首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Changes in polyamine metabolism were investigated in relation to growth of cell suspension cultures of carrot (Daucus carota, cv Chantenay). Changes in levels of the major amines putrescine and spermidine throughout the culture period correlated poorly with changes in fresh weight, but a closer correlation with the minor component spermine was observed. The arginine decarboxylase (ADC) inhibitor difluoromethylarginine (DFMA) strongly and specifically inhibited ADC activity in the supernatant, reduced the major amine (putrescine) by 95% and the total amine content by 80%. It had no effect on cell number and stimulated fresh weight by over 25% through increased cell expansion. Spermine content, in contrast, increased with DFMA concentration in parallel with fresh weight increases. Difluoromethylornithine strongly inhibited ornithine decarboxylase activity in the pellet, but had little effect on either polyamine levels or culture growth. It was concluded that little evidence for a correlation between free polyamines and cell number in carrot cultures could be detected, but that a possible correlation between spermine content and cell expansion was observed.  相似文献   

2.
In extracts from the youngest leaves of Avena sativa, Hordeum vulgare, Zea Mays, Pisum sativum, Phaseolus vulgaris, Lactuca sativa, and four pyrrolizidine alkaloid-bearing species of Heliotropium, the activities of ornithine decarboxylase, close to Vmax, ranged between traces and 1.5 nanomoles per hour per gram fresh weight when based on putrescine formed during incubation with labeled ornithine. The arginine decarboxylase activities in the same extracts ranged between 8 and 8000 nanomoles per hour per gram fresh weight being lowest in the borages and highest in oat and barley. α-Difluoromethylornithine and α-difluoromethylarginine inhibited ornithine and arginine decarboxylases, respectively, in all species. Agmatine, putrescine, spermidine, and spermine were found in all, diaminopropane in eight, and cadaverine in three species.

No correlation was observed between arginine or ornithine decarboxylase level and the levels of total polyamines. The in vitro decarboxylase activities found in the borages cannot explain the high accumulation of putrescine-derived pyrrolizidines in their youngest leaves if the pyrrolizidines are produced in situ from arginine and/or ornithine as precursors; other possibilities are discussed.

In assays of ornithine decarboxylase, an interference of decarboxylation not due to this enzyme was observed in extracts from all species. In arginine decarboxylase assays, the interfering decarboxylation as well as the interference of arginase were apparent in two species. Addition of aminoguanidine was needed to suppress oxidative degradation of putrescine and agmatine during incubation of extracts from pea, bean, lettuce, Heliotropium angiospermum, and Heliotropium indicum.

  相似文献   

3.
Five polyamines which could be separated by high performance liquid chromatography were found in Acanthamoeba castellanii (strain Neff). These included in order of decreasing abundance: 1,3-diaminopropane, spermidine, spermine, norspermidine, and putrescine. Only diaminopropane and norspermidine had been found previously. Spermine was present in cultures grown in broth, but not in defined medium. Radioactive substrates were used to establish that putrescine was synthesized by decarboxylation of ornithine, ornithine was synthesized from arginine or citrulline, and diaminopropane was synthesized from spermidine. The presence of ornithine decarboxylase (EC 4.1.1.17), arginase (EC 3.5.3.1), and urease (EC 3.5.1.5) and the absence of arginine decarboxylase (EC 4.1.1.19) were established. A scheme for polyamine biosynthesis in A. castellanii is proposed.  相似文献   

