共查询到20条相似文献,搜索用时 15 毫秒
2.
The International Journal of Life Cycle Assessment - Food production without consuming scarce local freshwater resources in an unsustainable way needs to be ensured. A robust method to assess water... 相似文献
4.
Forecasts on population growth and economic development indicate that there will be substantial increases in food demand for the forthcoming decades. We focus here on the water requirements of food production, on the issue of whether there would be enough water to produce sufficient food in the future, and we offer options to face this challenge based on recent trends observed in some agricultural systems. Given the competition for water faced by the agricultural sector, and the uncertainties associated with climate change, improving the efficiency of water use in both rain-fed and irrigated systems is the main avenue to face the challenge. In rain-fed agriculture, managing the risk associated with rainfall variability is a promising option to increase productivity. In irrigated systems, a case study on the improvements in water productivity in Andalusia, Spain, is used to illustrate some of the opportunities to make progress. Progress in reducing irrigation water use in recent decades has been substantial, but decreasing the consumptive use of crops is a much more difficult challenge. The need for more research and technology transfer on improving water-limited crop production is highlighted, and emphasis is placed on interdisciplinary approaches to gain the insight needed to achieve new breakthroughs that would help in tackling this complex problem. 相似文献
5.
Freshwater scarcity is a growing concern, placing considerable importance on the accuracy of indicators used to characterize and map water scarcity worldwide. We improve upon past efforts by using estimates of blue water footprints (consumptive use of ground- and surface water flows) rather than water withdrawals, accounting for the flows needed to sustain critical ecological functions and by considering monthly rather than annual values. We analyzed 405 river basins for the period 1996-2005. In 201 basins with 2.67 billion inhabitants there was severe water scarcity during at least one month of the year. The ecological and economic consequences of increasing degrees of water scarcity--as evidenced by the Rio Grande (Rio Bravo), Indus, and Murray-Darling River Basins--can include complete desiccation during dry seasons, decimation of aquatic biodiversity, and substantial economic disruption. 相似文献
6.
1. Total water (TW), and extracellular water (ECW) (as sodium and chloride space) were determined in skeletal muscle and carcass of Mus musculus acclimated to long-term water shortage. 2. The presence of fat in control mice and those in early stages of acclimation resulted in an apparent increase in TW and ECW as acclimation proceeded. 3. In contrast, fluid volumes per fat-free weight were either unchanged from controls or reduced. 4. Sodium space exceeded chloride space. 5. Muscle and carcass had essentially the same pattern of fluid shifts. 6. We conclude that ECW maintenance is a preeminent component of the acclimation process in this species. 相似文献
7.
The International Journal of Life Cycle Assessment - How to assess impacts of mineral resources is much discussed in life cycle assessment (LCA). We see a need for, and a lack of, a mineral... 相似文献
8.
The International Journal of Life Cycle Assessment - Quantifying the impacts of water consumption on available water resources forms one of the core indicators of many life cycle assessments... 相似文献
9.
PurposeThe shortage of agricultural water from freshwater sources is a growing concern because of the relatively large amounts needed to sustain food production for an increasing population. In this context, an impact assessment methodology is indispensable for the identification and assessment of the potential consequences of freshwater consumption in relation to agricultural water scarcity. This paper reports on the consistent development of midpoint and endpoint characterisation factors (CFs) for assessing these impacts.MethodsMidpoint characterisation factors focus specifically on shortages in food production resulting from agricultural water scarcity. These were calculated by incorporating country-specific compensation factors for physical availability of water resources and socio-economic capacity in relation to the irrigation water demand for agriculture. At the endpoint, to reflect the more complex impact pathways from food production losses to malnutrition damage from agricultural water scarcity, international food trade relationships and economic adaptation capacity were integrated in the modelling with measures of nutritional vulnerability for each country.Results and discussionThe inter-country variances of CFs at the midpoint revealed by this study were larger than those derived using previously developed methods, which did not integrate compensation processes by food stocks. At the endpoint level, both national and trade-induced damage through international trade were quantified and visualised. Distribution of malnutrition damage was also determined by production and trade balances for commodity groups in water-consuming countries, as well as dependency on import ratios for importer countries and economic adaptation capacity in each country. By incorporating the complex relationships between these factors, estimated malnutrition damage due to freshwater consumption at the country scale showed good correlation with total reported nutritional deficiency damage.ConclusionsThe model allows the establishment of consistent CFs at the midpoint and endpoint for agricultural water scarcity resulting from freshwater consumption. The complex relationships between food production supply and nutrition damage can be described by considering the physical and socio-economic parameters used in this study. Developed CFs contribute to a better assessment of the potential impacts associated with freshwater consumption in global supply chains and to life cycle assessment and water footprint assessments. 相似文献
10.
