首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For waste management, methane emissions from landfills and their effect on climate change are of serious concern. Current models for biogas generation that focus on the economic use of the landfill gas are usually based on first order chemical reactions (exponential decay), underestimating the long-term emissions of landfills. The presented study concentrated on the curve fitting and the quantification of the gas generation during the final degradation phase under optimal anaerobic conditions. For this purpose the long-term gas generation (240–1,830 days) of different mechanically biologically treated (MBT) waste materials was measured. In this study the late gas generation was modeled by a log–normal distribution curve to gather the maximum gas generation potential. According to the log–normal model the observed gas sum curve leads to higher values than commonly used exponential decay models. The prediction of the final phase of landfill gas generation by a fitting model provides a basis for CO2 balances in waste management and some information to which extent landfills serve as carbon sink.  相似文献   

2.
Operation of waste cells as landfill bioreactors with leachate recirculation is known to accelerate waste degradation and landfill gas generation. However, waste degradation rates in landfill bioreactors decrease with time, with the accumulation of difficult to degrade materials, such as lignin-rich waste. Although, potential exists to modify the leachate quality to promote further degradation of such waste, very little information is available in literature. The objective of this study was to determine the viability of augmenting leachate with enzymes to increase the rate of degradation of lignin-rich waste materials. Among the enzymes evaluated MnP enzyme showed the best performance in terms of methane yield and substrate (lignin) utilization. Methane production of 200 mL CH4/g VS was observed for the MnP amended reactor as compared to 5.7 mL CH4/g VS for the control reactor. The lignin reduction in the MnP amended reactor and control reactor was 68.4% and 6.2%, respectively.  相似文献   

3.
Aerobic CH4 oxidation plays an important role in mitigating CH4 release from landfills to the atmosphere. Therefore, in this study, oxidation activity and community of methanotrophs were investigated in a subtropical landfill. Among the three sites investigated, the highest CH4 concentration was detected in the landfill cover soil of the site (A) without a landfill gas (LFG) recovery system, although the refuse in the site had been deposited for a longer time (∼14–15 years) compared to the other two sites (∼6–11 years) where a LFG recovery system was applied. In April and September, the higher CH4 flux was detected in site A with 72.4 and 51.7 g m−2 d−1, respectively, compared to the other sites. The abundance of methanotrophs assessed by quantification of pmoA varied with location and season. A linear relationship was observed between the abundance of methanotrophs and CH4 concentrations in the landfill cover soils (R = 0.827, P < 0.001). The key factors influencing the methanotrophic diversity in the landfill cover soils were pH, the water content and the CH4 concentration in the soil, of which pH was the most important factor. Type I methanotrophs, including Methylococcus, Methylosarcina, Methylomicrobium and Methylobacter, and type II methanotrophs (Methylocystis) were all detected in the landfill cover soils, with Methylocystis and Methylosarcina being the dominant genera. Methylocystis was abundant in the slightly acidic landfill cover soil, especially in September, and represented more than 89% of the total terminal-restriction fragment abundance. These findings indicated that the LFG recovery system, as well as physical and chemical parameters, affected the diversity and activity of methanotrophs in landfill cover soils.  相似文献   

4.
Anaerobic bacterial degradation of landfill waste produces a globally significant source of the greenhouse gas methane. Stable isotopic measurements of methane [δI3C(CH4) and δD(CH4)] can often fingerprint different sources of methane (natural vs. anthro‐pogenic) and help identify the bacterial processes involved in methane production. Landfill microbial communities are complex and diverse, and hence so too is the biogeochem‐istry of methane formation. To investigate the influence of (l) the methane formation pathway (acetoclastic methanogenesis and CO2 reduction), and (2) SD of water on the stable isotopic composition of landfill methane, two model butyrate‐degrading landfill systems were established. The systems were inoculated with domestic refuse from a landfill and incubated in the laboratory for 92 days. Both systems were identical except δD of water initially added to system 2 was 118% heavier than system 1. Between days 39 and 72 the systems were resupplemented with butyrate. Production of CH4 and CO2 and changes in volatile fatty acid concentration confirmed that active methanogenic populations had been established. CH4 became 13C enriched in both incubations with time. Interpreting changes in acetate, butyrate, and propionate concentration during incubation is complicated, but these observations and other information suggest that the dominant methanogenic substrate changed front CO2/H2 to acetate as the experiment progressed. This is also consistent with the observed 13C enrichment of CH4, as 13C discrimination during methane production from acetate is less than from CO2. In contrast, δD(CH4) remained relatively constant, suggesting that this measurement may not provide a reliable basis for distinguishing between CH4 from CO2 reduction and acetoclastic methanogenesis, as has previously been suggested.  相似文献   