4.
When tested for ornithine and arginine decarboxylases, pyrrolizidine alkaloid-bearing Senecio riddellii, S. longilobus (Compositae), and Crotalaria retusa (Leguminosae) plants exhibited only ornithine decarboxylase activity. This contrasts with previous studies of four species of pyrrolizidine alkaloid-bearing Heliotropium (Boraginaceae) in which arginine decarboxylase activity was very high relative to that of ornithine decarboxylase. Unlike Heliotropium angiospermum and Heliotropium indicum, in which endogenous arginine was the only detectable precursor of putrescine channeled into pyrrolizidines, in the species studied here—using difluoromethylornithine and difluoromethylarginine as the enzyme inhibitors—endogenous ornithine was the main if not the only precursor of putrescine converted into the alkaloid aminoalcohol moiety. In S. riddellii and C. retusa at flowering, ornithine decarboxylase activity was present mainly in leaves, especially the young ones. However, other very young organs such as inflorescence and growing roots exhibited much lower or very low activities; the enzyme activity in stems was negligible. There was no correlation between the enzyme activity and polyamine or alkaloid content in either species. In both species only free polyamines were detected except for C. retusa roots and inflorescence—with relatively very high levels of these compounds—in which conjugated putrescine, spermidine, and spermine were also found; agmatine was not identified by HPLC in any plant organ except for C. retusa roots with rhizobial nodules. Organ- or age-dependent differences in the polyamine levels were small or insignificant. The highest alkaloid contents were found in young leaves and inflorescence.  相似文献   

5.
Starvation caused a marked increase in putrescine content in mammary gland of lactating rats, together with a marked decrease in activity of ornithine decarboxylase and appearance of measurable ornithine decarboxylase antizyme. 2. Refeeding for 5 h caused disappearance of free antizyme and ornithine decarboxylase activity returned to the value in fed animals. Putrescine concentration remained elevated. 3. There was no significant change in nucleic acid content of mammary gland from starved rats, but spermidine and spermine contents increased significantly. 4. Refeeding for 5 h returned the spermidine content of mammary glands to 'fed' values, and significantly decreased the content of spermine, although it did not reach control values. Thus changes in polyamine content of mammary gland in starved rats are clearly dissociated from changes in either RNA content or activities of polyamine-synthetic decarboxylases. 5. Starvation caused a fall in the content of spermidine in liver, with no change in spermine content. Refeeding for 5 h returned the spermidine content to 'fed' values.  相似文献   

6.
The polyamine path of Neurospora crassa originates with the decarboxylation of ornithine to form putrescine (1,4-diaminobutane). Putrescine acquires one or two aminopropyl groups to form spermidine or spermine, respectively. We isolated an ornithine decarboxylase-deficient mutant and showed the mutation to be allelic with two previously isolated polyamine-requiring mutants. We here name the locus spe-1. The three spe-1 mutants form little or no polyamines and grow well on medium supplemented with putrescine, spermidine, or spermine. Cadaverine (1,5-diaminopentane), a putrescine analog, supports very slow growth of spe-1 mutants. An arginase-deficient mutant (aga) can be deprived of ornithine by growth in the presence of arginine, because arginine feedback inhibits ornithine synthesis. Like spe-1 cultures, the ornithine-deprived aga culture failed to make the normal polyamines. However, unlike spe-1 cultures, it had highly derepressed ornithine decarboxylase activity and contained cadaverine and aminopropylcadaverine (a spermidine analog), especially when lysine was added to cells. Moreover, the ornithine-deprived aga culture was capable of indefinite growth. It is likely that the continued growth is due to the presence of cadaverine and its derivatives and that ornithine decarboxylase is responsible for cadaverine synthesis from lysine. In keeping with this, an inefficient lysine decarboxylase activity (Km greater than 20 mM) was detectable in N. crassa. It varied in constant ratio with ornithine decarboxylase activity and was wholly absent in the spe-1 mutants.  相似文献   

7.
Several Acetobacteria contained large amounts of spermine in addition to the putrescine and spermidine, which are the polyamines normally found in prokaryotes. A spermine synthase present in cell extracts of these Acetobacteria is the first example of this enzyme in prokaryotes. Dicyclohexylammonium sulphate inhibited both spermidine synthase and spermine synthase activities in Acetobacteria. Their ornithine decarboxylase was not stimulated by GTP nor inhibited by ppGpp and pppGpp (magic spots I and II) in contrast to ornithine decarboxylase of nearly all bacteria studied so far. However, their S-adenosyl-L-methionine decarboxylase resembled other prokaryotic adenosylmethionine decarboxylases in requiring Mg2+ ions in vitro for full activity.  相似文献   

