首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matrotrophy, the provisioning of embryos between fertilization and birth, creates the potential for conflict between mothers and embryos over the level of maternal investment. This conflict is predicted to drive the evolution of reproductive isolation between populations with different mating systems. In this study, we examine whether density‐driven mating system differences explain the patterns of asymmetric reproductive isolation observed in previous studies involving four populations of the matrotrophic least killifish, Heterandria formosa. Minimum sire number reconstructions suggested that two populations characterized by low densities had lower levels of concurrent multiple paternity than two populations characterized by high densities. However, low levels of genetic variation in the low‐density populations greatly reduced our probability of detecting multiple mating in them. Once we took the lower level of genetic variation into account in our estimations, high levels of multiple paternity appeared the rule in all four populations. In the population where we had the greatest power of detecting multiple mating, we found that multiple paternity in H. formosa typically involves multiple sires contributing to offspring within the same brood instead of different fathers contributing to distinct, simultaneously provisioned broods. Paternity was often skewed towards one sire. Our results suggest that differences between H. formosa populations in the levels of multiple paternity are not sufficient to explain the reproductive isolation seen in previous studies. We suggest that other influences on maternal–foetal conflict may contribute to the pattern of reproductive isolation observed previously. Alternatively, the asymmetric reproductive isolation seen in previous studies might reflect the disruption of maternal–foetal coadaptation.  相似文献   

2.
When females mate with multiple males, they set the stage for postcopulatory sexual selection via sperm competition and/or cryptic female choice. Surprisingly little is known about the rates of multiple mating by females in the wild, despite the importance of this information in understanding the potential for postcopulatory sexual selection to drive the evolution of reproductive behaviour, morphology and physiology. Dung beetles in the genus Onthophagus have become a laboratory model for studying pre‐ and postcopulatory sexual selection, yet we still lack information about the reproductive behaviour of female dung beetles in natural populations. Here, we develop microsatellite markers for Onthophagus taurus and use them to genotype the offspring of wild‐caught females and to estimate natural rates of multiple mating and patterns of sperm utilization. We found that O. taurus females are highly polyandrous: 88% of females produced clutches sired by at least two males, and 5% produced clutches with as many as five sires. Several females (23%) produced clutches with significant paternity skew, indicating the potential for strong postcopulatory sexual selection in natural populations. There were also strong positive correlations between the number of offspring produced and both number of fathers and paternity skew, which suggests that females benefit from mating polyandrously by inciting postcopulatory mechanisms that bias paternity towards males that can sire more viable offspring. This study evaluates the fitness consequences of polyandry for an insect in the wild and provides strong evidence that female dung beetles benefit from multiple mating under natural conditions.  相似文献   

3.
Behavioural ecologists have for decades investigated the adaptive value of extra‐pair copulation (EPC) for females of socially monogamous species. Despite extensive effort testing for genetic benefits, there now seems to be a consensus that the so‐called ‘good genes’ effects are at most weak. In parallel the search for direct benefits has mostly focused on the period surrounding egg laying, thus neglecting potential correlates of EPC that might be expressed at later stages in the breeding cycle. Here we used Bayesian methods to analyse data collected over four years in a population of blue tits Cyanistes caeruleus, where no support was previously found for ‘good genes’ effects. We found that broods with mixed paternity experienced less brood failure at the nestling stage than broods with single paternity, and that females having experienced complete brood failure in their previous breeding attempt had higher rates of mixed paternity than either yearling or previously successful females. To better understand these observations we also explored relationships between extra‐pair mating, male and female phenotype, and local breeding density. We found that in almost all cases the sires of extra‐pair offspring were close neighbours, and that within those close neighbourhoods extra‐pair sires were older than other males not siring extra‐pair offspring. Also, females did not display consistent EPC status across years. Taken together our results suggest that multiple mating might be a flexible female behaviour influenced by previous breeding experience, and motivate further experimental tests of causal links between extra‐pair copulation and predation.  相似文献   

