首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Identification of pre-B-cell colony-enhancing factor (PBEF) interacting partners may reveal new molecular mechanisms of PBEF in the pathogenesis of acute lung injury (ALI). The interactions between PBEF and NADH dehydrogenase subunit 1(ND1), ferritin light chain and interferon induced transmembrane 3 (IFITM3) in human pulmonary vascular endothelial cells were identified and validated. ND1, ferritin and IFITM3 are involved in oxidative stress and inflammation. Overexpression of PBEF increased its interactions and intracellular oxidative stress, which can be attenuated by rotenone. The interaction modeling between PBEF and ND1 is consistent with the corresponding experimental finding. These interactions may underlie a novel role of PBEF in the pathogenesis of ALI.  相似文献   

3.
4.
Adipokines such as adiponectin and visfatin/pre-B-cell colony-enhancing factor (PBEF) have been recently shown to contribute to synovial inflammation in rheumatoid arthritis (RA). In this study, we evaluated the pathophysiological implication of visfatin/PBEF in the molecular patterns of RA synovial tissue, focusing on RA synovial fibroblasts (RASFs), key players in RA synovium. Expression of visfatin/PBEF in synovial fluid and tissue of RA patients was detected by immunoassays and immunohistochemistry. RASFs were stimulated with different concentrations of visfatin/PBEF over varying time intervals, and changes in gene expression were evaluated at the RNA and protein levels using Affymetrix array, real-time PCR, and immunoassays. The signaling pathways involved were identified. The influence of visfatin/PBEF on fibroblast motility and migration was analyzed. In RA synovium, visfatin/PBEF was predominantly expressed in the lining layer, lymphoid aggregates, and interstitial vessels. In RASFs, visfatin/PBEF induced high amounts of chemokines such as IL-8 and MCP-1, proinflammatory cytokines such as IL-6, and matrix metalloproteinases such as MMP-3. Phosphorylation of p38 MAPK was observed after visfatin/PBEF stimulation, and inhibition of p38 MAPK showed strong reduction of visfatin-induced effects. Directed as well as general fibroblast motility was increased by visfatin/PBEF-induced factors. The results of this study indicate that visfatin/PBEF is involved in synovial fibroblast activation by triggering fibroblast motility and promoting cytokine synthesis at central sites in RA synovium.  相似文献   

5.
6.
Interleukin-8 (IL-8) is a newly described leukocyte chemotactic and activating cytokine that belongs to the novel family of inflammatory cytokines whose genes locate on human chromosome 4, q12-21 region. The production of IL-8 is usually not constitutive and can be induced rapidly and abundantly in different cell types by a variety of stimuli such as lipopolysaccharide, interleukin-1, tumor necrosis factor-alpha as well as a tumor promotor phorbol myristate acetate. We report here that in addition to these stimuli the IL-8 gene can also be induced by the protein X of the hepatitis B virus (HBV-X) as evidenced by the enhanced IL-8 mRNA expression and IL-8 production observed in HBV-X-transfected cells. Furthermore, using several deletion mutants of the 5'-flanking regulatory region of the human IL-8 gene linked to the chloramphenicol acetyl transferase gene as a reporter, we have established here that both nuclear factor kB and CCAAT/enhancer-binding protein-like cis-elements located at -94 to -71 base pairs of IL-8 gene are essential and sufficient for the induction of the IL-8 gene by HBV-X. The same elements have been identified recently by us to be interleukin-1-, tumor necrosis factor-alpha-, and phorbol myristate acetate-responsive elements on the IL-8 gene. This suggests the existence of a common pathway for these inflammatory cytokines and HBV-X to activate the IL-8 gene. These observations might be relevant to the pathogenesis of inflammation in viral hepatitis.  相似文献   

7.
8.
Wang Q  Li N  Wang X  Shen J  Hong X  Yu H  Zhang Y  Wan T  Zhang L  Wang J  Cao X 《Life sciences》2007,80(5):420-429
We report here the molecular cloning and characterization of a novel human gene (hMYADM) derived from a human bone marrow stromal cell (BMSC) cDNA library, which shares high homology with mouse myeloid-associated differentiation marker (MYADM). hMYADM is also closely related to many other eukaryotic proteins, which together form a novel and highly conserved MYADM-like family. hMYADM with 322-residue protein contains eight putative transmembrane segments and confocal microscopic analysis confirmed its membrane localization by using anti-hMYADM monoclonal antibody. hMYADM mRNA was selectively expressed in human monocytes, dendritic cells, promyeloid or monocytic leukemia cell lines, but not in CD4+, CD8+, CD19+ cells, nor in T cell leukemia or lymphocytic leukemia cell lines. hMYADM expression was also found in normal human bone marrow enriched for CD34+ stem cells, and the expression was up-regulated when these cells were induced to differentiate toward myeloid cells. The mRNA expression level of hMYADM significantly increased in acute promyelocytic leukemia HL-60 and chronic myelogenous leukemia K562 cell line after phorbol myristate acetate (PMA)-induced differentiation. Our study suggests that hMYADM is selectively expressed in myeloid cells, and involved in the myeloid differentiation process, indicating that hMYADM may be one useful membrane marker to monitor stem cell differentiation or myeloid leukemia differentiation.  相似文献   