8.
 Jasmonic acid (JA) and its methyl ester (MeJA) at concentrations ranging from 0.001 to 10 μM provoked large increases in methylputrescine levels in normal and hairy roots of Hyoscyamus muticus L.; generally, levels of free putrescine and perchloric acid-soluble conjugated putrescine, spermidine and spermine also increased dramatically. More 14C-putrescine was formed when hairy roots were incubated with labelled ornithine than with arginine; conjugated 14C-putrescine was also rapidly formed. In accord with these results, ornithine decarboxylase (EC 4.1.1.17) activity was higher than that of arginine decarboxylase (EC 4.1.1.19), and MeJA enhanced these activities about two- and fourfold, respectively. Although treatment of root cultures with jasmonates enhanced precursor (putrescine, methylputrescine) levels and accumulation of secondary metabolites such as acid-soluble conjugated di-/polyamines, it provoked only modest increases in tropane alkaloid tissue levels. Received: 24 March 1999 / Revision received: 5 October 1999 / Accepted: 26 October 1999  相似文献   

9.
Changes in the contents of polyamines (PAs) in tobacco leaves (Nicotiana tabacum L. cv. Wisconsin 38) grown under 16 h photoperiod were correlated with arginine and ornithine decarboxylase (EC 4.1.1.19 and EC 4.1.1.17) and diamine oxidase (EC 1.4.3.6) activities. The maximum of free and soluble conjugated forms of PAs occurred 1-2 h after the middle of the light period and was followed by two distinct peaks at the end of the light and at the beginning of the dark phase. Putrescine was the most abundant and cadaverine the least abundant PA in both free and PCA-soluble forms. However, cadaverine was predominant in PCA-insoluble conjugates, followed by putrescine, spermidine, and spermine. Both arginine and ornithine decarboxylases are involved in putrescine biosynthesis in tobacco leaves. Light dramatically stimulated the activity of ornithine decarboxylase, while no photoinduction of arginine decarboxylase activity was observed. Ornithine decarboxylase was found mainly in the particulate fraction. Only one peak, just after light induction, occurred in the cytosolic fraction, with 35% of the total ornithine decarboxylase activity. By contrast, the total arginine decarboxylase activity was equally divided between the soluble and pellet fractions. A sharp increase in diamine oxidase activity occurred 1 h after exposure to light, concomitant with the light-induced increase in ornithine decarboxylase activity. After a decline, diamine oxidase activity increased again, together with the rise in the amount of free Put. The roles of both conjugation of PAs with hydroxycinnamic acids and oxidative degradation of putrescine in maintaining free PA levels during the 24 h light/dark cycle are discussed. The presented results have shown that the parameters studied here followed rhythmical changes and were not only affected by light.  相似文献   

10.
Five polyamines which could be separated by high performance liquid chromatography were found in Acanthamoeba castellanii (strain Neff). These included in order of decreasing abundance: 1,3-diaminopropane, spermidine, spermine, norspermidine, and putrescine. Only diaminopropane and norspermidine had been found previously. Spermine was present in cultures grown in broth, but not in defined medium. Radioactive substrates were used to establish that putrescine was synthesized by decarboxylation of ornithine, ornithine was synthesized from arginine or citrulline, and diaminopropane was synthesized from spermidine. The presence of ornithine decarboxylase (EC 4.1.1.17), arginase (EC 3.5.3.1), and urease (EC 3.5.1.5) and the absence of arginine decarboxylase (EC 4.1.1.19) were established. A scheme for polyamine biosynthesis in A. castellanii is proposed.  相似文献   

