首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The response of a human embryonal carcinoma cell line LICR LON HT39/7 to 12-O-tetradecanylphorbol 13-acetate (TPA) has been studied. Cells treated with 5 ng/ml of TPA undergo marked morphological changes, becoming flattened with nuclear enlargement and developing a grainy and often vacuolated cytoplasm. Parallel changes in the cell surface phenotype of the treated cells also occur. These include the appearance of membrane fibronectin, the embryonic antigen SSEA-1, and a glycoprotein antigen recognised by a monoclonal antibody. There is also increased expression of histocompatibility antigens. Other membrane molecules, such as peanut agglutinin receptor(s) and a 200 000 membrane glycoprotein appear to be removed from the membrane following TPA treatment. The high levels of alkaline phosphatase normally present in LICR LON HT39/7 are also reduced by TPA. Changes in the ultrastructure of the cells have also been observed, such as increases in nuclear complexity and in the number of intermediate filaments in the treated cells. This latter observation has been confirmed by immunofluorescent staining of the cells for prekeratins, which show an extensive network following the addition of TPA, but not before. 2-Dimensional gel electrophoresis of the proteins synthesized by LICR LON HT39/7 before and after addition of TPA has shown that there are a number of alterations in the proteins synthesised by the treated cells. Furthermore, immunoprecipitation of the culture supernatants from these cells has shown that TPA induces the synthesis and secretion of fibronectin. The alterations in the phenotype of LICR LON HT39/7 induced by TPA are irreversible and the altered cells, whilst they stop dividing, can be maintained for at least three weeks in culture. The analogue of TPA 12-O-tetradecanylphorbol 13-myristate does not produce the effects described above.  相似文献   

2.
In the present study, we have examined the regulation of attachment, onset of proliferation and the subsequent growth, in vitro, of chick retinal pigmented epithelial (RPE) cells as a function of the nature of the substratum and of either the activation or inhibition of protein kinase C (PKC). The RPE cells have an adhesive preference for protein carpets which contain laminin. This preference disappears gradually with time in culture. The adhesion of RPE cells to fibronectin is shown to be a receptor-mediated process which involves the RGD recognition signal. This study also demonstrates that a PKC activator, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), affects RPE cell adhesion in a substratum-dependent manner. Exposure of RPE cells to TPA lowers the cell attachment efficacy to ECM protein substrata but does not affect cell attachment to plastic. The onset of cell proliferation is accelerated by TPA on all of the substrata tested. The minimal duration of an effective TPA pulse exerting a long-lasting influence on RPE cell proliferation is between 1.5 and 3.5 hr. Stimulation of cell proliferation by TPA in long-term cultures is independent of the nature of the growth substratum. The acceleration of the onset of cell proliferation by TPA is sensitive to 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7), an inhibitor of conventional PKC, and thus appears to be dependent on the activation of conventional PKC. H7 also affects cell-cell contacts, causing an alteration in the shape (“squaring”) of RPE cells packed into large colonies. Conversely, the effects of TPA on both the attachment and the long-term proliferation of RPE cells are not dependent a conventional PKC isotype, since H7 cannot abolish the influence of TPA on either process. We conclude that the effect of TPA on long-term proliferation of RPE cells is either dependent on a novel PKC isotype or independent of PKC. © 1993 Wiley-Liss, Inc.  相似文献   

3.
The mitogenicity of 12-O-tetradecanoyl phorbol-13-acetate (TPA) for normal human peripheral blood mononuclear cells was investigated. TPA was a weak mitogen giving simulation indices in the range 2.5 to 10.5 at the optimum concentration (10 ng/ml) compared with 39 to 95 for phytohemagglutinin (PHA) at its optimum concentration (1 μg/ml). No absolute requirement for a comitogen could be demonstrated, however TPA and PHA were synergistic in their action at low concentrations, and additive at optimum concentrations. Cell fractionation by rosetting with sheep erythrocytes showed that most of the proliferative response to TPA occurred in the T-cell fraction, however some proliferation of non-T cells was also observed. Surface marker studies showed that this could not have been due to residual T cells in the non-T fraction. A small number of monocytes was required for optimal proliferation of T cells in response to TPA. After a 3-day incubation with mitogen, the responding cell populations were tested for binding of a range of antibodies specific for T-cell (OKT3, OKT4, OKT8, and OKT11), “natural killer” (NK) cell (anti-Leu-7), monocyte (FMC17), and B-cell (anti-human immunoglobulin) surface markers. These experiments indicated that the responding cell types were T cells and B cells, but not NK cells or monocytes. Marked modulation of the antigen detected by OKT4, and to a lesser extent that detected by OKT3, in the presence of TPA precluded determination of which subpopulations of T cells proliferated in response to TPA. TPA was also tested for its ability to “maintain” activated T-cell blasts in a standard assay for interleukin 2 (IL-2). Mitogen-activated T cells were strongly responsive to TPA in this assay, but progressively lost responsiveness when maintained in crude IL-2 for about 2 weeks. Thus TPA does not have “maintenance” (i.e., IL-2-like) activity. However, small amounts of TPA acted synergistically with PHA in maintaining blast populations which were not responsive to TPA alone. This illustrates the importance of using long term IL-2-dependent cell lines for quantitation of IL-2 in supernatants prepared by stimulating T cells with these agents.  相似文献   