5.
The main goal of this study was to present a comparison of landfill performance with respect to solids decomposition. Biochemical methane potential (BMP) test was used to determine the initial and the remaining CH4 potentials of solid wastes during 27 months of landfilling operation in two pilot scale landfill reactors. The initial methane potential of solid wastes filled to the reactors was around 0.347 L/CH4/g dry waste, which decreased with operational time of landfill reactors to values of 0.117 and 0.154 L/CH4/g dry waste for leachate recirculated (R1) and non-recirculated (R2) reactors, respectively. Results indicated that the average rate constant increased by 32% with leachate recirculation. Also, the performance of the system was modeled using the BMP data for the samples taken from reactors at varying operational times by MATLAB program. The first-order rate constants for R1 and R2 reactors were 0.01571 and 0.01195 1/d, respectively. The correlation between the model and the experimental parameters was more than 95%, showing the good fit of the model.  相似文献   

6.
赵薇  孙一桢  张文宇  梁赛 《生态学报》2016,36(22):7208-7216
我国生活垃圾产量大但处理能力不足,产生多种环境危害,对其资源化利用能够缓解环境压力并回收资源。为探讨生活垃圾资源化利用策略,综合生命周期评价与生命周期成本分析方法,建立生态效率模型。以天津市为例,分析和比较焚烧发电、卫生填埋-填埋气发电、与堆肥+卫生填埋3种典型生活垃圾资源化利用情景的生态效率。结果表明,堆肥+卫生填埋情景具有潜在最优生态效率;全球变暖对总环境影响贡献最大,而投资成本对经济影响贡献最大。考虑天津市生活垃圾管理现状,建议鼓励发展生活垃圾干湿组分分离及厨余垃圾堆肥的资源化利用策略。  相似文献   

7.
There is consensus on the importance of upstream methane (CH4) emissions to the life cycle greenhouse gas (GHG) footprint of natural gas systems, but inconsistencies among recent studies explain why some researchers calculate a CH4 emission rate of less than 1% whereas others calculate a CH4 emission rate as high as 10%. These inconsistencies arise from differences in data collection methods, data collection time frames, and system boundaries. This analysis focuses on system boundary inconsistencies. Our results show that the calculated CH4 emission rate can increase nearly fourfold not by changing the magnitude of any particular emission source, but by merely changing the portions of the supply chain that are included within the system boundary. Our calculated CH4 emission rate for extraction through pipeline transmission is 1.2% for current practices. Our model allows us to identify GHG contributors in the upstream supply chain, but also allows us to tie upstream findings to complete life cycle scenarios. If applied to the life cycles of power systems and assessed in terms of cumulative radiative forcing, the upstream CH4 emission rate can be as high as 3.2% before the GHG impacts from natural gas power exceed those from coal power at any point during a 100‐year time frame.  相似文献   

8.
The ongoing development of the Global Carbon Project (GCP) global methane (CH4) budget shows a continuation of increasing CH4 emissions and CH4 accumulation in the atmosphere during 2000–2017. Here, we decompose the global budget into 19 regions (18 land and 1 oceanic) and five key source sectors to spatially attribute the observed global trends. A comparison of top-down (TD) (atmospheric and transport model-based) and bottom-up (BU) (inventory- and process model-based) CH4 emission estimates demonstrates robust temporal trends with CH4 emissions increasing in 16 of the 19 regions. Five regions—China, Southeast Asia, USA, South Asia, and Brazil—account for >40% of the global total emissions (their anthropogenic and natural sources together totaling >270 Tg CH4 yr?1 in 2008–2017). Two of these regions, China and South Asia, emit predominantly anthropogenic emissions (>75%) and together emit more than 25% of global anthropogenic emissions. China and the Middle East show the largest increases in total emission rates over the 2000 to 2017 period with regional emissions increasing by >20%. In contrast, Europe and Korea and Japan show a steady decline in CH4 emission rates, with total emissions decreasing by ~10% between 2000 and 2017. Coal mining, waste (predominantly solid waste disposal) and livestock (especially enteric fermentation) are dominant drivers of observed emissions increases while declines appear driven by a combination of waste and fossil emission reductions. As such, together these sectors present the greatest risks of further increasing the atmospheric CH4 burden and the greatest opportunities for greenhouse gas abatement.  相似文献   