11.
Three levels of free amines and the activities of their biosynthetic enzymes were measured in subcellular fractions of two cell lines of Nicotiana tabacum L. cv Xanthi. The TX4 cell line, a p-fluorophenylalanine resistant culture which accumulates high levels of cinnamoylamides, was compared to the wild-type culture TX1. In cells harvested on day 6 of the growth cycle, nearly all free putrescine, spermidine, and tyramine was found in the supernatant fraction of both cell lines. Although a consistent portion of ornithine decarboxylase activity was detected in the nuclear-enriched fractions of TX1 and TX4, the largest levels of activity were in the supernatants of both lines. In TX1, arginine decarboxylase activity was low relative to that of ornithine decarboxylase, but, in the TX4 line arginine decarboxylase levels in the cytosol were substantially elevated. Tyrosine decarboxylase was not detected in 6-day-old TX1 cells, but significant amounts of activity were measured in the 1000g and supernatant fractions of TX4. S-Adenosylmethionine decarboxylase activity was low in both cell lines and was located predominantly in the supernatant.  相似文献   

12.
Cereal leaves subjected to the osmotica routinely used for protoplast isolation show a rapid increase in arginine decarboxylase activity, a massive accumulation of putrescine, and slow conversion of putrescine to the higher polyamines, spermidine, and spermine (HE Flores, AW Galston 1984 Plant Physiol 75: 102). Mesophyll protoplasts from these leaves, which have a high putrescine:polyamine ratio, do not undergo sustained division. By contrast, in Nicotiana, Capsicum, Datura, Trigonella, andVigna, dicot genera that readily regenerate plants from mesophyll protoplasts, the response of leaves to osmotic stress is opposite to that in cereals. Putrescine titer as well as arginine and ornithine decarboxylase activities decline in these osmotically stressed dicot leaves, while spermidine and spermine titers increase. Thus, the putrescine:polyamine ratio in Vigna protoplasts, which divide readily, is 4-fold lower than in oat protoplasts, which divide poorly. We suggest that this differing response of polyamine metabolism to osmotic stress may account in part for the failure of cereal mesophyll protoplasts to develop readily in vitro.  相似文献   

13.
In the short-day plant, strawberry (Fragaria ananassa Duch.), polyamines (putrescine, spermidine and spermine), conjugated spermidine (water-insoluble compounds) and bound amines (putrescine, spermidine, phenylethylamine, 3-hydroxy, 4-methoxyphenylethylamine) accumulated in the shoot tips during floral induction and before floral emergence. Different associations of free amines and conjugated amines were observed during floral induction, as compared with the reproductive phase. During the whole period of floral development, phenylethylamine (an aromatic amine) was the predominant amine, representing 80 to 90% of the total free amine pool. Phenylethylamine conjugates (water-insoluble compounds) were the predominant amides observed prior to fertilization. These substances decreased drastically after fertilization. In vegetative shoot tips from plants grown continously under long days, free polyamines (putrescine, spermidine) and bound polyamines (putrescine, spermidine) were low and no change was observed. Free amines (spermine and phenylethylamine), bound aromatic amines (phenylethylamine, 3-hydroxy, 4-methoxyphenylethylamine), conjugated spermidine and phenylethylamine did not appear. Male-sterile flowers were distinguished by their lack of conjugated spermidine and phenylethyalamine and by a decrease in free phenylethylamine. In normal and sterile strawberry plants -DL-difluoromethylornithine (DFMO), a specific irreversible inhibitor of ornithine decarboxylase (ODC), caused inhibition of flowering and free and polyamine conjugates. When putrescine was added, polyamine titers and flowering were restored. A similar treatment with -DL-difluoromethylarginine (DFMA), a specific, irreversible inhibitor of arginine decarboxylase (ADC), did not affect flowering and polyamine titers. These results suggest that ornithine decarboxylase (ODC) and polyamines are involved in regulating floral initiation in strawberry. The relationship between polyamines, aromatic amines, conjugates, floral initiation and male sterility is discussed.Abbreviations ADC arginine decarboxylase - ODC ornithine decarboxylase - DFMA -DL-difluoromethylarginine - DFMO -DL-difluoromethylornithine - Put putrescine - Spd spermidine - Spm spermine - Phen phenylethylamine - 3H4M Phen 3-hydroxy, 4-methoxyphenylethylamine  相似文献   