4.
Understanding the mating system and reproductive success of a species provides evidence for sexual selection. We examined the mating system and the reproductive success of captive adult black sea bream (Acanthopagrus schlegelii), using parentage assignment based on two microsatellites multiplex PCR systems, with 91.5% accuracy in a mixed family (29 sires, 25 dams, and 200 offspring). Based on the parentage result, we found that 93.1% of males and 100% of females participated in reproduction. A total of 79% of males and 92% of females mated with multiple partners (only 1 sire and 1 dam were monogamous), indicating that polygynandry best described the genetic mating system of black sea bream. For males, maximizing the reproductive success by multiple mating was accorded with the sexual selection theory while the material benefits hypothesis may contribute to explain the multiple mating for females. For both sexes, there was a significant correlation between mating success and reproductive success and the variance in reproductive success of males was higher than females. Variation in mating success is the greatest determinant to variation in reproductive success when the relationship is strongly positive. The opportunity for sexual selection of males was twice that of females, as well as the higher slope of the Bateman curve in males suggested that the intensity of intrasexual selection of males was higher than females. Thus, male–male competition would lead to the greater variation of mating success for males, which caused greater variation in reproductive success in males. The effective population number of breeders (Nb) was 33, and the Nb/N ratio was 0.61, slightly higher than the general ratio in polygynandrous fish populations which possibly because most individuals mated and had offspring with a low variance. The relatively high Nb contributes to the maintenance of genetic diversity in farmed black sea bream populations.  相似文献   

5.
Song SD  Drew RA  Hughes JM 《Molecular ecology》2007,16(11):2353-2361
Mating frequency has important implications for patterns of sexual selection and sexual conflict and hence for issues such as speciation and the maintenance of genetic diversity. Knowledge of natural mating patterns can also lead to more effective control of pest tephritid species, in which suppression programmes, such as the sterile insect technique (SIT) are employed. Multiple mating by females may compromise the success of SIT. We investigated the level of polyandry and sperm utilization in a Brisbane field population of the tropical fruit fly, Bactrocera cacuminata (Hering), using seven polymorphic microsatellite loci. The offspring of 22 wild-caught gravid females were genotyped to determine the number of males siring each brood and paternity skew, using the programs gerud and scare. Our data showed that 22.7% of females produced offspring sired by at least two males. The mean number of mates per female was 1.72. Paternal contributions of double-sired broods were skewed with the most successful male having sired between 76.9% and 87.5% of the offspring. These results have implications for SIT, because the level of remating we have identified would indicate that wild females could mate with one or more resident fertile males.  相似文献   

6.
Mating rate has important implications for patterns of sexual selection and sexual conflict and hence for issues such as speciation and the maintenance of genetic diversity. Knowledge of natural mating rates can provide insights into the factors driving female mating behaviour. We investigated the level of polyandry in a Spanish population of the field cricket Gryllus bimaculatus using microsatellite markers. Two approaches were employed: (i) genotyping the offspring of wild-caught gravid females to determine the number of males siring the brood and (ii) genotyping sperm stored in the spermathecae of females mated in the wild to estimate the number of mating partners. We compared existing methods for inferring the minimum and probable number of fathers and described a novel probabilistic technique estimating the number of mates by genotyping stored sperm. Using the most conservative allele-counting method, 71% of females produced offspring sired by at least two males (a minimum mean of 2.4 fathers per clutch), and all females had mated to at least two males with minimum mean estimates of 2.7-5.1 mates per female. Our study reveals high levels of polyandry in the wild and suggests that females mate with more males than sire their offspring.  相似文献   

7.
Life history and population dynamic patterns of Gambusia affinis in southeastern Louisiana varied spatially and temporally in 1990 and 1991, but were consistent with previous reports of this species in the southern regions of its natural range. Several differences exist among populations in different geographic regions within the United States, as reported in the literature, which do not follow a' native v . introduced' dichotomy: (1) brood size decreases and offspring size increases from north to south; (2) large overwintered females in northern areas produce more broods within a season than those in southern populations, while the reverse is true for young-of–year females; (3) minimum size at first reproduction follows a seasonal pattern within populations, but tends to be smaller in southern and larger in northern and Hawaiian populations; (4) synchronous reproduction early in the season is characteristic of northern populations, but does not occur in southern areas; and (5) mosquitofish reproduce year–round in Hawaii, while 'southern' populations within the continental U.S. cease reproduction during winter.  相似文献   