4.
Antigen binding to its specific receptor on T cells initiates a series of intracellular events that result in cell differentiation, activation, and clonal expansion. However, the mechanism by which these antigen-occupied receptors induce the transmembrane signal transduction needs clarification. Because this mechanism appears to involve an increase in intracellular free Ca2+ concentration and activation of protein kinase C (PKC), we tested the effect of Ca2+ ionophores and PKC activators on alloantigen-specific primary mixed leukocyte culture cells. Both calcium ionophores, A23187 and ionomycin, in conjunction with 12-O-tetradecanoylphorbol 13-acetate (TPA) mimicked the effect of antigen or interleukin 2 (IL 2) by inducing strong proliferative and alloantigen-specific cytotoxic responses. In addition, Ca2+ ionophore and TPA induced IL 2 receptor expression and IL 2 secretion. The capacity of other phorbol esters or a non-phorbol ester tumor promoter (teleocidin) to replace TPA in induction of cell activation correlated with their ability to bind to and to activate PKC. In addition, the synergistic effect of Ca2+ ionophore and TPA was blocked by either a Ca2+ chelator (EGTA) or cAMP, which is thought to inhibit phosphatidylinositol metabolism. To determine whether the induction of this cytotoxic activity was mediated by a direct effect of Ca2+ ionophore and TPA on cytotoxic T (Tc) cells or was secondary to IL 2 secretion by activated helper T (Th) cells, we tested the effect of Ca2+ ionophore and TPA on isolated populations of cloned, alloantigen-specific Th and Tc cells. Both agents induced cell proliferation and IL 2 production by Th cells, but not by Tc cells. Activation of mixed clones of Th and Tc cells, but not of Tc cells alone, resulted in cytotoxic activity, an effect that could be blocked by anti-IL 2 receptor antibodies. The results thus demonstrate that an increased concentration of intracellular Ca2+ in conjunction with PKC activation can bypass the signal provided by antigen-receptor interaction on Th cells, but does not substitute for IL 2 in activating cytotoxicity by isolated Tc cells.  相似文献   

5.
To maximize the productivity of tissue plasminogen activator (TPA) by a mammalian cell culture, on-line determination of the optimum time to switch from the cell growth phase to the TPA production phase was investigated. By measuring the TPA production activity of the cells during the cell growth culture, it was shown that this optimum time was not necessarily the same as the time at which the cell concentration was maximized, and that the optimum time varied with growth culture batch. The TPA production activity of the cells during the growth culture could be estimated by on-line regression analysis using physiological data of the current state, including the oxygen consumption rate (Io2) and cell concentration, as well as data from past batches. Applying this on-line estimation, the optimum switching time was determined to be the time at which the TPA production activity of the cells in the growth culture became highest, or higher than a certain value according to determined criteria.  相似文献   