14.
Polyamine synthesis in maize cell lines   总被引:1,自引:0,他引:1       下载免费PDF全文
Hiatt A 《Plant physiology》1989,90(4):1378-1381
Uptake of [14C]putrescine, [14C]arginine, and [14C]ornithine was measured in five separate callus cell lines of Zea mays. Each precursor was rapidly taken into the intracellular pool in each culture where, on the average, 25 to 50% of the total putrescine was found in a conjugated form, detected after acid hydrolysis. Half-maximal labeling of each culture was achieved in less than 1 minute. Within this time frame of precursor incorporation, only putrescine derived from arginine was conjugated, indicating that putrescine pools derived from arginine may initially be sequestered from ornithine-derived putrescine. The decarboxylase activities were measured in each culture after addition of exogenous polyamine to the growth medium to assess differential regulation of the decarboxylases. Arginine and ornithine decarboxylase activities were augmented by added polyamine, the effect on arginine decarboxylase being eightfold greater than on ornithine decarboxylase. Levels of extractable ornithine decarboxylase were consistently 15- to 100-fold higher than arginine decarboxylase, depending on the titer of extracellular polyamine. Taken as whole the results support the idea that there are distinct populations of polyamine that are initially sequestered after the decarboxylase reactions and that give rise to separate end products and possibly have separate functions.  相似文献   

15.
The metabolism of polyamines (putrescine, spermidine, and spermine) has become the target of genetic manipulation because of their significance in plant development and possibly stress tolerance. We studied the polyamine metabolism in non-transgenic (NT) and transgenic cells of poplar (Populus nigra x maximowiczii) expressing a mouse Orn decarboxylase (odc) cDNA. The transgenic cells showed elevated levels of mouse ODC enzyme activity, severalfold higher amounts of putrescine, a small increase in spermidine, and a small reduction in spermine as compared with NT cells. The conversion of labeled ornithine (Orn) into putrescine was significantly higher in the transgenic than the NT cells. Whereas exogenously supplied Orn caused an increase in cellular putrescine in both cell lines, arginine at high concentrations was inhibitory to putrescine accumulation. The addition of urea and glutamine had no effect on polyamines in either of the cell lines. Inhibition of glutamine synthetase by methionine sulfoximine led to a substantial reduction in putrescine and spermidine in both cell lines. The results show that: (a) Transgenic expression of a heterologous odc gene can be used to modulate putrescine metabolism in plant cells, (b) accumulation of putrescine in high amounts does not affect the native arginine decarboxylase activity, (c) Orn biosynthesis occurs primarily from glutamine/glutamate and not from catabolic breakdown of arginine, (d) Orn biosynthesis may become a limiting factor for putrescine production in the odc transgenic cells, and (e) assimilation of nitrogen into glutamine keeps pace with an increased demand for its use for putrescine production.  相似文献   

16.
A p-fluorophenylalanine- (PFP) resistant cell line of Nicotiana tabacum and wild type cells accumulating high and low levels of cinnamoyl putrescines, respectively, were used to study the formation of putrescine in the biosynthesis of cinnamoyl putrescines. Labelled arginine and ornithine were equally well incorporated into the main conjugates caffeoyl and feruloyl putrescine. Trapping experiments indicated that both amino acids were decarboxylated for putrescine biosynthesis. Nearly all alcohol-extractable radioactivity from the labelled amino acids was found as cinnamoyl putrescines in the PFP-resistant cell line, whereas wild type cells retained significant radioactivity in the amino acids. The enzyme activities of arginine and ornithine decarboxylases in the resistant cell line were increased 3- to 6-fold.  相似文献   

17.
We recently isolated a Chinese hamster ovary cell line which grows well without serum but requires the exogenous polyamines putrescine, spermidine or spermine for continuous replication. Here we show that these cells are defective in the arginase-catalyzed synthesis of ornithine, the precursor of polyamines, and that ornithine can replace polyamines in the medium for supporting growth of the cells. The activities of two other key enzymes of polyamine biosynthesis, ornithine decarboxylase and adenosylmethionine decarboxylase, are clearly detectable and show increase during polyamine starvation. In ornithine- and polyamine-free medium cellular putrescine and spermidine are rapidly depleted while the concentration of spermine decreases only moderately. We show further that the cells are able to grow in serum-containing medium without added ornithine or polyamines. This is explained by our finding that serum contains arginase which synthesizes ornithine from arginine in the medium. All the sera from different animal species tested contained arginase activity although in greatly varying amounts. Serum-free medium is therefore essential for expression of arginase deficiency in cells in tissue culture. The eventual importance of polyamines for serum-free cultures in general is discussed.  相似文献   

