首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Protein tyrosine kinase activation is one of the first biochemical events in the signaling pathway leading to activation of NK cell cytolytic machinery. Here we investigated whether proline-rich tyrosine kinase 2 (Pyk2), the nonreceptor protein tyrosine kinase belonging to the focal adhesion kinase family, could play a role in NK cell-mediated cytotoxicity. Our results demonstrate that binding of NK cells to sensitive target cells or ligation of beta2 integrins results in a rapid induction of Pyk2 phosphorylation and activation. By contrast, no detectable Pyk2 tyrosine phosphorylation is found upon CD16 stimulation mediated by either mAb or interaction with Ab-coated P815 cells. A functional role for Pyk2 in natural but not Ab-mediated cytotoxicity was demonstrated by the use of recombinant vaccinia viruses encoding the kinase dead mutant of Pyk2. Finally, we provide evidence that Pyk2 is involved in the beta2 integrin-triggered extracellular signal-regulated kinase activation, supporting the hypothesis that Pyk2 plays a role in the natural cytotoxicity by controlling extracellular signal-regulated kinase activation.  相似文献   

3.
Cell surface receptors belonging to the CD2 subset of the Ig superfamily of molecules include CD2, CD48, CD58, 2B4, signaling lymphocytic activation molecule (SLAM), Ly9, CD84, and the recently identified molecules NTB-A/Ly108/SLAM family (SF) 2000, CD84H-1/SF2001, B lymphocyte activator macrophage expressed (BLAME), and CRACC (CD2-like receptor-activating cytotoxic cells)/CS-1. Some of these receptors, such as CD2, SLAM, 2B4, CRACC, and NTB-A, contribute to the activation and effector function of T cells and NK cells. Signaling pathways elicited via some of these receptors are believed to involve the Src homology 2 (SH2) domain-containing cytoplasmic adaptor protein SLAM-associated protein (SAP), as it is recruited to SLAM, 2B4, CD84, NTB-A, and Ly-9. Importantly, mutations in SAP cause the inherited human immunodeficiency X-linked lymphoproliferative syndrome (XLP), suggesting that XLP may result from perturbed signaling via one or more of these SAP-associating receptors. We have now studied the requirements for SAP recruitment to CD84 and lymphocyte activation elicited following ligation of CD84 on primary and transformed human T cells. CD84 was found to be rapidly tyrosine phosphorylated following receptor ligation on activated T cells, an event that involved the Src kinase Lck. Phosphorylation of CD84 was indispensable for the recruitment of SAP, which was mediated by Y(262) within the cytoplasmic domain of CD84 and by R(32) within the SH2 domain of SAP. Furthermore, ligating CD84 enhanced the proliferation of anti-CD3 mAb-stimulated human T cells. Strikingly, this effect was also apparent in SAP-deficient T cells obtained from patients with XLP. These results reveal a novel function of CD84 on human lymphocytes and suggest that CD84 can activate human T cells via a SAP-independent mechanism.  相似文献   

4.
Adaptor proteins, molecules that mediate intermolecular interactions, are crucial for cellular activation. The adaptor 3BP2 has been shown to positively regulate NK cell-mediated cytotoxicity. In this study we present evidence for a physical interaction between 3BP2 and the CD244 receptor. CD244, a member of the CD150 family, is a cell surface protein expressed on NK, CD8+ T, and myeloid cells. CD244 interacts via its Src homology 2 domain with the X-linked lymphoproliferative disease gene product signaling lymphocytic activation molecule-associated protein (SAP)/SH2 domain protein 1A. 3BP2 interacts with human but not murine CD244. CD244-3BP2 interaction was direct and regulated by phosphorylation, as shown by a three-hybrid analysis in yeast and NK cells. Tyr337 on CD244, part of a consensus motif for SAP/SH2 domain protein 1A binding, was critical for the 3BP2 interaction. Although mutation of Tyr337 to phenylalanine abrogated human 3BP2 binding, we still observed SAP association, indicating that this motif is not essential for SAP recruitment. CD244 ligation induced 3BP2 phosphorylation and Vav-1 recruitment. Overexpression of 3BP2 led to an increase in the magnitude and duration of ERK activation, after CD244 triggering. This enhancement was concomitant with an increase in cytotoxicity due to CD244 ligation. However, no differences in IFN-gamma secretion were found when normal and 3BP2-transfected cells were compared. These results indicate that CD244-3BP2 association regulates cytolytic function but not IFN-gamma release, reinforcing the hypothesis that, in humans, CD244-mediated cytotoxicity and IFN-gamma release involve distinct NK pathways.  相似文献   