9.
内蒙古典型草原植物功能型对土壤甲烷吸收的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
甲烷(CH4)是仅次于CO2的重要温室气体。内蒙古草原是欧亚温带草原的重要类型, 具有典型的生态地域代表性。该文以内蒙古温带典型草原为研究对象, 通过人工剔除植物种的方法来确定群落中的植物功能型, 并应用静态箱技术, 观测土壤CH4的吸收, 以理解植物功能型对土壤CH4吸收的影响。结果表明: 1)土壤CH4的吸收受温度和水分变化的影响, 具有明显的季节差异, 且与温度显著相关。2)在2008年和2009年所测的大部分月份中, 植物功能型的土壤CH4吸收量之间没有显著差异; 然而在植物生长旺季(8月), 不同植物功能型的土壤CH4吸收量之间存在显著差异, 多年生丛生禾草的土壤CH4吸收量最小。3)处理中一、二年生植物、多年生杂类草的存在能够增加土壤CH4的吸收量, 而处理中多年生根茎类禾草、多年生丛生禾草的存在对土壤CH4吸收的影响不大。这可能是因为, 植物功能型影响土壤的微生物代谢和环境因子, 进而影响土壤CH4吸收量。该试验说明, 在痕量气体层面上, 植物功能型组成在生态系统功能中具有重要作用, 特别是群落中的亚优势种和伴生种(一、二年生植物、多年生杂类草), 通过调控土壤微生物和环境因子, 对地-气的CH4交换产生重要影响。  相似文献   

10.
Landfill methane oxidation in soil and bio-based cover systems: a review   总被引:1,自引:0,他引:1  
Mitigation of landfill gases has gained the utmost importance in recent years due to the increase in methane (CH4) emissions from landfills worldwide. This, in turn, can contribute to global warming and climatic changes. The concept of microbially mediated methane oxidation in landfill covers by using methanotrophic microorganisms has been widely adopted as a method to counter the rise in methane emissions. Traditionally, landfill soil covers were used to achieve methane oxidation, thereby reducing methane emissions. Meanwhile, the continual rise of CH4 emissions from landfills and the significant need to and importance of developing a better technology has led researchers to explore different methods to enhance microbial methane oxidation by using organic rich materials such as compost in landfill covers. The development and field application of such bio-based systems, explored by various researches worldwide, eventually led to more widely accepted and better performing cover systems capable of reducing CH4 emissions from landfills. However, the long-term performance of bio-based cover systems were found to be negatively affected by factors such as the material’s ability to self-degrade, causing CH4 to be generated rather than oxidized as well as the greater potential for forming pore-clogging exopolymeric substances. In order to design an effective cover system for landfills, it is essential to have a thorough understanding of the concepts incorporated into methodologies currently in favor along with their pros and cons. This review summarizes previous laboratory and field-scale studies conducted on various soil and bio-based cover systems, along with the modeling mechanisms adopted for quantifying CH4 oxidation rates. Finally, several issues and challenges in developing effective and economical soil and bio-based cover systems are presented.  相似文献   

