首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 268 bp region (P268) of the pea plastocyanin gene promoter responsible for high-level expression has been shown to interact with the high mobility group proteins HMG-1 and HMG-I/Y isolated from pea shoot chromatin. cDNAs encoding an HMG-1 protein of 154 amino acid residues containing a single HMG-box and a C-terminal acidic tail and an HMG-I/Y-like protein of 197 amino acid residues containing four AT-hooks have been isolated and expressed in Escherichia coli to provide large amounts of full-length proteins. DNase I footprinting identified eight binding sites for HMG-I/Y and six binding sites for HMG-1 in P268. Inhibition of binding by the antibiotic distamycin, which binds in the minor groove of A/T-rich DNA, revealed that HMG-I/Y binding was 400-fold more sensitive than HMG-1 binding. Binding-site selection from a pool of random oligonucleotides indicated that HMG-I/Y binds to oligonucleotides containing stretches of five or more A/T bp and HMG-1 binds preferentially to oligonucleotides enriched in dinucleotides such as TpT and TpG.  相似文献   

2.
3.
Assembly of enhanceosomes requires architectural proteins to facilitate the DNA conformational changes accompanying cooperative binding of activators to a regulatory sequence. The architectural protein HMG-1 has been proposed to bind DNA in a sequence-independent manner, yet, paradoxically, it facilitates specific DNA binding reactions in vitro. To investigate the mechanism of specificity we explored the effect of HMG-1 on binding of the Epstein-Barr virus activator ZEBRA to a natural responsive promoter in vitro. DNase I footprinting, mutagenesis, and electrophoretic mobility shift assay reveal that HMG-1 binds cooperatively with ZEBRA to a specific DNA sequence between two adjacent ZEBRA recognition sites. This binding requires a strict alignment between two adjacent ZEBRA sites and both HMG boxes of HMG-1. Our study provides the first demonstration of sequence-dependent binding by a nonspecific HMG-box protein. We hypothesize how a ubiquitous, nonspecific architectural protein can function in a specific context through the use of rudimentary sequence recognition coupled with cooperativity. The observation that an abundant architectural protein can bind DNA cooperatively and specifically has implications towards understanding HMG-1's role in mediating DNA transactions in a variety of enzymological systems.  相似文献   

4.
Proteins extracted from chicken erythrocyte chromatin with 0.35 M NaCl were subjected to sequential chromatography on columns containing immobilized double-stranded and single-stranded DNA's. Two-dimensional electrophoresis of protein fractions revealed that HMG-14 and HMG-17 are among the proteins that are retained by the single-stranded DNA column in 0.2 M NaCl/l mM Tris-Cl (pH 7.5) after having failed to be retained by the double-stranded column under the same conditions. That suggests that those two proteins possess preferential affinity for single-stranded DNA. Further evidence for that was provided by chromatography of purified HMG-14 and of purified HMG-17 on single-stranded and double-stranded DNA columns. We discuss the possible relevance of our results to suggested functions of HMG-14 and HMG-17.  相似文献   

5.
6.
7.
The chicken HMG-17 gene is dispensable for cell growth in vitro.   总被引:1,自引:0,他引:1       下载免费PDF全文
HMG-17 is a highly conserved and ubiquitous nonhistone chromosomal protein that binds to nucleosome core particles. HMG-17 and HMG-14 form a family of chromosomal proteins that have been reported to bind preferentially to regions of active chromatin structure. To study the functional role of the single-copy chicken HMG-17 gene, null mutants were generated by targeted gene disruption in a chicken lymphoid cell line, DT40. Heterozygous and homozygous null mutant cell lines were generated by two independent selection strategies. Heterozygous null mutant lines produced about half the normal level of HMG-17 protein, and homozygous null lines produced no detectable HMG-17. No significant changes in cell phenotype were observed in cells harboring either singly or doubly disrupted HMG-17 genes, and no compensatory changes in HMG-14 or histone protein levels were observed. It is concluded that HMG-17 protein is not required for normal growth of avian cell lines in vitro, nor does the absence of HMG-17 protein lead to any major changes in cellular phenotype, at least in lymphoid cells.  相似文献   