5.
The serine-threonine mitogen-activated protein kinase (MAPK) family includes extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK), and p38 kinases. In NK cells, spontaneous or Ab-mediated recognition of target cells leads to activation of an ERK-2 MAPK-dependent biochemical pathway(s) involved in the regulation of NK cell effector functions. Here we assessed the roles of p38 and JNK MAPK in NK cell-mediated cytotoxicity. Our data indicate that p38 is activated in primary human NK cells upon stimulation with immune complexes and interaction with NK-sensitive target cells. FcgammaRIIIA-induced granule exocytosis and both spontaneous and Ab-dependent cytotoxicity were reduced in a dose-dependent manner in cells pretreated with either of two specific inhibitors of this kinase. Target cell-induced IFN-gamma and FcgammaRIIIA-induced TNF-alpha mRNA accumulation was similarly affected under the same conditions. Lack of inhibition of NK cell cytotoxicity in cells overexpressing an inactive form of JNK1 indicates that this kinase, activated only upon FcgammaRIIIA ligation, does not play a significant role in cytotoxicity. These data underscore the involvement of p38, but not JNK1, in the molecular mechanisms regulating NK cell cytotoxicity.  相似文献   

6.
X-linked lymphoproliferative syndrome (XLP) is an immunodeficiency characterized by life-threatening infectious mononucleosis and EBV-induced B cell lymphoma. The gene mutated in XLP encodes SLAM (signaling lymphocytic activation molecule-associated protein)-associated protein (SAP), a small SH2 domain-containing protein. SAP associates with 2B4 and SLAM, activating receptors expressed by NK and T cells, and prevents recruitment of SH2 domain-containing protein tyrosine phosphatase-2 SHP-2) to the cytoplasmic domains of these receptors. The phenotype of XLP may therefore result from perturbed signaling through SAP-associating receptors. We have addressed the functional consequence of SAP deficiency on 2B4-mediated NK cell activation. Ligating 2B4 on normal human NK cells with anti-2B4 mAb or interaction with transfectants bearing the 2B4 ligand CD48 induced NK cell cytotoxicity. In contrast, ligation of 2B4 on NK cells from a SAP-deficient XLP patient failed to initiate cytotoxicity. Despite this, CD2 or CD16-induced cytotoxicity of SAP-deficient NK cells was similar to that of normal NK cells. Thus, selective impairment of 2B4-mediated NK cell activation may contribute to the immunopathology of XLP.  相似文献   

7.
NKG2D is an activation receptor on NK cells and has been demonstrated as a primary cytotoxicity receptor for mouse NK cells. Primary rejection of class I-deficient RMA-S lymphoma cells expressing the NKG2D ligand, retinoic acid early inducible-1beta, was critically dependent upon NK cell perforin and occurred independently of T cells. NKG2D-triggered NK cell rejection of RMA-S-retinoic acid early inducible-1beta tumor primed a secondary tumor-specific T cell response mediated by both CD4+ and CD8+ T cells in the effector phase. Surprisingly, during the priming phase, CD4+ T cells, but not CD8+ T cells, were also required to generate this secondary T cell immunity; however, T cell priming was independent of Th1 cytokines, such as IFN-gamma and IL-12. These data imply a novel pathway for priming T cell immunity, that is, stimulated upon NK cell-mediated cytotoxicity of NKG2D ligand-expressing tumor cells, dependent upon CD4+ T cells in the primary phase, and independent of conventional Th1-type immunity.  相似文献   

8.
Activated NK cells lyse tumor cells and virus-infected cells and produce IFN-gamma upon contact with sensitive target cells. The regulation of these effector responses in resting NK cells is not well understood. We now describe a receptor, KIR2DL4, that has the unique property of inducing IFN-gamma production, but not cytotoxicity, by resting NK cells in the absence of cytokines. In contrast, the NK cell-activation receptors CD16 and 2B4 induced cytotoxicity but not IFN-gamma production. The induction by KIR2DL4 of IFN-gamma production by resting NK cells was blocked by an inhibitor of the p38 mitogen-activated protein kinase signaling pathway, in contrast to the IL-2-induced IFN-gamma secretion that was sensitive to inhibition of the extracellular signal-regulated kinase mitogen-activated protein kinase pathway. These results reveal a functional dichotomy (cytokine production vs cytotoxicity) in the response of resting NK cells, as dictated by the signals of individual receptors.  相似文献   