11.
Ruminant animals (domesticated or wild) emit methane (CH4) through enteric fermentation in their digestive tract and from decomposition of manure during storage. These processes are the major sources of greenhouse gas (GHG) emissions from animal production systems. Techniques for measuring enteric CH4 vary from direct measurements (respiration chambers, which are highly accurate, but with limited applicability) to various indirect methods (sniffers, laser technology, which are practical, but with variable accuracy). The sulfur hexafluoride (SF6) tracer gas method is commonly used to measure enteric CH4 production by animal scientists and more recently, application of an Automated Head-Chamber System (AHCS) (GreenFeed, C-Lock, Inc., Rapid City, SD), which is the focus of this experiment, has been growing. AHCS is an automated system to monitor CH4 and carbon dioxide (CO2) mass fluxes from the breath of ruminant animals. In a typical AHCS operation, small quantities of baiting feed are dispensed to individual animals to lure them to AHCS multiple times daily. As the animal visits AHCS, a fan system pulls air past the animal’s muzzle into an intake manifold, and through an air collection pipe where continuous airflow rates are measured. A sub-sample of air is pumped out of the pipe into non-dispersive infra-red sensors for continuous measurement of CH4 and CO2 concentrations. Field comparisons of AHCS to respiration chambers or SF6 have demonstrated that AHCS produces repeatable and accurate CH4 emission results, provided that animal visits to AHCS are sufficient so emission estimates are representative of the diurnal rhythm of rumen gas production. Here, we demonstrate the use of AHCS to measure CO2 and CH4 fluxes from dairy cows given a control diet or a diet supplemented with technical-grade cashew nut shell liquid.  相似文献   

12.
Tao  Zhengkai  Deng  Huanguang  Li  Minhao  Chai  Xiaoli 《Biogeochemistry》2020,148(1):19-29

Mercury (Hg) release and migration from municipal solid waste landfills has been an important issue to nearby ecosystems and human health. To completely understand the Hg biogeochemical cycle in landfills, this review presents the Hg emission processes via different pathways, related controlling mechanisms, and critical Hg transport and transformation processes involving the diffusion and advection of Hg, Hg volatilization, Hg adsorption and desorption, Hg redox reactions, and Hg methylation and demethylation. These critical physical, chemical, and biological processes result in the phase transfer of Hg and the distribution of different Hg species in landfill gas (LFG), leachates, and cover soils. In addition, key factors (e.g., LFG, meteorological conditions, cover soils, and vegetation) affecting Hg emission processes and their impacts are discussed here. This work provides a comprehensive picture of Hg behavior in landfills, and has positive implications for the development of a process-based model and the control of Hg emissions from landfills.

  相似文献   

13.
Understanding the dynamics of methane (CH4) emissions is of paramount importance because CH4 has 25 times the global warming potential of carbon dioxide (CO2) and is currently the second most important anthropogenic greenhouse gas. Wetlands are the single largest natural CH4 source with median emissions from published studies of 164 Tg yr?1, which is about a third of total global emissions. We provide a perspective on important new frontiers in obtaining a better understanding of CH4 dynamics in natural systems, with a focus on wetlands. One of the most exciting recent developments in this field is the attempt to integrate the different methodologies and spatial scales of biogeochemistry, molecular microbiology, and modeling, and thus this is a major focus of this review. Our specific objectives are to provide an up‐to‐date synthesis of estimates of global CH4 emissions from wetlands and other freshwater aquatic ecosystems, briefly summarize major biogeophysical controls over CH4 emissions from wetlands, suggest new frontiers in CH4 biogeochemistry, examine relationships between methanogen community structure and CH4 dynamics in situ, and to review the current generation of CH4 models. We highlight throughout some of the most pressing issues concerning global change and feedbacks on CH4 emissions from natural ecosystems. Major uncertainties in estimating current and future CH4 emissions from natural ecosystems include the following: (i) A number of important controls over CH4 production, consumption, and transport have not been, or are inadequately, incorporated into existing CH4 biogeochemistry models. (ii) Significant errors in regional and global emission estimates are derived from large spatial‐scale extrapolations from highly heterogeneous and often poorly mapped wetland complexes. (iii) The limited number of observations of CH4 fluxes and their associated environmental variables loosely constrains the parameterization of process‐based biogeochemistry models.  相似文献   