1. A single injection technique for GFR (14C-methoxyinulin clearance) was adapted for use in small mammals and applied to wild house mice (Mus musculus). 2. GFR in controls was 247 +/- 14(SE) microliter/min while that of mice acclimated to water shortage was reduced some 44%. 相似文献
11.
Cape gannet Morus capensis chicks depend entirely on fish prey and metabolic water for water requirements during development. Water loss through evaporative cooling due to heat stress is substantial. We measured water flux and field metabolic rates (FMR) of Cape gannet chicks and adults to determine if gannets developed water saving strategies. The water economy index (WEI, g kJ ?1) decreased with chick age according to the model WEI = 0.676 – 0.272 × log 10( t), indicating that water efficiency increased with age. At fledging, the WEI of chicks was at the level expected of adult desert birds. Desert birds maintain a low WEI by also having a low FMR, whereas Cape gannet chicks have FMR comparable to other seabird species’ nestling requirements. We propose that maintaining low WEI is adaptive for Cape gannets because (1) chicks need to balance water loss through evaporative cooling, (2) fledglings need to overcome a period of up to a week when they cannot ingest any water and (3) adults spend extended periods in the breeding colony during which water can become a limiting factor. Understanding the physiological mechanism of maintaining low WEI will become increasingly important with future rising temperatures. 相似文献
12.
Greywater is wastewater collected from household sources without input from toilet or commode streams. Greywater represent ca. 65% of total household wastewaters globally. Different aspects of greywater, including its production sources, its characteristics, the barriers and the global scenarios of its reuse, have been critically reviewed in this paper. Given the current projections on acute water scarcity in many regions of the world, the importance of water management cannot be overlooked and a decentralized approach, segregating wastewater streams of a household with proper sanitation is a potential option for recycling greywater. This paper aims to explore the improvements achieved in the reuse of greywater. Therefore, reutilization rates were estimated, hazards and risks associated with the use of untreated greywater were analyzed were summarized. Guidelines for greywater treatment were established and barriers for successful implementation of reuse strategies were identified. Global scenarios of successful implementations of greywater reuse were presented. 相似文献
13.
BackgroundRecycled treated or untreated wastewater represents an important health challenge in developing countries due to potential water related microbiological exposure. Our aim was to assess water quality and health implications in a Mexico City periurban agricultural area. Methodology/Principal FindingsA longitudinal study in the Xochimilco wetland area was conducted, and 42 sites were randomly selected from 211, including irrigation water canals and effluents of treatment plants. Sample collection took place during rainy and dry seasons (2000–2001). Microbiological parameters (total coliforms, fecal coliforms, streptococci/enterococci, and bacteria other than Vibrio grown on TCBS), Helicobacter pylori, and physicochemical parameters including trihalomethanes (THM) were determined. Fecal coliforms and fecal streptococci are appropriate indicators of human or animal fecal contamination. Fecal coliform counts surpass Mexican and World Health Organization irrigation water guidelines. Identified microorganisms associated with various pathologies in humans and domestic animals comprise Escherichia coli, Klebsiella spp., Salmonella spp., Enterobacter spp., Enterococcus spp., and Pseudomonas spp; H. pylori was also present in the water. An environmental characteristic of the canal system showed high Total Organic Carbon content and relatively low dissolved oxygen concentration; residual chlorine as a disinfection control is not efficient, but THMs do not represent a problem. During the rainy season, temperature and conductivity were higher; in contrast, pH, dissolved oxygen, ammonia, and residual chlorine were lower. This is related with the continuous load of feces from human and animal sources, and to the aquatic systems, which vary seasonally and exhibit evidence of lower water quality in effluents from treatment plants. Conclusions/SignificanceThere is a need for improvement of wastewater treatment systems, as well as more efficient monitoring, regulation, and enforcement procedures for wastewater disposal into bodies of water. 相似文献
14.
The stable hydrogen (delta(2)H) and oxygen (delta(18)O) isotope ratios of organic and inorganic materials record biological and physical processes through the effects of substrate isotopic composition and fractionations that occur as reactions proceed. At large scales, these processes can exhibit spatial predictability because of the effects of coherent climatic patterns over the Earth's surface. Attempts to model spatial variation in the stable isotope ratios of water have been made for decades. Leaf water has a particular importance for some applications, including plant organic materials that record spatial and temporal climate variability and that may be a source of food for migrating animals. It is also an important source of the variability in the isotopic composition of atmospheric gases. Although efforts to model global-scale leaf water isotope ratio spatial variation have been made (especially of delta(18)O), significant uncertainty remains in models and their execution across spatial domains. We introduce here a Geographic Information System (GIS) approach to the generation of global, spatially-explicit isotope landscapes (= isoscapes) of "climate normal" leaf water isotope ratios. We evaluate the approach and the resulting products by comparison with simulation model outputs and point measurements, where obtainable, over the Earth's surface. The isoscapes were generated using biophysical models of isotope fractionation and spatially continuous precipitation isotope and climate layers as input model drivers. Leaf water delta(18)O isoscapes produced here generally agreed with latitudinal averages from GCM/biophysical model products, as well as mean values from point measurements. These results show global-scale spatial coherence in leaf water isotope ratios, similar to that observed for precipitation and validate the GIS approach to modeling leaf water isotopes. These results demonstrate that relatively simple models of leaf water enrichment combined with spatially continuous precipitation isotope ratio and climate data layers yield accurate global leaf water estimates applicable to important questions in ecology and atmospheric science. 相似文献
17.