6.
The effects of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) on the growth and differentiation of cultured human acute promyelocytic leukemia (HL60) cells have been studied using cells growing in a fully defined medium consisting of RPMI 1640 supplemented with selenium dioxide, insulin, and either transferrin or ferric citrate. High concentrations of TPA (greater than 1 nM) cause the expected inhibition of proliferation and induction of macrophage-like differentiation. In contrast, in cells deprived of insulin, which continue to grow at a slow rate, lower concentrations of TPA stimulate proliferation without inducing differentiation. A TPA concentration between 0.03 and 0.3 nM will approximately double the long-term rate of thymidine incorporation into DNA and the rate of increase in cell density. Low-TPA becomes progressively less able to stimulate further proliferation as the insulin concentration is increased and is virtually without effect on cells stimulated by an optimal insulin concentration (5 micrograms ml-1). Insulin itself stimulates proliferation to a greater extent than low-TPA, increasing the long-term rate of thymidine incorporation and the rate of increase in cell density by three- to fourfold. The ability of higher concentrations of TPA to induce differentiation is independent of the presence of insulin. Low-TPA also stimulates the short-term incorporation of thymidine (during a 1-h pulse after 1 or 2 days incubation) by three- to fourfold, as compared to a sevenfold stimulation by insulin. The proliferation response to low TPA concentrations provides a useful model for dissecting the signalling pathways that control cell proliferation following stimulation by insulin and activators of protein kinase C.  相似文献   

7.
T lymphocyte activation is initiated as a result of the interaction between the TCR complex and Ag as seen in the framework of a membrane-bound MHC molecule. Receptor stimulation results in a rise in free intracellular Ca2+ and the activation of protein kinase C (PKC). Bryostatin (Bryo) and phorbol esters (e.g., 12-O-tetradecanoylphorbol 13-acetate (TPA] are PKC activators with somewhat different immunologic effects. We compared the effect of Bryo and TPA on the T cell tumor line Jurkat and derivatives of Jurkat cells grown in media supplemented with 100 nM Bryo ("BR100" cells) or 100 nM TPA ("TP100" cells). In untreated Jurkat cells, there is a dose- and time-dependent decrease in proliferation, compared to media controls, after the administration of as little as 10 nM TPA. This can be reversed in a dose- and time-dependent manner by Bryo. Interestingly, the expression of the transferrin receptor parallelled this effect on proliferation. Furthermore, Jurkat cells grown continuously in 100 nM TPA regained full proliferative capacity after several weeks in culture and transferrin receptor expression returned to near the level seen in untreated Jurkat cells. The chromatographic separation of PKC activity in these three cell lines showed that total PKC activity was dramatically decreased in both the TP100 and BR100 cells when compared to untreated Jurkat cells. However, in the TP100 cells there exists a peak of activity that is activated by Bryo, but not TPA. Western blots of whole cell lysates of the three cell lines showed that PKC-alpha and PKC-beta II were both down-regulated in BR100 and TP100 cells compared to untreated Jurkat cells. PKC-gamma was not detected in any of the cell lines. Therefore, the Bryo-specific peak seen in TP100 cells may be PKC-delta, -epsilon, -zeta, -eta, or a novel PKC isoform. This could provide the basis for a molecular characterization of the differences in PKC activation between phorbol esters and Bryo.  相似文献   

8.
Mouse epidermal basal cells can be selectively cultivated in medium with a calcium concentration of 0.02–0.09 mM. Terminal differentiation and slouching of mature kcratinocytes occur when the calcium concentration is increased to 1.2–1.4 mM. When basal cell cultures are exposed to chemical initiators of carcinogenesis, colonies of cells that resist calcium-induced differentiation evolve. Likewise, basal cells derived from mouse skin initiated in vivo yield foci that resist terminal differentiation. This defect in the commitment to terminal differentiation appears to be an essential change in initiated cells in skin and is also characteristic of malignant epidermal cells. This model system has also provided a means to determine if basal cells are more responsive to phorbol esters than other cells in epidermis and to explore the possibility that heterogeneity of response exists within subpopulations of basal cells. The induction of the enzyme ornithine decarboxylase (ODC) was used as a marker for responsiveness to phorbol esters. ODC induction after exposure to 12-0-tetradccanoylphorbol-13-acetate (TPA) in basal cells is enhanced 20-fold over the response of a culture population containing both differentiating and basal cells. When basal cells are induced to differentiate by increased calcium, responsiveness to TPA is lost within several hours. In basal cell cultures, two ODC responses can be distinguished. After exposure to low concentrations of TPA or to weak promoters of the phorbol ester series, ODC activity is maximal at 3 hr. With higher concentrations of TPA, the ODC maximum is at 9 hr. These results arc consistent with the presence of subpopulations of basal cells with differing sensitivities to TPA. Other studies that use the enzyme epidermal transglutaminase as a marker for differentiation support this conclusion. In basal cell culture TPA exposure rapidly increases transglutaminase activity and cornified envelope development, reflecting induced differentiation in some cells. As differentiated cells arc sloughed from the dish, the remaining basal cells proliferate and become resitant to induced differentiation by 1.2 m M calcium. These data provide additional evidence of basal cell heterogeneity in which TPA induces one subpopulation to differentiate while another is stimulated to proliferate and resists a differentiation signal. Tumor promoters, by their ability to produce heterogeneous responses with regard to terminal differentiation and proliferation, would cause redistribution of subpopulations of epidermal cells in skin. Cells that resist signals for terminal differentiation, such as initiated cell, would be expected to increase in number during remodeling. Clonal expansion of the intitiated population could result in a benign tumor with an altered program of differentiation. In skin, benign tumors are the principal product of 2-stage carcinogenesis. Subsequent progression to malignancy may involve an additional step, probably a genetic alteration, that is independent of the tumor promoter.  相似文献   