14.
Terminal Reactions in the Anaerobic Digestion of Animal Waste   总被引:17,自引:13,他引:4       下载免费PDF全文
An anaerobic mesophilic digestor was operated using beef cattle waste (diluted to 5.75% volatile solids) as substrate; retention time was 10 days with daily batch feed. Volatile solids destruction was 36%. Daily gas production rate was 1.8 liters of gas (standard temperature and pressure) per liter of digestor contents (0.99 liters of CH4 per liter of digestor contents). Acetate turnover was measured, and it was calculated that 68% of the CH4 was derived from the methyl group of acetate. When the methanogenic substrates acetic acid or H2/CO2 were added to the digestor on a continuous basis, the microflora were able to adapt and convert them to terminal products while continuing to degrade animal waste to the same extent as without additions. The methanogenic substrates were added at a rate at least 1.5 times the microbial production rate which was measured in the absence of added substrates. Added acetate was converted directly to CH4 by acetoclastic methanogens; H2 addition greatly stimulated acetate production in the digestor. A method is described for the measurement of acetate turnover in batch-fed digestors.  相似文献   

15.
《Global Change Biology》2018,24(8):3368-3389
Enteric methane (CH4) production from cattle contributes to global greenhouse gas emissions. Measurement of enteric CH4 is complex, expensive, and impractical at large scales; therefore, models are commonly used to predict CH4 production. However, building robust prediction models requires extensive data from animals under different management systems worldwide. The objectives of this study were to (1) collate a global database of enteric CH4 production from individual lactating dairy cattle; (2) determine the availability of key variables for predicting enteric CH4 production (g/day per cow), yield [g/kg dry matter intake (DMI)], and intensity (g/kg energy corrected milk) and their respective relationships; (3) develop intercontinental and regional models and cross‐validate their performance; and (4) assess the trade‐off between availability of on‐farm inputs and CH4 prediction accuracy. The intercontinental database covered Europe (EU), the United States (US), and Australia (AU). A sequential approach was taken by incrementally adding key variables to develop models with increasing complexity. Methane emissions were predicted by fitting linear mixed models. Within model categories, an intercontinental model with the most available independent variables performed best with root mean square prediction error (RMSPE) as a percentage of mean observed value of 16.6%, 14.7%, and 19.8% for intercontinental, EU, and United States regions, respectively. Less complex models requiring only DMI had predictive ability comparable to complex models. Enteric CH4 production, yield, and intensity prediction models developed on an intercontinental basis had similar performance across regions, however, intercepts and slopes were different with implications for prediction. Revised CH4 emission conversion factors for specific regions are required to improve CH4 production estimates in national inventories. In conclusion, information on DMI is required for good prediction, and other factors such as dietary neutral detergent fiber (NDF) concentration, improve the prediction. For enteric CH4 yield and intensity prediction, information on milk yield and composition is required for better estimation.  相似文献   

16.
The importance of evaluating greenhouse gas (GHG) emissions from dairy cows within the whole farm setting is being realized as more important than evaluating these emissions in isolation. Current whole farm models aimed at evaluating GHG emissions make use of simple regression equations to predict enteric methane (CH4) production. The objective of the current paper is to evaluate the performance of nine CH4 prediction equations that are currently being used in whole farm GHG models. Data used to evaluate the prediction equations came from a collection of individual (IND) and treatment averaged (TRT) data. Equations were compared based on mean square prediction error (MSPE) and concordance correlation coefficient (CCC) analysis. In general, predictions were poor, with root MSPE (as a percentage of observed mean) values ranging from 20.2 to 52.5 for the IND database and from 24.0 to 38.2 for the TRT database and CCC values ranging from 0.009 to 0.493 for the IND database and from 0.000 to 0.271 for the TRT database. Overall, the equations of Moe & Tyrrell and IPCC Tier II performed best on the IND dataset, and the equations of Moe & Tyrrell and Kirchgeßner et al., performed best on the TRT dataset. Results show that the simple more generalized equations performed worse than those that attempted to represent important aspects of diet composition, but in general significant amounts of bias and deviation of the regression slope from unity existed for all equations. The low prediction accuracy of CH4 equations in whole farm models may introduce substantial error into inventories of GHG emissions and lead to incorrect mitigation recommendations.  相似文献   