9.
We identified a novel erythropoietin (Epo)-induced protein (CIP29) in lysates of human UT-7/Epo leukemia cells using two-dimensional gel analysis and cloned its full-length cDNA. CIP29 contains 210 amino acids with a predicted MW of 24 kDa, and has a N-terminal SAP DNA-binding motif. CIP29 expression was higher in cancer and fetal tissues than in normal adult tissues. CIP29 mRNA expression is cytokine regulated in hematopoietic cells, being up-regulated by Epo in UT7/Epo cells, and by thrombopoietin (Tpo), FLT3 ligand (FL) and stem cell factor (SCF) in primary human CD34(+) cells. Up-regulation of CIP29 in UT7/Epo cells by Epo was associated with cell cycle progression but not with antiapoptosis. Epo withdrawal reduced CIP29 expression concomitant with cell cycle arrest. Overexpression of CIP29-GFP in HEK293 cells enhances cell cycle progression. CIP29 appears to be a new cytokine regulated protein involved in normal and cancer cell proliferation.  相似文献   

10.
11.
Pre-B cell colony enhancing factor (PBEF) is regarded as a proinflammatory cytokine. Named for its first discovered function as a pre-B cell colony enhancing factor, it has since been found to have many other functions relating to cell metabolism, inflammation, and immune modulation. It has also been found to have intracellular and extracellular forms, with the two overlapping in function. Most of the intracellular functions of PBEF are due to its role as a nicotinamide phosphoribosyltransferase (Nampt). It has been found in human endothelial cells, where it is able to induce angiogenesis through upregulation of VEGF and VEGFR and secretion of MCP-1. In human umbilical endothelial cells, PBEF increases levels of the protease MMP 2/9. PBEF has also been found in a variety of immune cells other than B cells and has been shown to inhibit apoptosis of macrophages. Extracellular PBEF has been shown to increase inflammatory cytokines, such as TNF-α, IL-1β, IL-16, and TGF-β1, and the chemokine receptor CCR3. PBEF also increases the production of IL-6, TNF-α, and IL-1β in CD14+ monocyctes, macrophages, and dendritic cells, enhances the effectiveness of T cells, and is vital to the development of both B and T lymphocytes. The purpose of this review is to summarize the recent advances in PBEF research.  相似文献   

12.
Cytokines manifest their function through alteration of gene expression. However, target genes for signals from cytokine receptors are largely unknown. We therefore searched for immediate-early cytokine-responsive genes and isolated a novel gene, CIS (cytokine inducible SH2-containing protein) which is induced in hematopoietic cells by a subset of cytokines including interleukin 2 (IL2), IL3, granulocyte-macrophage colony-stimulating factor (GM-CSF) and erythropoietin (EPO), but not by stem cell factor, granulocyte colony-stimulating factor and IL6. The CIS message encodes a polypeptide of 257 amino acids that contains an SH2 domain of 96 amino acids in the middle. To clarify the function of CIS in cytokine signal transduction, we expressed CIS in IL3-dependent hematopoietic cell lines under the control of a steroid-inducible promoter. The CIS product stably associated with the tyrosine-phosphorylated beta chain of the IL3 receptor as well as the tyrosine-phosphorylated EPO receptor. Forced expression of CIS by steroid reduced the growth rate of these transformants, suggesting a negative role of CIS in signal transduction. CIS induction requires the membrane-proximal region of the cytoplasmic domain of the EPO receptor as well as that of the common beta chain of the IL3, IL5 and GM-CSF receptor, whereas CIS binds to the receptor that is tyrosine phosphorylated by cytokine stimulation. Thus CIS appears to be a unique regulatory molecule for cytokine signal transduction.  相似文献   

13.
Interferon gamma (IFN-gamma) is a potential immunoregulatory cytokine, which is secreted mainly by cells of immune origin. In this study, we examined the capacity of human gingival fibroblasts as non-professional immune cells to express IFN-gamma messenger RNA (mRNA) and to produce the protein. Cultures of fibroblast cells were established from gingival biopsies from three children. The expression of mRNA for IFN-gamma was studied by in situ hybridization, and the level of IFN-gamma was determined by cell-released capturing ELISA. Treatment of the cells with phytohaemagglutinin (PHA) (2.5, 5.0, and 10 microg/ml) increased the number of IFN-gamma mRNA expressing cells and the protein production at 1, 6, and 24 h. Non-stimulated cells did not reveal measurable levels of IFN-gamma mRNA or the protein. The inflammatory cytokines interleukin 1beta (IL-1beta) (100 microg/ml) and tumour necrosis factor alpha (TNFalpha) (10 ng/ml) did not affect IFN-gamma mRNA expression or protein production. Treatment of the cells with 1 microM phorbol 12-myristate-13-acetate (PMA) stimulated IFN-gamma mRNA expression but had no effect on IFN-gamma protein production. We conclude that human gingival fibroblasts not only transcribe IFN-gamma mRNA but also produce the IFN-gamma protein in response to PHA. The finding that human gingival fibroblasts, produce the cytokine IFN-gamma, further support the concept that these cells take an active part in the modulation of the inflammatory and immune response in the periodontal tissue.  相似文献   

