首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
In a population of the monogynous, polyandrous ant Cataglyphis cursor , we analysed the spatial genetic structure of queens, colony fathers and workers at a microgeographical scale to infer the extent of sex-biased dispersal and to assess the impact of limited dispersal on the patterns of relatedness within the colony. To this end, four microsatellite markers were scored for the queen and an average of 26 workers from each of 35 mapped colonies. We used pair-wise kinship coefficients between all pairs of genotypes, including the reconstructed colony father genotypes (1) to test and quantify isolation by distance patterns within each sex or caste through the analysis of kinship–distance curves, and (2) to compute the average relatedness between categories of colony members. The kinship–distance curve was much steeper for colony queens than colony fathers, indicating male-biased dispersal. However, colony fathers also displayed a non-random spatial genetic structure, so that even males show some dispersal limitation at the scale of the population, which extends over less than 250 m. The degree of relatedness between the different sexes and castes of colonies was well predicted from the number of mates per queen and the inbreeding of queens, and the impact of limited dispersal was very weak at this scale of observation. We discuss the interest of kinship–distance curves to assess sex-biased dispersal on a local scale and we compare our results with large-scale analyses of genetic structure in Cataglyphis cursor and other monogynous ant species.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 465–473.  相似文献   

2.
Ecological genetic studies have demonstrated that spatial patterns of mating dispersal, the dispersal of gametes through mating behaviour, can facilitate inbreeding avoidance and strongly influence the structure of populations, particularly in highly philopatric species. Elements of breeding group dynamics, such as strong structuring and sex-biased dispersal among groups, can also minimize inbreeding and positively influence levels of genetic diversity within populations. Rock-wallabies are highly philopatric mid-sized mammals whose strong dependence on rocky terrain has resulted in series of discreet, small colonies in the landscape. Populations show no signs of inbreeding and maintain high levels of genetic diversity despite strong patterns of limited gene flow within and among colonies. We used this species to investigate the importance of mating dispersal and breeding group structure to inbreeding avoidance within a 'small' population. We examined the spatial patterns of mating dispersal, the extent of kinship within breeding groups, and the degree of relatedness among brush-tailed rock-wallaby breeding pairs within a colony in southeast Queensland. Parentage data revealed remarkably restricted mating dispersal and strong breeding group structuring for a mid-sized mammal. Breeding groups showed significant levels of female kinship with evidence of male dispersal among groups. We found no evidence for inbreeding avoidance through mate choice; however, anecdotal data suggest the importance of life history traits to inbreeding avoidance between first-degree relatives. We suggest that the restricted pattern of mating dispersal and strong breeding group structuring facilitates inbreeding avoidance within colonies. These results provide insight into the population structure and maintenance of genetic diversity within colonies of the threatened brush-tailed rock-wallaby.  相似文献   

3.
In stingless bees, sex is determined by a single complementary sex-determining locus. This method of sex determination imposes a severe cost of inbreeding because an egg fertilized by sperm carrying the same sex allele as the egg results in a sterile diploid male. To explore how reproductive strategies may be used to avoid inbreeding in stingless bees, we studied the genetic structure of a population of 27 colonies and three drone congregations of Trigona collina in Chanthaburi, Thailand. The colonies were distributed across six nest aggregations, each aggregation located in the base of a different fig tree. Genetic analysis at eight microsatellite loci showed that colonies within aggregations were not related. Samples taken from three drone congregations showed that the males were drawn from a large number of colonies (estimated to be 132 different colonies in our largest swarm). No drone had a genotype indicating that it could have originated from the colony that it was directly outside. Combined, these results suggest that movements of drones and possibly movements of reproductive swarms among colony aggregations provide two mechanisms of inbreeding avoidance.  相似文献   