9.
T Sakuma  S Nozawa  R Iizuka 《Human cell》1988,1(4):391-401
Identification of endocervical "reserve cell", which have been regarded as the origin of squamous cell carcinoma of the uterine cervix, was attempted employing immunohistochemically specific substances. The antigenicity of keratin, squamous cell carcinoma antigen(SCC), epithelial membrane antigen(EMA), tissue polypeptide antigen(TPA), vimentin, secretory component(SC) and placental alkaline phosphatase(PLAP) was investigated in histological preparations as well as cultured cells obtained from primary culture of endocervical tissue. The immunohistochemical findings in histological preparations revealed the following: a strongly positive reaction with TPA, a slightly positive reaction with EMA, a very slightly positive with SCC and PLAP, and a negative reaction with keratin, vimentin and SC. Cultured cells were divided into 4 groups according to their morphological characteristics; among these, small rounded or polygonal cells with a centric single nucleus showed similar immunocytochemical reactions to those of "reserve cells" in histological preparations, indicating that "reserve cell" can be growing in culture. The results obtained suggest that immunohistocytochemical specific substances may be useful to identify cultured cells.  相似文献   

10.
12-O-tetradecanoylphorbol-13-acetate (TPA) caused a rapid activation of protein kinase C in a murine (HEL-30) and in a human (NCTC) epidermal cell line. In HEL-30 cells, protein kinase C activation is followed by ornithine decarboxylase stimulation and cell proliferation, events inhibited by H-7, a specific inhibitor of protein kinase C. TPA in NCTC cells inhibited the basal ornithine decarboxylase activity and cell growth, whereas H-7 did not modify TPA effect. The response of NCTC cells was not due to direct toxicity of TPA. These data confirm that in murine epidermal cells, the proliferation induced by TPA is mediated by protein kinase C, whereas in a human skin-derived cell line these events are not or inversely associated.  相似文献   

11.
Monoclonal antibody 9.6 is specific for a 50 kd T cell surface protein (p50) associated with the sheep erythrocyte (E)-receptor on human T lymphocytes. This antibody interferes with many T cell functions. We have examined the effect of antibody 9.6 on lymphocyte proliferation and interleukin 2 (IL 2) production triggered by mitogens, soluble antigens, and alloantigens to elucidate the mechanism(s) of its immunosuppressive action. At concentrations as low as 50 ng/ml, 9.6 suppressed lymphocyte proliferation and the elaboration of IL 2 by T cells stimulated by PHA, alloantigens, or low concentrations of the phorbol ester TPA (less than or equal to ng/ml). Furthermore, in cultures stimulated by a combination of PHA plus TPA, 9.6 did not inhibit the acquisition of IL 2 receptors but inhibited proliferation and IL 2 production. Immunoaffinity-purified IL 2 completely restored lymphocyte proliferation in cultures inhibited by 9.6. Studies of kinetics of inhibition by 9.6 showed that this antibody inhibited lymphocyte proliferation induced by PHA, alloantigen, and PPD even when added at 24, 48, and 72 hr, respectively, after the initiation of these cultures, suggesting that 9.6 does not block lectin binding or antigen recognition by T cells and that it can inhibit lymphocyte proliferation even after cells have undergone one or more rounds of cell division. A dose-response analysis of lymphocyte proliferation induced by PHA or by TPA demonstrated that the degree of inhibition by 9.6 decreased with increasing concentrations of these mitogens. Antibody 9.6 did not inhibit lymphocyte response induced by optimal concentrations of PHA (50 to 100 micrograms/ml; PHA-M) but inhibited proliferation of maximally induced lymphocytes by using a synergistic combination of low concentrations of PHA (5 micrograms/ml, PHA-M) plus TPA (1 ng/ml). Taken together, these findings indicate that 1) 9.6 inhibits lymphocyte proliferation by affecting IL 2 production, 2) 9.6 does not inhibit the acquisition of 9.6 receptors induced by a synergistic combination of PHA plus TPA, and 3) p50 molecules may be involved in multiple pathways of T cell activation.  相似文献   