14.
15.
16.
The KC gene is a cell cycle-dependent competence gene originally identified in platelet-derived growth factor-stimulated BALB/c-3T3 cells. This gene is also induced in murine peritoneal macrophages in response to activation stimuli. We have examined the expression of the KC gene in cultured porcine aortic endothelial cells following treatment with bacterial lipopolysaccharide (LPS) as a first step in defining the early molecular events involved in endothelial cell stimulation by physiologically relevant modulators. LPS markedly elevated the steady-state level of KC mRNA in confluent endothelial cells; maximum induction of KC occurred in the cells following exposure to 10 ng/ml LPS for 2 h. LPS did not increase the growth fraction of the cells, nor was the KC mRNA level changed in dense endothelial cells stimulated to enter the cell cycle with epidermal growth factor. However, KC mRNA expression was elevated by addition of serum to starved, subconfluent endothelial cell cultures. Treatment of endothelial cells with phorbol myristate acetate (PMA) and 1-oleoyl-2-acetyl-glycerol (OAG) also induced KC gene expression. A maximum response was obtained with 10 nM PMA, the effect decreasing with higher levels of the phorbol ester. The calcium ionophore A23187 exhibited little stimulatory activity alone; however, the ionophore did cause a doubling in the PMA-stimulated KC expression. The increased expression of KC induced by LPS and PMA was inhibited by the presence of 1-(5-isoquinoline-sulfonyl)-2-methylpiperazine (H7), a protein kinase C inhibitor, but not by HA1004 (an H7 analogue with little protein kinase C inhibitory activity). No cytotoxicity was observed in inhibitor or LPS-treated endothelial cell cultures. These results demonstrate that KC gene expression is stimulated by LPS in vascular endothelial cells in a proliferation-independent process. Second, unlike LPS-induced KC expression in macrophages and platelet-derived growth factor-induced KC expression in 3T3 cells, LPS induction of KC in endothelial cells appears to require activation of protein kinase C.  相似文献   

17.
18.
Thrombopoietin (TPO) is the principal regulatory cytokine of megakaryopoiesis and thrombopoiesis and promotes all aspects of megakaryocyte development. Stem cell factor (SCF) is mainly a pleiotropic cytokine acting on hematopoiesis by promoting the survival and proliferation of hematopoietic stem cells and has a potent synergistic effect on megakaryopoiesis in the presence of TPO. Here, we report the construction, expression, and purification of a novel recombinant human thrombopoietin/stem cell factor (rhTPO/SCF) fusion protein, which consists of a truncated human thrombopoietin (1-157 a.a.) plus a truncated human stem cell factor (1-145 a.a.), linked by a peptide (GGGGSPGGSGGGGSGG). The TPO/SCF gene was cloned into the Escherichia coli expression vector pET28a and expressed in BL21(DE3) strain. The rhTPO/SCF constituted up to 6% of the total bacterial protein. Co-expression with E. coli chaperones, Trigger Factor (TF) and GroES/GroEL, and lowering cultivation temperature cooperatively improved the solubility of expressed rhTPO/SCF, resulting in about fourfold increase in the yield soluble rhTPO/SCF. The rhTPO/SCF was purified to homogeneity using anion exchange followed by metal affinity chromatography. Western blot analysis confirmed the identity of the purified protein. rhTPO/SCF stimulated a dose-dependent cell proliferation in both TF1 and Mo7e cell lines.  相似文献   

19.
20.
The bone marrow stroma consists of a heterogeneous population of cells which participate in osteogenic, adipogenic, and hematopoietic events. The murine stromal cell line, BMS2, exhibits the adipocytic and osteoblastic phenotypes in vitro. BMS2 differentiation was examined in response to cytokines which share the gp130 signal transducing protein within their receptor complex. Four of the cytokines (interleukin 6, interleukin 11, leukemia inhibitory factor, and oncostatin M) inhibited hydrocortisone-induced adipocyte differentiation in a dose dependent manner based on lipid accumulation and lipoprotein lipase enzyme activity. Inhibition occurred only when the cytokines were present during the initial 24 h of the induction period; after 48 h, their effects were diminished. Likewise, these cytokines increased alkaline phosphatase enzyme activity twofold in preadipocyte BMS2 cells. Both leukemia inhibitory factor and oncostatin M induced early active gene expression in resting preadipocyte BMS2 cells and decreased the steady state mRNA level of a unique osteoblastic gene marker, osteocalcin. A fifth cytokine whose receptor complex shares the gp130 protein, ciliary neurotrophic factor, did not significantly regulate stromal cell differentiation when added by itself. However, with the addition of a missing component of its receptor complex, ciliary neurotrophic factor receptor α protein, this cytokine also inhibited BMS2 adipogenesis. Together, these data indicate that the cytokines whose receptors share the gp130 protein can modulate stromal cell commitment to the adipocyte and osteoblast differentiation pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号