8.
9.
J B Dodgson  D L Browne  A J Black 《Gene》1988,63(2):287-295
A cDNA clone coding for the chicken high-mobility group 14 (HMG-14) mRNA has been isolated from a chicken-liver cDNA library by screening with two synthetic oligodeoxynucleotide pools whose sequences were derived from the partial amino acid sequence of the HMG-14 protein. A chicken HMG-17 cDNA clone was also isolated in a similar fashion. Comparison of the two chicken HMG cDNA clones to the corresponding human cDNA sequences shows that chicken and human HMG-14 mRNAs and polypeptides are considerably less similar than are the corresponding HMG-17 sequences. In fact, the chicken HMG-14 is almost as similar to the chicken HMG-17 in amino acid sequence as it is to mammalian HMG-14 polypeptides. HMG-14 and HMG-17 mRNAs seem to contain a conserved sequence element in their 3'-untranslated regions whose function is at present unknown. The chicken HMG-14 and HMG-17 genes, in contrast to their mammalian counterparts, appear to exist as single-copy sequences in the chicken genome, although there appear to exist one or more additional sequences which partially hybridize to HMG-14 cDNA. Chicken HMG-14 mRNA, about 950 nucleotides in length, was detected in chicken liver RNA but was below our detection limits in reticulocyte RNA.  相似文献   

10.
Recombinant human chromosomal proteins HMG-14 and HMG-17.   总被引:6,自引:1,他引:5       下载免费PDF全文
Vectors for expressing human chromosomal proteins HMG-14 and HMG-17 in bacterial cultures under the control of the temperature-inducible lambda PL promoter have been constructed. The open reading frames of the cDNAs have been amplified by the polymerase chain reaction (PCR), utilizing amplimers containing desired restriction sites, thereby facilitating precise location of the initiation codon downstream from a ribosomal binding site. Expression of the recombinant proteins does not significantly affect bacterial growth. The rate of synthesis of the recombinant proteins is maximal during the initial stages of induction and slows down appreciably with time. After an initial burst of protein synthesis, the level of the recombinant protein in the bacterial extracts remains constant at different times following induction. Methods for rapid extraction and purification of the recombinant proteins are described. The recombinant proteins are compared to the proteins isolated from eucaryotic cells by electrophoretic mobility, Western analysis and nucleosome core mobility-shift assays. The ability of the proteins to shift the mobility of the nucleosome cores, but not that of DNA, can be used as a functional assay for these HMG proteins. A source for large quantities of human chromosomal proteins HMG-14 and HMG-17 will facilitate studies on their structure, cellular function and mechanism of interaction with nucleosomes.  相似文献   

11.
Im SH  Lee J 《FEBS letters》2003,554(3):455-461
Many protein components of telomeres, the multifunctional DNA-protein complexes at the ends of eukaryotic chromosomes, have been identified in diverse species ranging from yeast to humans. In Caenorhabditis elegans, CEH-37 has been identified by a yeast one hybrid screen to be a double-stranded telomere-binding protein. However, the role of CEH-37 in telomere function is unclear because a deletion mutation in this gene does not cause severe telomere defects. This observation raises the possibility of the presence of genetic redundancy. To identify additional double-stranded telomere-binding proteins in C. elegans, we used a different approach, namely, a proteomic approach. Affinity chromatography followed by Finnigan LCQ ion trap mass spectrometer analysis allowed us to identify several candidate proteins. We further characterized one of these, HMG-5, which is encoded by F45E4.9. HMG-5 bound to double-stranded telomere in vitro as shown by competition assays. At least two telomeric DNA repeats were needed for this binding. HMG-5 was expressed in the nuclei of the oocytes and all embryonic cells, but not in the hatched larvae or adults. HMG-5 mainly localized to the chromosomal ends, indicating that HMG-5 also binds to telomeres in vivo. These observations suggest that HMG-5 may participate, together with CEH-37, in early embryogenesis by acting at the telomeres.  相似文献   

12.
HMG-14 and HMG-17 form a family of ubiquitous non-histone chromosomal proteins and have been reported to bind preferentially to regions of active chromatin structure. Our previous studies demonstrated that the chicken HMG-17 gene is dispensable for normal growth of the DT40 chicken lymphoid cell line. Here it is shown that the major chicken HMG-14 gene,HMG-14a, is also dispensable and, moreover, that DT40-derived cells lacking both HMG-17 and HMG-14a proteins show no obvious change in phenotype with respect to the parental DT40 cells. Furthermore, no compensatory changes in HMG-14b or histone protein levels were observed in cells lacking both HMG-14a and HMG-17, nor were any alterations detected in such hallmarks of chromatin structure as DNaseI-hypersensitive sites or micrococcal nuclease digestion patterns. It is concluded that the HMG-14a and HMG-17 proteins are not required for normal growth of avian cell linesin vitro, nor for the maintenance of DNaseI-hypersensitive sites in chromatin.  相似文献   