12.
Cells from 14 patients with chronic B cell leukemias were cultured for up to 7 days with TPA (160 nM) in order to induce maturation of the malignant cells. Five cellular parameters, which can be quantitated by flow cytometry were analyzed in such cultures. These parameters were cell size, cell cycle, RNA, neutral esterase activity and dye uptake in mitochondria. Cell size increased in 13/14 cases in TPA treated cells compared to control cells. Cell cycle analysis revealed a low percentage of cells in S and G2/M phase both in control and TPA-treated cultures of chronic B cell leukemias, while in cultures of peripheral blood mononuclear cells TPA caused a large increase of S and G2/M cells. Both in chronic B cell leukemias and in PBMC, TPA induced an increase of RNA staining and neutral esterase activity in all or most cultures. Furthermore the staining of mitochondria increased in most cases. In conclusion, multiple changes can be induced by TPA in chronic B cell leukemias without associated proliferation.  相似文献   

13.
In the present study we employed a two-step culture system to study the expression of Fas, p53 and alpha-fetoprotein (AFP) in the development in vitro of human fetal germ cells. p53 mRNA was determined by Northern blotting, and Fas content was assessed by western blotting. RT-nested polymerase chain reaction (RT-nPCR) analysis was performed to determine the expression of AFP mRNA in different stages of fetal follicular development. Follicular cell apoptosis was evaluated by DNA fragmentation analyses (DNA ladder). The results showed that by day 7 of culture approximately one-sixth of fetal germ cells grew to class C oocytes (primary oocytes) from class B oocytes (primordial oocytes) or class A oocytes. On day 45 of culture, one-third of these primary follicles doubled in size. In the meantime, there was a high proportion apoptosis of follicular cells on days 35 or 45 of culture, as evident by a clear ladder pattern of DNA fragmentation upon electrophoretic analysis. Expression of Fas antigen and p53 mRNA increased in a time-dependent manner, while AFP mRNA was expressed on days 10 to 35, and disappeared on day 45. These results indicate that human fetal germ cells can develop in a two-step culture system and AFP may play an active role in the proliferation of these germ cells. At the late stage of follicular development in vitro, a number of follicular cells became apoptotic. Moreover, apoptosis may be the mechanism responsible for fetal germ cell regression and the Fas antigen and/or p53-mediated death pathway may be central in the induction of germ cell regression.  相似文献   

14.
Abstract: Prolactin (PRL) has been reported to activate cellular proliferation in nonreproductive tissue, such as liver, spleen, and thymus. Recently, we have extended the possible role of PRL as a mammalian mitogen by demonstrating a mitogenic effect of PRL in cultured astrocytes. Although the cellular mechanisms by which PRL regulates cell growth are not fully understood, protein kinase C (PKC) has been implicated as one of the transmembrane signaling systems involved in the regulation of PRL-induced cell proliferation in Nb2 lymphoma cells and liver. In the present studies, we examined the possible role of PKC in PRL-induced proliferation of cultured astrocytes. Incubation of cultured astrocytes with 1 nM PRL resulted in a rapid translocation of PKC from the cytosol to the membrane, with maximal PKC activity in the membrane occurring 30 min after exposure to PRL. Translocation of PKC activity occurred over a physiological range of PRL, with maximal PKC activation occurring at 1 nM. At concentrations greater than 10 nM PRL, there was a decrease in the amount of PKC activity associated with the membrane fraction compared with that of cells stimulated with 1 nM PRL. Incubation of astrocytes with PRL in the presence of the PKC inhibitors staurosporine, 1-(-5-isoquinolinesulfonyl)-2-methylpiperazine, or polymyxin B blocked the PRL-induced increase in cell number with IC50 values of approximately 2 nM, 10 μM, and 6 μM, respectively. PKC is the only known cellular receptor for 12-O-tetradecanoylphorbol 13-acetate (TPA), which stimulates the translocation of PKC from the cytosol to the membrane. Incubation of astrocytes with 20 nM TPA resulted in an increase in the expression of proliferating cell nuclear antigen and cell number, whereas 4α-phorbol 12,13-didecanoate, an inactive phorbol ester, was ineffective. To examine further the effect of TPA and PRL on cellular proliferation, cultured astrocytes were incubated with increasing concentrations of TPA in the presence or absence of a minimal effective dose of PRL (100 pM). In the absence of PRL, incubation with TPA resulted in an inverted U-shaped dose-response curve, with 100 nM TPA resulting in a maximal increase in cell number. In the presence of 100 pM PRL, the TPA dose-response curve was shifted to the left, with maximal activity occurring with 10 nM TPA. Chronic stimulation of astrocytes with 500 nM TPA depleted the cells of PKC and blocked the PRL-induced increase in cell number. Finally, TPA treatment decreased cell-surface binding of 125I-PRL. These data indicate that the PKC is involved in the mitogenic effect of PRL in cultured astrocytes.  相似文献   