9.
Both inhibitory and activating forms of natural killer (NK) cell receptors are found in mammals. The activating receptors play a direct role in the recognition of virally infected or transformed cells and transduce activating signals into the cell by partnering with an adaptor protein, which contains a cytoplasmic activation motif. Activating NK receptors encoded by the mammalian leukocyte receptor complex (e.g., killer cell immunoglobulin-like receptors) and the natural killer complex (e.g., Ly49s) partner with the adaptor protein DAP12, whereas NK receptors encoded in the CD94/NKG2 complex partner with the adaptor protein DAP10. Novel immune-type receptors (NITRs) found in bony fish share several common features with immunoglobulin-type NK receptors. Nitr9 is a putative activating receptor in zebrafish that induces cytotoxicity within the context of human NK cells. One isoform of Nitr9, Nitr9L, is shown here to preferentially partner with a zebrafish ortholog of Dap12. Cross-linking the Nitr9L–Dap12 complex results in activation of the phosphytidylinositol 3-kinase→AKT→extracellular signal-regulated kinase pathway suggesting that the DAP12-based activating pathway is conserved between bony fish and mammals. Sheng Wei and Jun-min Zhou contributed equally to this work.  相似文献   

10.
CD27, a member of the TNF receptor superfamily, has been implicated in T cell activation, T cell development, and T cell-dependent Ab production by B cells. In the present study we examined the expression and function of CD27 on murine NK cells. Murine NK cells constitutively expressed CD27 on their surface. Stimulation with immobilized anti-CD27 mAb or murine CD27 ligand (CD70) transfectans solely could induce proliferation and IFN-gamma production of freshly isolated NK cells and enhanced the proliferation and IFN-gamma production of anti-NK1.1-sutimulated NK cells. Although NK cell cytotoxicity was not triggered by anti-CD27 mAb or against CD70 transfectants, prestimulation via CD27 enhanced the cytotoxic activity of NK cells in an IFN-gamma-dependent manner. These results suggest that CD27-mediated activation may be involved in the NK cell-mediated innate immunity against virus-infected or transformed cells expressing CD70.  相似文献   

11.
12.
Natural killer (NK) cells express an activating receptor, 2B4, that enhances cellular cytotoxicity. Upon NK cell activation by ligation of 2B4, the intracellular domain of 2B4 associates with the X-linked lymphoproliferative disease (XLP) gene product, signaling lymphocytic activation molecule-associated protein/SH2D1A (SAP/SH2D1A). Defective intracellular association of 2B4 with mutated SAP/SH2D1A is likely to underlie the defects in cytotoxicity observed in NK cells from patients with XLP. We report here a role for phosphoinositide 3-kinase (PI3K) in the recruitment and association of SAP/SH2D1A to 2B4 in human NK cells. The activation of normal NK cells by ligation of 2B4 leads to the phosphorylation of 2B4, recruitment of SAP/SH2D1A, and association of the p85 regulatory subunit of PI3K. The inhibition of PI3K enzymatic activity with either wortmannin or LY294002 prior to 2B4 ligation does not alter the association of 2B4 with the p85 subunit but prevents the recruitment of SAP/SH2D1A to 2B4. In addition, PI3K inhibitors significantly diminish the cytotoxic function of primary NK cells. This observed inhibition of cytotoxicity, present in normal NK cells, was less apparent or absent in NK cells derived from a patient with XLP. These data indicate that the cytotoxicity of activated NK cells is mediated by the association of 2B4 and SAP/SH2D1A, and that this association is dependent upon the activity of PI3K.  相似文献   