13.
14.
15.
High-mobility-group protein 17 (HMG-17) was identified by reversed-phase high-performance liquid chromatography analysis as a major component in acidic extracts of transplantable rat glucagonoma tissue but not in insulinoma tissue of similar origin. The peptide was purified in a single step and the entire sequence of 89 amino acids was determined. Rat HMG-17 has a molecular mass of 9238 Da and shows strong similarity to human, bovine (94.4%) and chicken (88.8%) HMG-17. Six of the seven residues which vary among the mammalian sequences are located within a short segment (positions 64-83) present in the acidic, non-DNA-binding C-terminal part of HMG-17. This region shows least similarity to the otherwise related proteins HMG-14 and H6 (a trout HMG protein). Interestingly, four of the six variable positions are Asp in rat HMG-17 which results in an overall net increase in the negative charge of the C-terminal region. The nature of selective hyper-expression of HMG-17 in glucagon but not in insulin-producing tumor tissue remains to be clarified.  相似文献   

16.
The high mobility group (HMG) non-histone chromosomal proteins were first isolated from calf thymus' but were later found in numerous organs of many vertebrates.' The proteins can be extracted from calf thymus 1 with 0.35 M NaCl and they are quite soluble in 2% trichloroacetic acid. We have shown that members of the HMG-1 family (i.e., HMG-1, HMG-2, and HMG-E) exhibit a preferential affinity for single-stranded DNA at roughly physiological ionic trength. Members of this family have other intriguing properties (see references 6 and 7 for recent reviews), including the ability to assemble nucleosomes in vitroe8 The architecture of the proteins strongly suggests that they are designed to interact simultaneously with histones and with DNA through physically distinct domains6, 9.  相似文献   

17.
HMG-1 was isolated from newborn calf thymus without exposure to overt denaturing conditions. The purified protein was digested under several solvent conditions with the proteinase (endoproteinase GluC) from Staphylococcus aureus strain V8. We found that the preferred site of attack by the enzyme on HMG-1 was influenced markedly by ionic strength and temperature. In 0.35 M NaCl/50 mM Tris-phosphate (pH 7.8) at 37 degrees C, cleavage near the junction between the A and B domains is predominant, as previously reported by Carballo et al. (EMBO J. 2 (1983) 1759-1764). However, in 50 mM Tris-phosphate (pH 7.8) lacking NaCl and at 0 degrees C, cleavage between the B and C domains strongly predominates. Three major products of the digestions were purified and characterized. The fragment consisting of domains B and C was found by circular dichroism to contain a substantial amount of helix. This re-emphasizes the importance of avoiding overt denaturing conditions when working with members of the HMG-1 family.  相似文献   

18.
Chromosomal proteins HMG-14 and HMG-17 have a modular structure. Here we examine whether the putative nucleosome-binding domain in these proteins can function as an independent module. Mobility shift assays with recombinant HMG-17 indicate that synthetic molecules can be used to analyze the interaction of this protein with the nucleosome core. Peptides corresponding to various regions of the protein have been synthesized and their interaction with nucleosome cores analyzed by mobility shift, thermal denaturation and DNase I digestion. A 30 amino acid long peptide, corresponding to the putative nucleosome-binding domain of HMG-17, specifically shifts the mobility of cores as compared to free DNA, elevates the tm of both the premelt and main melt of the cores and protects from DNase I digestion the same nucleosomal DNA sites as the intact protein. The binding of both the peptide and the intact protein is lost upon digestion of the histone tails by trypsin. The nucleosomal binding sites of the peptide appear identical to those of the intact protein. Thus, a region of the protein can acts as an independent functional domain. This supports the notion that HMG-14 and HMG-17 are modular proteins. This finding is relevant to the understanding of the function and evolution of HMG-14/-17, the only nucleosome core particle binding proteins known to date.  相似文献   

19.
The expression of chromosomal proteins HMG-14 and HMG-17 during cellular differentiation was studied in cultured mouse myoblasts. During myogenesis the level of both HMG-14 and HMG-17 mRNA decreased to less than 20% of that found in myoblasts. The down-regulation of HMG-14/-17 mRNA occurred simultaneously with activation of muscle-specific actin mRNA and was not linked to DNA synthesis, indicating that it is a differentiation-, rather than a cell cycle-related event. Incorporation of radiolabeled lysine into HMG proteins was similar to that into the major histone fractions in that it was significant in myoblasts and undetectable in myotubes. The decrease in mRNA and protein synthesis did not affect the cellular levels of HMG protein. These results indicate that the regulation of HMG-14/-17 mRNA levels is different from that of the histones and is linked to differentiation rather than to DNA synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号