15.
12-O-Tetradecanoylphorbol-13-acetate (TPA), a tumor-promoting phorbol ester, induced the proliferation of connective tissue-type mast cells (CTMC) synergistically with IL-3 in a methylcellulose culture, as well as with IL-4. The culture of single CTMC and the serum-free culture of CTMC fractionated by Percoll density gradient centrifugation showed that this synergistic action of IL-3 and TPA required no effects of accessory cells or other humoral factors. Although the populations of CTMC acted on by TPA and IL-4 seemed to be close to each other, the velocity of colony growth induced by the simultaneous stimulation of the combination of TPA and IL-4 was faster than that induced by either TPA or IL-4 in the presence of IL-3. In addition, the addition of anti-IL-4 antibody did not neutralize the effect of TPA on the proliferation of CTMC. These results suggest that TPA and IL-4 act on the proliferation of CTMC synergistically with IL-3 via a different pathway. Beside TPA, other phorbol derivatives capable of activating protein kinase C (PKC) induced the proliferation of CTMC synergistically with IL-3, but phorbol derivatives which were unable to activate PKC did not. These results indicate that the activation of PKC is involved in the process of TPA action on the proliferation of CTMC. Furthermore, the facts that 1-oleoyl-2-acetylglycerol, which activated membrane PKC transiently, and staurosporine, which has been reported to inhibit PKC, did not induce the proliferation of CTMC in the presence of IL-3 and that the effect of TPA was exhibited by the sustained stimulation suggest that the action of TPA on the proliferation of CTMC requires at least two steps. The first one is the primary activation of membrane PKC and the second one is the disappearance of PKC from the cells, "down-regulation."  相似文献   

16.
A B cell-specific monoclonal antibody (anti-Ba) was prepared. In two-color FACS analysis the anti-Ba reacted with a subpopulation of Ig+ or B1+ cells obtained from tonsils, but did not react with most B1+ cells derived from PBL. Activation of B cells from PBL with TPA or anti-mu induced Ba expression and the addition of PHA-conditioned supernatant with anti-mu-enhanced Ba expression. Other B cell activators, such as Staphylococcus aureus Cowan I (Staph-A) or PWM plus T cells, could induce Ba expression. Ba expression was observed 6 hr after stimulation and reached a peak level at 72 hr. Ba expression was strictly restricted to B cells. H-7, a specific inhibitor of protein kinase C (C-kinase), displayed a dose-dependent inhibitory effect on Ba expression, showing dependency on C-kinase for Ba expression. Anti-Ba inhibited B cell proliferation induced by anti-mu and B-BCGF distinct from BSF-1. The results presented in this study suggest that the Ba antigen on B cells may be comparable to the Tac antigen on T cells.  相似文献   