18.
Polyamine levels and activities of enzymes of polyamine biosynthesis and catabolism were examined in the barley cultivar Delibes (Ml1al + Ml(Ab)) reacting hypersensitively to the powdery mildew fungus, Blumeria graminis f. sp. hordei (race CC220). Levels of free putrescine and spermine and of conjugated forms of putrescine, spermidine and spermine were greatly increased 1–4 d following inoculation of barley with the powdery mildew. These changes in polyamine levels were accompanied by elevated activities of the polyamine biosynthetic enzymes ornithine decarboxylase (ODC), arginine decarboxylase (ADC) and S‐adenosylmethionine decarboxylase (AdoMetDC) and the polyamine catabolic enzymes diamine oxidase (DAO) and polyamine oxidase (PAO). Activities of two enzymes involved in conjugating polyamines to hydroxycinnamic acids, putrescine hydroxycinnamoyl transferase (PHT) and tyramine feruloyl‐CoA transferase (TFT) were also examined and were found to increase significantly 1–4 d after inoculation. The possibility that the increased levels of free spermine, increased polyamine conjugates, and increased DAO and PAO activities are involved in development of the hypersensitive response of Delibes to powdery mildew infection is discussed.  相似文献   

19.
The metabolism of polyamines as well as their functions as growth regulators in plants have been extensively studied for many years. However, almost nothing is known about the biosynthesis and roles of these substances in Phytomonas spp., parasites of several plants. We have used HPLC and electrophoretic analyses to investigate the presence and metabolism of polyamines in Phytomonas Jma strain, detecting both putrescine and spermidine but not spermine. Experiments carried out by incubation of intact parasites with labelled ornithine or putrescine showed the formation of radioactive putrescine or spermidine, respectively. These results indicated that Phytomonas Jma can synthesise these polyamines through the action of ornithine decarboxylase (ODC) and spermidine synthase. On the other hand, we could not detect the conversion of arginine to agmatine, suggesting the absence of arginine decarboxylase (ADC) in Phytomonas. However, we cannot ensure the complete absence of this enzymatic activity in the parasite. Phytomonas ODC required pyridoxal 5′-phosphate for maximum activity and was specifically inhibited by α-difluoromethylornithine. The metabolic turnover of the enzyme was very high, with a half-life of 10-15 min, one of the shortest found among all ODC enzymes studied to date. The parasite proteasome seems to be involved in degradation of the enzyme, since Phytomonas ODC can be markedly stabilized by MG-132, a well known proteasome inhibitor. The addition of polyamines to Phytomonas cultures did not decrease ODC activity, strongly suggesting the possible absence of antizyme in this parasite.  相似文献   

20.
Putrescine, spermidine, and spermine levels during somatic embryogenesis of interior spruce (Picea glauca x Picea engelmannii complex) were quantified On abscisic acid supplemented growth medium putrescine and spermidine levels increased two-fold coinciding with maturation of the early somatic embryos to globular embryos. Polyclonal antibodies raised against Escherichia coli arginine decarboxylase (ADC) and ornithine decarboxylase (ODC), following affinity purification specifically recognized spruce ADC and ODC, which corresponded to 85kD and 65kD bands on western blots of total protein extracts from embryogenic masses, Immunoassays using these antibodies showed increased ADC levels corresponding to embryo maturation while ODC levels remained the same. From these results it is concluded that polyamines are involved in the maturation of somatic embryos of interior spruce.Abbreviations ADC arginine decarboxylase - BSA bovine serum albumin - ODC ornithine decarboxylase - PBS phosphate buffered saline - PCA perchloric acid - SDS-PAGE sodium dodecyl sulfateporyacrylamide gel electrophoresis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号