13.
The CD94/NKG2-A complex is the inhibitory receptor for the nonclassical MHC class I molecule HLA-E on human NK cells. Here we studied the molecular mechanisms underlying the inhibitory activity of CD94/NKG2-A on NK cell functions by analyzing its interference on CD16-initiated signaling pathways involved in the control of cytolytic activity. Both tyrosine phosphorylation and activation of Syk kinase together with tyrosine phosphorylation of CD16 receptor zeta subunit are markedly inhibited by the coengagement of CD94/NKG2-A complex. As a downstream consequence, CD94/NKG2-A cross-linking impairs the CD16-induced activation of extracellular regulated kinases (ERKs), a pathway involved in NK cytotoxic function. The block of ERK activation is exerted at an early, PTK-dependent stage in the events leading to p21ras activation, as the CD16-induced tyrosine phosphorylation of Shc adaptor protein and the formation of Shc/Grb-2 complex are abrogated by CD94/NKG2-A simultaneous engagement. Our observations indicate that CD94/NKG2-A inhibits the CD16-triggered activation of two signaling pathways involved in the cytotoxic activity of NK cells. They thus provide molecular evidence to explain the inhibitory function of CD94/NKG2-A receptor on NK effector functions.  相似文献   

14.
Mutations altering the gene encoding the SLAM associated protein (SAP) are responsible for the X-linked lymphoproliferative disease or XLP1. Its absence is correlated with a defective NKT cells development, a decrease in B cell functions and a reduced T cells and NK cells cytotoxic activities, thus leading to an immunodeficiency syndrome. SAP is a small 128 amino-acid long protein that is almost exclusively composed of an SH2 domain. It has been shown to interact with the CD150/SLAM family of receptors, and in a non-canonical manner with SH3 containing proteins such as Fyn, βPIX, PKCθ and Nck1. It would thus play the role of a minimal adaptor protein. It has been shown that SAP plays an important function in the activation of T cells through its interaction with the SLAM family of receptors. Therefore SAP defective T cells display a reduced activation of signaling events downstream of the TCR-CD3 complex triggering. In the present work, we evidence that SAP is a direct interactor of the CD3ζ chain. This direct interaction occurs through the first ITAM of CD3ζ, proximal to the membrane. Additionally, we show that, in the context of the TCR-CD3 signaling, an Sh-RNA mediated silencing of SAP is responsible for a decrease of several canonical T cell signaling pathways including Erk, Akt and PLCγ1 and to a reduced induction of IL-2 and IL-4 mRNA. Altogether, we show that SAP plays a central function in the T cell activation processes through a direct association with the CD3 complex.  相似文献   

15.
Syk regulation of phosphoinositide 3-kinase-dependent NK cell function   总被引:4,自引:0,他引:4  
Emerging evidence suggests that NK-activatory receptors use KARAP/DAP12, CD3zeta, and FcepsilonRIgamma adaptors that contain immunoreceptor tyrosine-based activatory motifs to mediate NK direct lysis of tumor cells via Syk tyrosine kinase. NK cells may also use DAP10 to drive natural cytotoxicity through phosphoinositide 3-kinase (PI3K). In contrast to our recently identified PI3K pathway controlling NK cytotoxicity, the signaling mechanism by which Syk associates with downstream effectors to drive NK lytic function has not been clearly defined. In NK92 cells, which express DAP12 but little DAP10/NKG2D, we now show that Syk acts upstream of PI3K, subsequently leading to the specific signaling of the PI3K-->Rac1-->PAK1-->mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase-->ERK cascade that we earlier described. Tumor cell ligation stimulated DAP12 tyrosine phosphorylation and its association with Syk in NK92 cells; Syk tyrosine phosphorylation and activation were also observed. Inhibition of Syk function by kinase-deficient Syk or piceatannol blocked target cell-induced PI3K, Rac1, PAK1, mitogen-activated protein/ERK kinase, and ERK activation, perforin movement, as well as NK cytotoxicity, indicating that Syk is upstream of all these signaling events. Confirming that Syk does not act downstream of PI3K, constitutively active PI3K reactivated all the downstream effectors as well as NK cytotoxicity suppressed in Syk-impaired NK cells. Our results are the first report documenting the instrumental role of Syk in control of PI3K-dependent natural cytotoxicity.  相似文献   