4.
Abstract.— The objective of this study was to assess breeding and dispersal patterns of both males and females in a monogyne (a single queen per colony) population of ants. Monogyny is commonly associated with extensive nuptial flights, presumably leading to considerable gene flow over large areas. Opposite to these expectations we found evidence of both inbreeding and sex-biased gene flow in a monogyne population of Formica exsecta . We found a significant degree of population subdivision at a local scale (within islands) for queens (females heading established colonies) and workers, but not for colony fathers (the males mated to the colony queens). However, we found little evidence of population subdivision at a larger scale (among islands). More conclusive support for sex-biased gene flow comes from the analysis of isolation by distance on the largest island, and from assignment tests revealing differences in female and male philopatry. The genetic similarity between pairs of queens decreased significantly when geographical distance increased, demonstrating limited dispersal and isolation by distance in queens. By contrast, we found no such pattern for colony fathers. Furthermore, a significantly greater fraction of colony queens were assigned as having originated from the population of residence, as compared to colony fathers. Inbreeding coefficients were significantly positive for workers, but not for mother queens. The queen-male relatedness coefficient of 0.23 (regression relatedness) indicates that mating occurs between fairly close relatives. These results suggest that some monogyne species of ants have complex dispersal and mating systems that can result in genetic isolation by distance over small geographical scales. More generally, this study also highlights the importance of identifying the relevant scale in analyses of population structure and dispersal.  相似文献   

5.
1.?Breeding with kin can reduce individual fitness through the deleterious effects of inbreeding depression. Inbreeding avoidance mechanisms are expected to have developed in most species, and especially in cooperatively breeding species where individuals may delay dispersal until long after sexual maturity. Such potential mechanisms include sex-biased dispersal and avoidance of kin known through associative learning. 2.?The investigation of inbreeding avoidance through dispersal dynamics can be enhanced by combining fine-scale population genetic structure data with detailed behavioural observations of wild populations. 3.?We investigate possible inbreeding avoidance in a wild population of cooperatively breeding southern pied babblers (Turdoides bicolor). A combination of genetic, geographic and observational data is used to examine fine-scale genetic structure, dispersal (including sex-biased dispersal) and inheritance of dominance in cooperatively breeding groups. 4.?Unusually, sex-bias in dispersal distance does not occur. Rather, individuals appear to avoid inbreeding through two routes. First, through dispersal itself: although both males and females disperse locally, they move outside the range within which genetically similar individuals are usually found, going twice as far from natal groups as from non-natal groups. Second, through avoidance of familiar group members as mates: individuals inherit a dominant position in the natal group only when an unrelated breeding partner is present. 5.?This study uses spatial genetic analyses to investigate inbreeding avoidance mechanisms in a cooperative breeder and shows that individuals of both sexes can avoid inbreeding through a dispersal distance mechanism. While it appears that dispersal allows most individuals to move beyond the range of closely related kin, matings may still occur between distant kin. Nevertheless, any costs of breeding with a distant relative may be outweighed by the benefits of local dispersal and the immense fitness gains available from attaining a breeding position.  相似文献   

6.
Dispersal is a critical driver of gene flow, with important consequences for population genetic structure, social interactions and other biological processes. Limited dispersal may result in kin‐structured populations in which kin selection may operate, but it may also increase the risk of kin competition and inbreeding. Here, we use a combination of long‐term field data and molecular genetics to examine dispersal patterns and their consequences for the population genetics of a highly social bird, the sociable weaver (Philetairus socius), which exhibits cooperation at various levels of sociality from nuclear family groups to its unique communal nests. Using 20 years of data, involving capture of 6508 birds and 3151 recaptures at 48 colonies, we found that both sexes exhibit philopatry and that any dispersal occurs over relatively short distances. Dispersal is female‐biased, with females dispersing earlier, further, and to less closely related destination colonies than males. Genotyping data from 30 colonies showed that this pattern of dispersal is reflected by fine‐scale genetic structure for both sexes, revealed by isolation by distance in terms of genetic relatedness and significant genetic variance among colonies. Both relationships were stronger among males than females. Crucially, significant relatedness extended beyond the level of the colony for both sexes. Such fine‐scale population genetic structure may have played an important role in the evolution of cooperative behaviour in this species, but it may also result in a significant inbreeding risk, against which female‐biased dispersal alone is unlikely to be an effective strategy.  相似文献   