8.
The interaction between philopatry and nonrandom mating has important consequences for the genetic structure of populations, influencing co‐ancestry within social groups but also inbreeding. Here, using genetic paternity data, we describe mating patterns in a wild population of red deer (Cervus elaphus) which are associated with marked consequences for co‐ancestry and inbreeding in the population. Around a fifth of females mate with a male with whom they have mated previously, and further, females frequently mate with a male with whom a female relative has also mated (intralineage polygyny). Both of these phenomena occur more than expected under random mating. Using simulations, we demonstrate that temporal and spatial factors, as well as skew in male breeding success, are important in promoting both re‐mating behaviours and intralineage polygyny. However, the information modelled was not sufficient to explain the extent to which these behaviours occurred. We show that re‐mating and intralineage polygyny are associated with increased pairwise relatedness in the population and a rise in average inbreeding coefficients. In particular, the latter resulted from a correlation between male relatedness and rutting location, with related males being more likely to rut in proximity to one another. These patterns, alongside their consequences for the genetic structure of the population, have rarely been documented in wild polygynous mammals, yet they have important implications for our understanding of genetic structure, inbreeding avoidance and dispersal in such systems.  相似文献   

9.
The evolution of parental care opens the door for the evolution of brood parasitic strategies that allow individuals to gain the benefits of parental care without paying the costs. Here we provide the first documentation for alloparental care in coral reef fish and we discuss why these patterns may reflect conspecific and interspecific brood parasitism. Species‐specific barcodes revealed the existence of low levels (3.5% of all offspring) of mixed interspecific broods, mostly juvenile Amblyglyphidodon batunai and Pomacentrus smithi damselfish in Altrichthys broods. A separate analysis of conspecific parentage based on microsatellite markers revealed that mixed parentage broods are common in both species, and the genetic patterns are consistent with two different modes of conspecific brood parasitism, although further studies are required to determine the specific mechanisms responsible for these mixed parentage broods. While many broods had offspring from multiple parasites, in many cases a given brood contained only a single foreign offspring, perhaps a consequence of the movement of lone juveniles between nests. In other cases, broods contained large numbers of putative parasitic offspring from the same parents and we propose that these are more likely to be cases where parasitic adults laid a large number of eggs in the host nest than the result of movements of large numbers of offspring from a single brood after hatching. The evidence that these genetic patterns reflect adaptive brood parasitism, as well as possible costs and benefits of parasitism to hosts and parasites, are discussed.  相似文献   

10.
Abstract Many species of herbivorous mammals declined to extinction following European settlement of inland Australia. The rufous bettong, Aepyprymnus rufescens (a macropodoid marsupial), is ecologically similar to many of these species. We used analysis of microsatellite markers to determine dispersal patterns and mating system characteristics in a cluster of local populations of A. rufescens, with the aim of gaining a better understanding of regional population dynamics in such species. Particularly, we asked whether the rufous bettong showed source‐sink dynamics, as Morton (1990) hypothesized that many mammals may have been made vulnerable to extinction through such processes. We compared populations separated by distances of up to 12 km, and detected significant genetic differentiation among local populations (FST = 0.016). Females displayed greater genetic structuring than males, suggesting that females dispersed over shorter distances or less frequently than males. Geographic distance was weakly related to genetic distance between populations suggesting some gene flow at this scale, and paternity assignment indicated that dispersal can occur over distances of up to 6.5 km. Our study populations varied widely in density, but density did not explain the pattern of genetic differentiation observed. These findings of significant structure among populations, some influence of distance on genetic divergence and that density explains little of the divergence among populations, suggested that source‐sink dynamics did not play a large role among these populations. Variance in male mating success was low (maximum assigned paternity for an individual male was 14% of offspring). While data on multiple maternity were limited, roughly half of repeat maternity was assigned to the same male, suggesting that the mating system of the rufous bettong is not purely promiscuous.  相似文献   