17.
In the global transition to a sustainable low‐carbon economy, CO2 capture and storage technology still plays a critical role for deep emission reduction, particularly for the stationary sources in power generation and industry. However, for small and mobile emission sources in transportation, CO2 capture is not suitable and it is more practical to use relatively clean energy, such as natural gas. In these two low‐carbon energy technologies, designing highly selective sorbents is one of the key and most challenging steps. Toward this end, metal‐organic frameworks (MOFs) have received continuously intensive attention in the past decades for their highly porous and diversified structures. In this review, the recent progress in developing MOFs for selective CO2 capture from post‐combustion flue gas and CH4 storage for vehicle applications are summarized. For CO2 capture, several promising strategies being used to improve CO2 adsorption uptake at low pressures are highlighted and compared. In addition, the conventional and novel regeneration techniques for MOFs are also discussed. In the case of CH4 storage, the flexible and rigid MOFs, whose CH4 storage capacity is close to the target set by U.S. Department of Energy are particularly emphasized. Finally, the challenge of using MOFs for CH4 storage is discussed.  相似文献   

18.
Measurement and prediction of enteric methane emission   总被引:1,自引:0,他引:1  
The greenhouse gas (GHG) emissions from the agricultural sector account for about 25.5% of total global anthropogenic emission. While CO2 receives the most attention as a factor relative to global warming, CH4, N2O and chlorofluorocarbons (CFCs) also cause significant radiative forcing. With the relative global warming potential of 25 compared with CO2, CH4 is one of the most important GHGs. This article reviews the prediction models, estimation methodology and strategies for reducing enteric CH4 emissions. Emission of CH4 in ruminants differs among developed and developing countries, depending on factors like animal species, breed, pH of rumen fluid, ratio of acetate:propionate, methanogen population, composition of diet and amount of concentrate fed. Among the ruminant animals, cattle contribute the most towards the greenhouse effect through methane emission followed by sheep, goats and buffalos, respectively. The estimated CH4 emission rate per cattle, buffaloe, sheep and goat in developed countries are 150.7, 137, 21.9 and 13.7 (g/animal/day) respectively. However, the estimated rates in developing countries are significantly lower at 95.9 and 13.7 (g/animal/day) per cattle and sheep, respectively. There exists a strong interest in developing new and improving the existing CH4 prediction models to identify mitigation strategies for reducing the overall CH4 emissions. A synthesis of the available literature suggests that the mechanistic models are superior to empirical models in accurately predicting the CH4 emission from dairy farms. The latest development in prediction model is the integrated farm system model which is a process-based whole-farm simulation technique. Several techniques are used to quantify enteric CH4 emissions starting from whole animal chambers to sulfur hexafluoride (SF6) tracer techniques. The latest technology developed to estimate CH4 more accurately is the micrometeorological mass difference technique. Because the conditions under which animals are managed vary greatly by country, CH4 emissions reduction strategies must be tailored to country-specific circumstances. Strategies that are cost effective, improve productivity, and have limited potential negative effects on livestock production hold a greater chance of being adopted by producers. It is also important to evaluate CH4 mitigation strategies in terms of the total GHG budget and to consider the economics of various strategies. Although reductions in GHG emissions from livestock industries are seen as high priorities, strategies for reducing emissions should not reduce the economic viability of enterprises.  相似文献   

19.
Methane Oxidation in Landfill Cover Soil   总被引:2,自引:0,他引:2  
Methane oxidation in the cover soil of the Khmet'evo municipal landfill in Moscow oblast was investigated. Methane emission from the experimental site of the landfill was highly heterogeneous. At a depth of 45–60 cm, the pore gas mainly consisted of CH4 (60–70%) and CO2 (30–40%). In the upper layers of the cover soil, the concentration of these gases sharply decreased. Methods for estimation of the methane-oxidizing activity in the cover soil of the landfill were tested. The rate of methane oxidation in the soil correlated with the cell number of culturable methanotrophic bacteria and was the factor limiting methane emission from the surface of the landfill. The method of indirect immunofluorescence revealed ten known species of methanotrophic bacteria in enrichment cultures obtained from samples of the cover soil. Our results also indicate the presence of unknown psychrotolerant methanotrophs that are active at the low temperatures characteristic of Moscow oblast.  相似文献   

20.
It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids) in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM) significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM) were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the alterations in the community composition in the course of the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号