7.
Conspecific aggregations in terrestrial and aquatic organisms can have a significant effect on an individual's survival, growth and reproductive fitness, particularly if these aggregations are composed of closely related individuals. Such aggregations can form passively, as a consequence of dispersal, or actively, as a consequence of kin recognition. In this study, we investigated the genetic composition of individuals in conspecific aggregations in the simultaneous hermaphroditic marine bryozoan Bugula stolonifera. Conspecific larvae routinely metamorphose on adult colonies; the possibility that larvae select or avoid their maternal colony was investigated utilizing 10 newly developed polymorphic microsatellite loci. Adult colonies were collected from Eel Pond, Woods Hole, Massachusetts and inspected for the presence of attached individuals. Adult colonies and their attached individuals were genotyped and compared to assess genetic relatedness within and among these groups relative to the overall genetic variability of the sampling site. Overall, the population of B. stolonifera at this site was found to be outside Hardy-Weinberg equilibrium because of significant levels of inbreeding. No significant genetic differentiation, however, was found between any groups, documenting that a group containing an adult colony and its attached individuals had as much genetic variability as was found for the entire sampling site. Parentage-exclusion analyses showed that the vast majority of attached individuals (>93%) could not have derived from the colony on which they were attached. Kinship analyses showed that the majority of attached individuals (≈63%) shared less than a half-sibling relationship. These results suggest that a colony's nearest neighbours are not composed of siblings, and thus, larval settlement preference can maximize outcrossing in this inbreeding population.  相似文献   

8.
1. Cooperatively breeding birds are thought to be especially vulnerable to habitat fragmentation, in part because dispersal is typically restricted for one sex, increasing the likelihood of inbreeding. Knowledge of dispersal is essential to conservation efforts, but is often hampered by our inability to measure its frequency and distance when dispersal is infrequent and difficult to observe. 2. Disrupted dispersal is a purported cause of decline in the Australian grey-crowned babbler (Pomatostomus temporalis). Both sexes of offspring delay dispersal for up to several years to help parents raise subsequent broods, yet little else is known about the dispersal of this cooperatively breeding woodland bird. 3. As both sexes appear to help, but only male helpers boost fledgling production, we hypothesized that males would be the more philopatric sex in this species, and that female grey-crowned babblers would disperse over greater distances. 4. To ensure reliable determination of sex and minimize bias towards detecting short-distance dispersal events, we combined molecular-based sexing and analyses of population genetic structure using polymorphic microsatellite loci with observational data obtained over multiple field seasons. 5. Observations of banded birds showed only infrequent fission of groups or short-distance dispersal (mean=854 m), but no apparent sex-bias in these patterns. 6. There was significant genetic differentiation between social groups, but not between the sexes. Spatial genetic autocorrelation analysis of breeders revealed a random distribution of genotypes across the study area for both sexes. Thus, contrary to expectations, we found no genetic evidence for restricted dispersal or for sex-biased dispersal over the 85-km scale of this study, indicating that effective dispersal occurs over greater distances and more frequently than recoveries of banded birds indicated. 7. We conclude that while constraints on independent breeding encourage high rates of philopatry, incest avoidance nonetheless drives high rates of dispersal by both sexes. In fragmented habitat, the dispersal dynamics of this cooperatively breeding species are unlikely to render them particularly vulnerable to genetic consequences such as inbreeding, but may lead to increased group dissolution.  相似文献   