Water quality in many stream catchments and river basins is severely impacted by nutrient enrichment as a result of agriculture. Water-resource managers worldwide are considering the potential role of riparian zones and floodplain wetlands in improving stream-water quality, as there is evidence at the site scale that such wetlands are efficient at removing nutrients from through-flowing water. However, recent studies have highlighted disadvantages of such use of wetlands, including emissions of greenhouse gases and losses of biodiversity that result from prolonged nutrient loading. Here, we discuss the water purification function of wetlands at the site and catchment scale and suggest ways in which these disadvantages could be overcome. 相似文献
18.
PurposeThis work presents a systematic review, updating the information on the currently available methods to calculate the water footprint (WF), and addressing the following methodological challenges, as they have not been deeply studied to date: (1) accounting and assessing the environmental impacts related to changes in evapotranspiration (ET); (2) inventory of actual blue freshwater consumption in agriculture; (3) temporal and spatial variation to establish explicit characterisation factors (CFs) and (4) adequate connection between inventory flows and spatio-temporal explicit CFs.MethodsA systematic review relying on the guidelines of Pullin and Stewart (Conserv Biol 20(6):1647–1656, 2006) was conducted. Taking into account five specific formulated research questions in the WF field, WF studies were selected based on two ‘types’ of screening criteria: keyword searches and the WF study filter. Results and discussionFrom the 128 papers in peer-reviewed journals on product WF from a life cycle perspective, this literature review shows that major methodological challenges remain partially unsolved, which could degrade the accuracy of product WF assessments. To understand how land use affects ET, and depending on the land cover and size of the land use production system, actual ET can be estimated based on meteorological data on water balance equations embedded in crop and forest growth models, from field measurements at meteorological stations and more recently from remote sensing. For accounting for blue water consumption in agriculture, there are two types of approaches that lead to quite different results: inventory from actual farming records of applied irrigation and inventory from modelled ET associated with irrigation. Depending on the question being addressed, the practitioner can apply either approach. Furthermore, when a single freshwater scarcity CF is determined for large sub-watersheds, especially when the sub-watersheds have non-uniform freshwater availability and demand, uncertainty in the freshwater use-related impacts is introduced. Regarding the connection between inventory flows and spatio-temporal explicit CFs, the difficulty in identifying the exact location of background processes and characterising the local environmental characteristics (e.g. edaphoclimatic conditions, land cover) can hinder the elaboration of an accurate spatially differentiated impact assessment, as more generic CFs can be applied.ConclusionsThis systematic review shows that there are clearly future research needs with respect to the interrelations between freshwater use and potential damages in the areas of protection of resources, human health and ecosystem quality. It is also of paramount importance to understand the effects of land use and land cover change and water irrigation on WF damage. 相似文献
19.
Drivers behind food security and crop protection issues are discussed in relation to food losses caused by pests. Pests globally consume food estimated to feed an additional one billion people. Key drivers include rapid human population increase, climate change, loss of beneficial on-farm biodiversity, reduction in per capita cropped land, water shortages, and EU pesticide withdrawals under policies relating to 91/414 EEC. IPM (Integrated Pest Management) will be compulsory for all EU agriculture by 2014 and is also being widely adopted globally. IPM offers a 'toolbox' of complementary crop- and region-specific crop protection solutions to address these rising pressures. IPM aims for more sustainable solutions by using complementary technologies. The applied research challenge now is to reduce selection pressure on single solution strategies, by creating additive/synergistic interactions between IPM components. IPM is compatible with organic, conventional, and GM cropping systems and is flexible, allowing regional fine-tuning. It reduces pests below economic thresholds utilizing key 'ecological services', particularly biocontrol. A recent global review demonstrates that IPM can reduce pesticide use and increase yields of most of the major crops studied. Landscape scale 'ecological engineering', together with genetic improvement of new crop varieties, will enhance the durability of pest-resistant cultivars (conventional and GM). IPM will also promote compatibility with semiochemicals, biopesticides, precision pest monitoring tools, and rapid diagnostics. These combined strategies are urgently needed and are best achieved via multi-disciplinary research, including complex spatio-temporal modelling at farm and landscape scales. Integrative and synergistic use of existing and new IPM technologies will help meet future food production needs more sustainably in developed and developing countries, in an era of reduced pesticide availability. Current IPM research gaps are identified and discussed. 相似文献
|