11.
In most animal species, brood size and body size exhibit some variation within and between populations. This is also true for burying beetles (genus Nicrophorus), a group in which the body size of offspring depends critically on the number of offspring competing for food due to the discrete nature of resource used for larval nutrition (vertebrate carcasses). In one species, brood size and body size are correlated with population density, and appear to be phenotypically plastic. We investigated potential proximate causes of between-population variation in brood size and body size in two species, Nicrophorus vespilloides and Nicrophorus defodiens. Our first experiment supported the notion that brood size is phenotypically plastic, because it was affected by environmental variation in adult nutritional condition. We found that the pre-breeding nutritional status of female N. vespilloides affected the number of eggs they laid, the number of surviving larvae in their broods, and the body size of their offspring. We do not know whether this plasticity is adaptive because greater offspring body size confers an advantage in contests over breeding resources, or whether starved females are constrained to produce smaller clutches because they cannot fully compensate for their poor pre-breeding nutritional status by feeding from the carcass. Our second experiment documents that brood size, specifically the infanticidal brood-size adjustment behavior, has undergone genetic differentiation between two populations of N. defodiens. Even under identical breeding conditions with identical numbers of first-instar larvae, females descended from the two populations produced broods of different size with corresponding differences in offspring body size.  相似文献   

12.
Modern genetic parentage methods reveal that alternative reproductive strategies are common in both males and females. Under ideal conditions, genetic methods accurately connect the parents to offspring produced by extra-pair matings or conspecific brood parasitism. However, some breeding systems and sampling scenarios present significant complications for accurate parentage assignment. We used simulated genetic pedigrees to assess the reliability of parentage assignment for a series of challenging sampling regimes that reflect realistic conditions for many brood-parasitic birds: absence of genetic samples from sires, absence of samples from brood parasites and female kin-structured populations. Using 18 microsatellite markers and empirical allele frequencies from two populations of a conspecific brood parasite, the wood duck (Aix sponsa), we simulated brood parasitism and determined maternity using two widely used programs, cervus and colony . Errors in assignment were generally modest for most sampling scenarios but differed by program: cervus suffered from false assignment of parasitic offspring, whereas colony sometimes failed to assign offspring to their known mothers. Notably, colony was able to accurately infer unsampled parents. Reducing the number of markers (nine loci rather than 18) caused the assignment error to slightly worsen with colony but balloon with cervus . One potential error with important biological implications was rare in all cases—few nesting females were incorrectly excluded as the mother of their own offspring, an error that could falsely indicate brood parasitism. We consider the implications of our findings for both a retrospective assessment of previous studies and suggestions for best practices for future studies.  相似文献   

13.
We examined the relationships between family (female parentage), body size of females, brood retention time between mating and parturition, female fecundity, and early growth of offspring in the guppy Poecilia reticulata. Mature, virgin females from a single brood were mated with a single male. Results of generalized linear models indicate that the effect of the family on female fecundity and offspring growth was significant, which suggested that these traits are genetically determined to a certain extent. Larger females at the time of mating produced larger broods, although female body size at the time of parturition did not affect brood size, in contrast to the results of some previous studies in guppies. Brood size was negatively associated with the body size of neonates. Results highlighted significant associations between brood retention time and female fecundity as well as offspring growth. In addition, the interaction between the family and brood retention time was significantly associated with female fecundity and offspring growth. Females of some families had longer retention times of larger broods, whereas those of other families had shorter retention times of smaller broods. On the other hand, females with longer brood retention times produced smaller neonates with slower growth. Since the family also affected the brood retention time, selection may work against the duration of brood retention of females via the size, growth and number of offspring, depending on environmental factors such as the intensity of predation or competition in neonates.  相似文献   