9.
We tested the hypothesis that sex-biased natal dispersal reduces close inbreeding in American black bears, a solitary species that exhibits nearly complete male dispersal and female philopatry. Using microsatellite DNA and spatial data from reproductively mature bears (>or= 4 years old), we examined the spatial genetic structure of two distinct populations in New Mexico from 1993 to 2000. As predicted, relatedness (r) and the frequency of close relationships (parent-offspring or full siblings) decreased with distance among female dyads, but little change was observed among male or opposite-sex dyads. Neighbouring females were more closely related than neighbouring males. The potential for inbreeding was low. Most opposite-sex pairs that lived sufficiently close to facilitate mating were unrelated, and few were close relatives. We found no evidence that bears actively avoided inbreeding in their selection of mates from this nearby pool, as mean r and relationship frequencies did not differ between potential and actual mating pairs (determined by parentage analysis). These basic patterns were apparent in both study areas despite a nearly two-fold difference in density. However, the sex bias in dispersal was less pronounced in the lower-density area, based on proportions of bears with male and female relatives residing nearby. This result suggests that male bears may respond to reduced competition by decreasing their rate or distance of dispersal. Evidence supports the hypothesis that inbreeding avoidance is achieved by means of male-biased dispersal but also indicates that competition (for mates or resources) modifies dispersal patterns.  相似文献   

10.
Termites (Isoptera) comprise a large and important group of eusocial insects, yet, in contrast to the eusocial Hymenoptera (ants, bees, wasps), the breeding systems of termites remain poorly understood. In this study, I inferred the breeding system of the subterranean termite Reticulitermes flavipes based on colony and population genetic structure as determined from microsatellite and mitochondrial DNA markers. Termites were sampled from natural wood debris from three undisturbed, forested sites in central North Carolina. In each site, two transects separated by 1 km were sampled at approximately 15-m intervals. A total of 1272 workers collected from 57 collection points were genotyped at six microsatellite loci, and mitochondrial DNA haplotype was determined for a subset of these individuals using either restriction fragment length polymorphism or sequence variation in the AT-rich region. Colonies appeared to be localized: workers from the 57 collection points represented 56 genetically distinct colonies with only a single colony occupying two collection points located 15 m apart. Genetic analysis of family structure and comparisons of estimates of F-statistics (F(IT), F(IC), F(CT)) and coefficients of relatedness (r) among nestmate workers with results of computer simulations of potential breeding systems suggested that 77% of all colonies were simple families headed by outbred monogamous pairs, whereas the remaining colonies were extended (inbred) families headed by low numbers of neotenics (about two females and one male) who were the direct offspring of the colony founders. There was no detectable isolation by distance among colonies along transects, suggesting that colony reproduction by budding is not common and that dispersal of reproductives during mating flights is not limited over this distance. Higher-level analysis of the microsatellite loci indicated weak but significant differentiation among sites (F(ST) = 0.06), a distance of 16-38 km, and between transects within sites (F(ST) = 0.06), a distance of 1 km. No significant differentiation at either the transect or site level was detected in the mitochondrial DNA sequence data. These results indicate that the study populations of R. flavipes have a breeding system characterized by monogamous pairs of outbred reproductives and relatively low levels of inbreeding because most colonies do not live long enough to produce neotenics, and those colonies that do generate neotenics contain an effectively small number of them.  相似文献   

11.
During summer the brown long-eared bat Plecotus auritus (Vespertilionidae) forms stable colonies, comprised of both adult females and males and young of the year. A long-term ringing study conducted in north-east Scotland has established that little movement occurs among colonies and that both sexes are recruited into their natal colony. The aim of the present study was to investigate, using microsatellite DNA markers, if genetic structure within the population reflects the spatial structure indicated by ringing. Inter-colony FST estimates obtained for all colony members, and for females and males separately, were low (0.019, 0.026 and 0.011, respectively), but all values differed significantly from zero. These data indicate high gene flow between colonies, although some coancestry among colony members is evident in both sexes. On combining the ringing and genetic data, it is concluded that gene flow occurs via extra-colony copulation, rather than natal dispersal, and that each colony behaves as a distinct subpopulation. Microgeographical genetic isolation by distance was demonstrated for, to our knowledge, the first time in a bat species, and found to be apparent both across the entire study area and along one river valley. The results suggest that extensive macrogeographical population genetic structure may be evident across the species'' range.  相似文献   