16.
Stimulation of NK cell-mediated cytotoxicity involves the coupling of proximal Src and Syk family protein tyrosine kinases to downstream effectors. However, the mechanisms linking these second messenger pathways are incompletely understood. Here, we describe a key role for the LAT (p36) adaptor protein in human NK cell activation. LAT is tyrosine phosphorylated upon stimulation of NK cells through FcgammaRIII receptors and following direct contact with NK-sensitive target cells. This NK stimulation induces the association of LAT with several phosphotyrosine-containing proteins. In addition to the biochemical evidence showing LAT involvement in NK cell activation, a genetic model shows that LAT is required for FcR-dependent phosphorylation of phospholipase C-gamma. Furthermore, overexpression of LAT in NK cells leads to increased Ab-dependent cell-mediated cytotoxicity and "natural cytotoxicity," thus demonstrating a functional role for LAT in NK cells. These data suggest that LAT is an important adaptor protein for the regulation of human NK cell-mediated cytotoxicity.  相似文献   

17.
Here we investigate the activation of and a possible role for the hematopoietic Rac1 exchange factor, Vav, in the signaling mechanisms leading to NK cell-mediated cytotoxicity. Our data show that direct contact of NK cells with a panel of sensitive tumor targets leads to a rapid and transient tyrosine phosphorylation of Vav and to its association with tyrosine-phosphorylated Syk. Vav tyrosine phosphorylation is also observed following the activation of NK cells through the low-affinity Fc receptor for IgG (Fc gamma RIII). In addition, we demonstrate that both direct and Ab-mediated NK cell binding to target cells result in the activation of nucleotide exchange on endogenous Rac1. Furthermore, Vav antisense oligodeoxynucleotide treatment leads to an impairment of NK cytotoxicity, with Fc gamma RIII-mediated killing being more sensitive to the abrogation of Vav expression. These results provide new insight into the signaling pathways leading to cytotoxic effector function and define a role for Vav in the activation of NK cell-mediated killing.  相似文献   

18.
NK cells hold great potential for improving the immunotherapy of cancer. Nevertheless, tumor cells can effectively escape NK cell-mediated apoptosis through interaction of MHC molecules with NK cell inhibitory receptors. Thus, to harness NK cell effector function against tumors, we used Amaxa gene transfer technology to gene-modify primary mouse NK cells with a chimeric single-chain variable fragment (scFv) receptor specific for the human erbB2 tumor-associated Ag. The chimeric receptor was composed of the extracellular scFv anti-erbB2 Ab linked to the transmembrane and cytoplasmic CD28 and TCR-zeta signaling domains (scFv-CD28-zeta). In this study we demonstrated that mouse NK cells gene-modified with this chimera could specifically mediate enhanced killing of an erbB2(+) MHC class I(+) lymphoma in a perforin-dependent manner. Expression of the chimera did not interfere with NK cell-mediated cytotoxicity mediated by endogenous NK receptors. Furthermore, adoptive transfer of gene-modified NK cells significantly enhanced the survival of RAG mice bearing established i.p. RMA-erbB2(+) lymphoma. In summary, these data suggest that use of genetically modified NK cells could broaden the scope of cancer immunotherapy for patients.  相似文献   

19.
The UL16-binding proteins (ULBPs) are a novel family of MHC class I-related molecules that were identified as targets of the human CMV glycoprotein, UL16. We have previously shown that ULBP expression renders a relatively resistant target cell sensitive to NK cytotoxicity, presumably by engaging NKG2D, an activating receptor expressed by NK and other immune effector cells. In this study we show that NKG2D is the ULBP counterstructure on primary NK cells and that its expression is up-regulated by IL-15 stimulation. Soluble forms of ULBPs induce marked protein tyrosine phosphorylation, and activation of the Janus kinase 2, STAT5, extracellular signal-regulated kinase, mitogen-activated protein kinase, and phosphatidylinositol 3-kinase (PI 3-kinase)/Akt signal transduction pathways. ULBP-induced activation of Akt and extracellular signal-regulated kinase and ULBP-induced IFN-gamma production are blocked by inhibitors of PI 3-kinase, consistent with the known binding of PI 3-kinase to DAP10, the membrane-bound signal-transducing subunit of the NKG2D receptor. While all three ULBPs activate the same signaling pathways, ULBP3 was found to bind weakly and to induce the weakest signal. In summary, we have shown that NKG2D is the ULBP counterstructure on primary NK cells and for the first time have identified signaling pathways that are activated by NKG2D ligands. These results increase our understanding of the mechanisms by which NKG2D activates immune effector cells and may have implications for immune surveillance against pathogens and tumors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号