14.
Johnson SL  Yund PO 《Molecular ecology》2007,16(15):3253-3262
For free-spawning marine invertebrates, fertilization processes control the genetic diversity of offspring. Each egg can potentially be fertilized by a sperm from a different male, and hence genetic diversity within a brood varies with levels of multiple paternity. Yet, few studies have characterized the frequency of multiple paternity in natural spawns. We analysed patterns of multiple paternity in two populations of the colonial ascidian Botryllus schlosseri using microsatellites. Because previous studies have shown that at moderate to high population densities, competition among male-phase B. schlosseri colonies results in the nearest male dominating the paternity of a brood, we specifically tested the effect of population density on patterns of paternity. Paternity was estimated using three multilocus indices: minimum number of fathers, counts of sperm haplotypes, and effective paternity (K(E)). Multiple paternity was evident in more than 92% of the broods analysed, but highly variable, with a few broods displaying unequal contributions of different males. We found no effect of population density on multiple paternity, suggesting that other factors may control paternity levels. Indirect benefits from increasing the genetic diversity of broods are a possible explanation for the high level of multiple paternity in this species.  相似文献   

15.
Three polymorphic microsatellite loci were isolated and employed to examine paternity patterns in two natural populations of live-bearing mosquitofish, Gambusia holbrooki. Each locus displayed four to five alleles per population in samples of presumably unrelated adults. Nearly 900 embryos from a total of 50 pregnant females were assayed individually, and paternal alleles in each embryo were identified. Counts of paternal alleles, Mendelian segregation patterns, multilocus allelic associations and genetic relatedness coefficients were employed to estimate the minimum and effective numbers of fathers per brood. At least 90% of the assayed broods were shown to have been fathered by multiple males, a figure substantially higher than previous estimates based on less polymorphic genetic loci. However, the genetic data yield a face-value estimate of only about 2.2 fathers per brood, a number that seems perhaps surprisingly low based on frequencies of attempted copulations by males. Both biological and sampling factors that might bias mean sire counts downward are considered. Although higher sire counts per brood might be obtained from loci with even greater numbers of alleles, little statistical room remains for higher frequency estimates of multiple paternity in Gambusia.  相似文献   

16.
Female multiple mating has been extensively studied to understand how nonobvious benefits, generally thought to be of genetic nature, could overcome heavy costs such as an increased risk of infection during mating. However, the impact of infection itself on multiple mating has rarely been addressed. The interaction between the bacterium Wolbachia and its terrestrial crustacean host, Armadillidium vulgare, is a relevant model to investigate this question. In this association, Wolbachia is able to turn genetic males into functional females (i.e. feminization), thereby distorting the sex ratio and decreasing the number of available males at the population scale. Moreover, in A. vulgare, females have been shown to mate multiply under laboratory conditions and males prefer uninfected females over infected ones. Additionally, different Wolbachia strains are known to infect A. vulgare and these strains differ in their transmission rate and virulence. All these elements suggest a potential impact of different Wolbachia strains on multiple mating. To investigate this assumption, we collected gravid females in a wild A. vulgare population harbouring both uninfected females and females infected with one of two different Wolbachia strains (wVulM and wVulC) and performed paternity analyses on the obtained broods using microsatellite markers. We demonstrate that (i) multiple paternity is common in this wild population of A. vulgare, with a mean number of fathers of 4.48 ± 1.24 per brood and (ii) females infected with wVulC produced broods with a lower multiple paternity level compared with females infected with wVulM and uninfected ones. This work improves our knowledge of the impact of infections on reproductive strategies.  相似文献   