12.
In this study we used data from six unlinked microsatellite loci to examine stable aggregations of Egernia stokesii, from a population in the southern Flinders Ranges of South Australia. We show that these aggregations are comprised of breeding partners, their offspring from two or more cohorts, and related adults, providing the first genetic evidence of a family structure in any lizard species. Despite this high level of relatedness within aggregations, most breeding pairs were unrelated and partners were less closely related to each other than they were to other potential within-group partners. Where individuals dispersed, both sexes usually moved to social groups close to their natal group. Although both sexes showed natal philopatry, there was some evidence that females in groups were more related than males in groups. These data suggest that an active choice of unrelated partners and male-biased dispersal may be the mechanisms used by E. stokesii to avoid inbreeding within groups.  相似文献   

13.
Several recent studies have found amphibian populations to be genetically highly structured over rather short geographical distances, and that the rate of genetically effective dispersal may differ between the sexes. However, apart from the common frog ( Rana temporaria ) little is known about the genetic structuring and sex-biased dispersal in northern European amphibians. We investigated the patterns of genetic diversity and differentiation within and among Scandinavian populations of the moor frog ( Rana arvalis ) using microsatellite markers. The genetic diversity within local R. arvalis populations was not a simple linear negative function of latitude but a convex one: genetic diversity peaked in mid-latitude populations, and declined thereafter dramatically towards the north. The average degree of genetic differentiation among populations ( F ST = 0.14) was lower than that observed for the common frog ( F ST = 0.21), though the pattern of isolation by distance was similar for both species. Contrary to common frogs, no evidence for female-biased dispersal was found. The results reinforce the view that amphibian populations are—in general—highly structured over relatively small geographical distances, even in comparatively recently colonized areas.  相似文献   

14.
Banks SC  Peakall R 《Molecular ecology》2012,21(9):2092-2105
Sex-biased dispersal is expected to generate differences in the fine-scale genetic structure of males and females. Therefore, spatial analyses of multilocus genotypes may offer a powerful approach for detecting sex-biased dispersal in natural populations. However, the effects of sex-biased dispersal on fine-scale genetic structure have not been explored. We used simulations and multilocus spatial autocorrelation analysis to investigate how sex-biased dispersal influences fine-scale genetic structure. We evaluated three statistical tests for detecting sex-biased dispersal: bootstrap confidence intervals about autocorrelation r values and recently developed heterogeneity tests at the distance class and whole correlogram levels. Even modest sex bias in dispersal resulted in significantly different fine-scale spatial autocorrelation patterns between the sexes. This was particularly evident when dispersal was strongly restricted in the less-dispersing sex (mean distance <200 m), when differences between the sexes were readily detected over short distances. All tests had high power to detect sex-biased dispersal with large sample sizes (n ≥ 250). However, there was variation in type I error rates among the tests, for which we offer specific recommendations. We found congruence between simulation predictions and empirical data from the agile antechinus, a species that exhibits male-biased dispersal, confirming the power of individual-based genetic analysis to provide insights into asymmetries in male and female dispersal. Our key recommendations for using multilocus spatial autocorrelation analyses to test for sex-biased dispersal are: (i) maximize sample size, not locus number; (ii) concentrate sampling within the scale of positive structure; (iii) evaluate several distance class sizes; (iv) use appropriate methods when combining data from multiple populations; (v) compare the appropriate groups of individuals.  相似文献   

