extinct mammal lineages, is unknown. Microwear patterns between ecologically equivalent placental and marsupial mammals are found to be statistically indistinguishable, indicating that microwear can be used to infer diet across the mammals. Microwear data were compared to body size and molar shearing crest length in order to develop a system to distinguish the diet of mammals. Insectivores and carnivores were difficult to distinguish from herbivores using microwear alone, but combining microwear data with body size estimates and tooth morphology provides robust dietary inferences. This approach is a powerful tool for dietary assessment of fossils from extinct lineages and from museum specimens of living species where field study would be difficult owing to the animal’s behavior, habitat, or conservation status.  相似文献   

19.
The Xenarthra represents an enigmatic clade of placental mammals that includes living tree sloths, armadillos, and their extinct relatives, yet certain aspects of the biology of this group remains poorly understood. Here, we use scanning electron microscopy to test the hypothesis that orthodentine microwear patterns in extant xenarthrans are significantly different among different dietary groups. In a blind analysis, microwear patterns were quantified at a magnification of 500× by two independent observers for extant species from four dietary groups (carnivore–omnivores, folivores, frugivore–folivores, and insectivores). Independent observers recovered the same relative between‐group differences in microwear patterns. Insectivores and folivores have a significantly lower numbers of scratches and greater scar widths than frugivore–folivores and carnivore–omnivores, yet we were neither able to statistically distinguish insectivores from folivores, nor differentiate frugivore–folivores from carnivore–omnivores. Nevertheless, a clear distinction exists between taxa from the same trophic level and habitat, which suggests that orthodentine microwear reflects niche partitioning and habitat more than diet among related forms. We suggest that bite force and chewing mechanics have a strong influence on the formation of orthodentine microwear, which may explain some of the observed overlap between distinct groups (e.g. frugivore–folivores versus carnivore–omnivores). This study serves as a positive step forwards in our understanding of the ecological role of living xenarthrans, and serves as a foundation for using orthodentine microwear to reconstruct palaeoecology in extinct ground sloths, glyptodonts, and pampatheres. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

20.
Intrapopulational tooth striation variability has been studied in a sample of 99 individuals from the medieval agriculturalist population of La Olmeda (Palencia, Spain). The number, length, and orientation of all observed striations were recorded using a scanning electron microscope and an image analyzer system. Tooth striations were observed at 100 × magnification on the buccal surface of Pm4 and M1 teeth. The results obtained for the adult age group indicate that the buccal striation pattern is a characteristic trait which does not vary significantly among teeth for each individual. Agegroup variability suggests that buccal tooth striations accumulate over quite long periods of time. The characteristic striation pattern for the population is completely attained in the subadult age group. For the analyzed population, seasonal changes in dietary habits apparently did not affect the buccal striation pattern. Weaning of children in the population from La Olmeda seems to have occurred long before 2–5 years of age. Infants had a highly abrasive diet, and subadult and adult individuals would have had a slightly softer diet, perhaps due to a higher meat intake. The buccal striation pattern as a dietary indicator seems to be of great reliability, allowing for quantitative analysis of intrapopulation and interpopulation variability. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号