17.
Female multiple mating, known as polyandry, is ubiquitous and occurs in a wide variety of taxa. Polyandry varies greatly from species in which females mate with one or two males in their lifetime to species in which females may mate with several different males on the same day. As multiple mating by females is associated with costs, numerous hypotheses attempt to explain this phenomenon. One hypothesis not extensively explored is the possibility that polyandrous behavior is captured and “fixed” in populations via genetic processes that preserve the behavior independently of any adaptive benefit of polyandry. Here, we use female isolines derived from populations of Drosophila pseudoobscura from three locations in North America to examine whether different female remating levels are associated with patterns of chromosome inversions, which may explain patterns of polyandry across the geographic range. Populations differed with respect to the frequency of polyandry and the presence of inversion polymorphisms on the third chromosome. The population with the lowest level of female remating was the only one that was entirely comprised of homokaryotypic lines, but the small number of populations prevented us investigating this relationship further at a population level. However, we found no strong relationship between female remating levels and specific karyotypes of the various isolines.  相似文献   

18.
Maintenance of genetic variation in the face of strong natural selection is a long‐standing problem in evolutionary biology. One of the most extreme examples of within‐population variation is the polymorphic, genetically determined color pattern of male Trinidad guppies (Poecilia reticulata). Female mating preference for rare or novel patterns has been implicated as a factor in maintaining this variation. The origin of this preference is not understood, although inbreeding avoidance has been proposed as a mechanism. Inbreeding avoidance is advantageous when populations exhibit inbreeding depression and the opportunity for mating between relatives exists. To determine whether these conditions are met in a natural guppy population, we assessed mating and reproductive patterns using polymorphic molecular markers. Females produced more offspring with less‐related males than with more‐related ones. In addition, females were more likely to have mated with less‐related males, but this trend was only marginally significant. Male heterozygosity was positively correlated with mating success and with the number of offspring sired, consistent with strong inbreeding depression for adult male fitness. These results provide substantial insight into mating patterns of a wild guppy population: strong inbreeding depression occurs, and individuals tend to avoid mating with relatives.  相似文献   

19.
Mating frequency has important implications for patterns of sexual selection and sexual conflict, and hence for issues such as the maintenance of genetic diversity and speciation. We assessed the level of multiple paternity and sperm utilization patterns in four natural populations of the simultaneous hermaphrodite land snail Arianta arbustorum using four polymorphic microsatellite loci. A total of 1088 offspring from 26 wild‐caught snails were genotyped to determine the number of fathers siring each brood and paternity skew in succeeding clutches. Multiple paternity was detected in the offspring of all 26 mother snails examined with the contribution of two to six fathers. The four populations examined differed in the level of multiple paternity. Snails in the population with the highest density of adults showed the highest level of multiple paternity, whereas snails in the population with the lowest density exhibited the lowest value of multiple paternity. Highly skewed paternity patterns were found in the progeny of 15 (57.7%) of the 26 mother snails. The number and identity of fathers siring the offspring of single mothers also varied among successive clutches. Furthermore, genetic analyses indicate a low level of self‐fertilization in one of the four populations. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 350–361.  相似文献   

20.
Mixed populations of the twospotted spider mite (TSM),Tetranychus urticae (Koch), and the Banks grass mite (BGM),Oligonychus pratensis (Banks), occur on corn and sorghum plants in late summer in the Great Plains. Interspecific matings between these arrhenotokous species occur readily in the laboratory but yield no female offspring. The effect of interspecific mating on female: male sex ratios was measured by examining the F1 progeny of females that mated with both heterospecific and conspecific males in no-choice situations. TSM females that mated first with BGM males and then with TSM males produced a smaller percentage of female offspring than TSM females that mated only with TSM males (43.1±5.8 and 78.9±2.8% females, respectively). Similarly, BGM females mated with heterospecific males and then with conspecific males produced fewer female offspring than females mated only with BGM males (55.7±5.2 and 77.5±2.5%, respectively). Lower female: male sex ratios were produced also by BGM females that mated with TSM males after first mating with conspecifics (62.4±3.4%). In mixed populations containing males of both species, females also produced lower female: male sex ratios, but these ratios were not as low as expected based on mating propensities and progeny sex ratios observed in no-choice tests. These data suggest that interspecific mating may substantially reduce female fitness in both mite species by reducing the output of female offspring, but in mixed populations this effect is mitigated by unidentified behavioral mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号