17.
The phorbol ester tumor promoter, 12-O-tetradecanoylphorbol-13-acetate [TPA) or phorbol 12-myristate 13-acetate), directly activates the calcium- and phospholipid-dependent protein kinase C (protein kinase C), which, in turn, generates a number of cellular responses. The bryostatins, a family of macrocyclic lactones isolated from marine bryozoans, also bind to and active protein kinase C. However, they differ from TPA in the selectivity of their responses in that they behave either as agonists or antagonists of protein kinase C actions. We used several bryostatins and TPA to examine the role of protein kinase C in the regulation of GH4C1 rat pituitary tumor cell proliferation. TPA inhibited [3H]thymidine incorporation in GH4 cells in a stereoselective and concentration-dependent manner. Examination of cell cycle distribution by flow cytometry revealed that TPA decreased the percentage of cells in S-phase and proportionally increased the percentage of G1-phase cells. Bryostatin 1 alone did not affect cell proliferation, but prevented the TPA inhibition of cell proliferation. Bryostatin 1 treatment from 30 min to 6 h after TPA treatment also prevented the growth-inhibitory action of TPA, suggesting that prolonged stimulation of protein kinase C is necessary for growth inhibition. Both bryostatin 1 and TPA down-regulated protein kinase C, indicating that down regulation of the enzyme cannot account for the growth inhibitory action of TPA. Bryostatin 2, which differs from bryostatin 1 by a hydroxyl substitution for the acetyl group at the C-7 carbon of the macrocyclic lactone ring (R1), inhibited cell proliferation and did not reduce the growth-inhibitory action of TPA. Bryostatins 3 and 8 (each of which has an ester group in the R1 position, yet contains other structural modifications) are antagonists for TPA inhibition of GH4 cell proliferation like bryostatin 1. We next examined the effect of bryostatins 3 and 8 on cell-substratum adhesion, a cellular response observed after GH4 cells are treated with growth-inhibitory agents. Bryostatin 8 (like bryostatin 1) did not enhance cell-substratum adhesion and blocked the action of TPA. In contrast, bryostatin 3 enhanced cell-substratum adhesion. Because bryostatin 3 blocked TPA inhibition of cell proliferation, yet did not block TPA-enhanced cell-substratum adhesion, these responses are not interdependent. We next examined the effect of bryostatin on other growth-inhibitory agents for GH4 cells. Bryostatin 8 blocks the effect of TPA on [3H]thymidine incorporation and the entry of G1 cells into S-phase, but does not block the growth-inhibitory action of thyrotropin-releasing hormone or epidermal growth factor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Optimization of culture conditions such as the dissolved O2 (DO) concentration, temperature and pH was attempted regarding both cell growth and the production of tissue plasminogen activator (TPA) in a microcarrier cell culture of human embryo lung cells. The growth rate was suppressed at a DO concentration below 30% saturation. From the pH range 7.2–7.6, both the specific growth rate and maximal cell concentration decreased. At a lower temperature than 37°C, although both the specific growth rate and the maximal cell concentration decreased, the cell concentration was maintained for a longer time during the production period, high TPA productivity being maintained. As the optimal conditions for culture growth, a DO concentration of 30% saturation or over, temperature of 37°C and pH of 7.4 are recommended. However, for TPA production after cell culture growth, the DO concentration should be in the range 20–30% O2 saturation, and the temperature and pH should be lowered to 33°C and 6.8, respectively.  相似文献   

19.
It is well established that thrombin induces various biological responses in endothelial cells derived from large vessels. However, little is known about the effects of thrombin on the microvasculature. Protein phosphorylation may be one of the mechanisms by which an extracellular stimulus initiates cellular events like proliferation. Therefore, we have compared the effects of either human alpha-thrombin or phorbol esters (TPA) on the proliferation or protein phosphorylation in endothelial cells derived from large vessels (umbilical vein, HUVEC) or microvessels (omental tissue, HOMEC). In HOMEC, thrombin did not stimulate cell proliferation and protein phosphorylation while TPA slightly reduced the cell proliferation and induced the phosphorylation of a 27-kDa protein. In contrast, in HUVEC, thrombin or TPA markedly enhanced the cell proliferation and stimulated the phosphorylation of a 59-kDa protein. These data indicate that (i) endothelial cells from large and small vessels respond differently to thrombin and (ii) there is a complex and as yet unclear relationship between the proliferation and the protein phosphorylation induced by thrombin.  相似文献   

20.
The phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) exerts a dose-dependent effect on Daudi cell proliferation. A low concentration has a slight mitogenic effect but higher concentrations inhibit proliferation. The inhibitory effect is associated with increases in cell size, macromolecular content, and incorporation of precursors into RNA and protein. Cell cycle analysis indicates that TPA at 1–10 nM leads to an apparent accumulation of cells in G2/M phase. However, within this population a significant proportion of cells undergo nuclear division but fail to carry out cytokinesis, giving rise to cells with two or more nuclei. Consistent with this, DNA synthesis continues in cells which cease to divide in the presence of TPA. The ability of the phorbol ester to inhibit proliferation can thus be attributed mainly to an inhibition of cytokinesis rather than DNA replication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号