15.
The subterranean termite Reticulitermes chinensis Snyder is an important pest of trees and buildings in China. Here, we characterized genetic structure and reproductive modes of R. chinensis from China for the first time. A total of 1,875 workers from 75 collection sites in Huanggang, Changsha and Chongqing cities were genotyped at eight microsatellite loci. Analysis of genetic clusters showed two subpopulations in Chongqing city. The Huanggang population showed a uniform genetic pattern and was separated from the other populations by the largest genetic distances (F ST: 0.17–0.20). In contrast, smaller genetic distances (F ST: 0.05–0.12) separated Changsha, Chongqing-1 and Chongqing-2 populations. Chongqing-1 was the only population showing a genetic bottleneck. Isolation by distance among colonies in the Huanggang population indicated limited alate dispersal or colony budding. Lack of isolation by distance among colonies within the populations of Changsha, Chongqing-1 and Chongqing-2, suggested long-range dispersal by alates and/or human-mediated transport. Overall, extended family colonies (73.91%) were predominant in all four populations, followed by simple (20.29%), and mixed family colonies (5.80%). Most simple families were headed by inbred related reproductive pairs in the Changsha population, while most simple families in the Chongqing-1 population were headed by outbred unrelated pairs. Simple families in the Huanggang population were a mixture of colonies headed by outbred or inbred reproductive pairs. The sample size of simple families in the Chongqing-2 population was too small to yield significant results. Extended families in all four populations were headed on the average by ≤10 neotenics. Mixed families likely originated from pleometrosis. Presence of heterozygote genotypes showed that all neotenic reproductives collected in addition from five field colonies in Wuhan city were sexually produced, suggesting that these colonies did not undergo parthenogenesis. This study contributes to better understanding of the variance of genetic structure and reproductive mode in the genus Reticulitermes.  相似文献   

16.
Termite alates are thought to be poor active flyers, and this should lead to considerable genetic differentiation on small spatial scales. However, using four microsatellite loci for the termite Macrotermes michaelseni we found low values of genetic differentiation (FST) across a spatial scale of even more than 50 km. Genetic differentiation between populations increased with spatial distance up to 50 km. Furthermore, up to this distance, the scatter around the linear regression of genetic differentiation versus spatial distance increased with spatial distance. This suggests that across such spatial distances gene flow and genetic drift are of about equal importance, and near equilibrium. Using a regional FST as well as the distance between populations with non-significant FST-values (up to 25 km), gene flow is sufficiently high so that populations may be regarded as panmictic on spatial scales of 25 to 50 km. The apparent contradiction between dispersal distances observed in the field and estimates of gene flow from genetic markers may be due to the masses of swarming alates. Assuming a leptokurtic distribution of dispersal distances, atleast some alates are expected to travel considerable distances, most likely by passive drift. Received 25 January 2005; revised 11 April 2005; accepted 26 April 2005.  相似文献   

17.
Eight microsatellite loci were used to investigate the genetic structure of the giant honeybee (Apis dorsata) population in northeast India. This species migrates seasonally between summer and winter nesting sites, and queens appear to return to their previously occupied site. Furthermore, there is a strong tendency for colonies of this species to aggregate at perennially utilized nesting sites that may be shared by more than 150 colonies. These behavioral features suggest that colonies within aggregations should be more related than random colonies, but that the long-distance migration could act to minimize genetic differentiation both between geographical areas and within aggregations. Our genetic study supports these conjectures arising from natural history. A. dorsata aggregations are comprised of colonies that share more alleles than expected by chance. Although queens heading neighboring colonies are not close relatives, fixation indices show significant genetic differentiation among aggregation sites. However, there appears to be sufficient gene flow among aggregations to prevent high degrees of relatedness developing between colonies within aggregations. The results also suggest that there is significant population structuring between geographical regions, although the level of structuring caused by aggregation exceeds the differentiation attributable to geographic region.  相似文献   

18.
Information about the population genetic structures of parasites is important for an understanding of parasite transmission pathways and ultimately the co-evolution with their hosts. If parasites cannot disperse independently of their hosts, a parasite's population structure will depend upon the host's spatial distribution. Geographical barriers affecting host dispersal can therefore lead to structured parasite populations. However, how the host's social system affects the genetic structure of parasite populations is largely unknown. We used mitochondrial DNA (mtDNA) to describe the spatio-temporal population structure of a contact-transmitted parasitic wing mite ( Spinturnix bechsteini ) and compared it to that of its social host, the Bechstein's bat ( Myotis bechsteinii ). We observed no genetic differentiation between mites living on different bats within a colony. This suggests that mites can move freely among bats of the same colony. As expected in case of restricted inter-colony dispersal, we observed a strong genetic differentiation of mites among demographically isolated bat colonies. In contrast, we found a strong genetic turnover between years when we investigated the temporal variation of mite haplotypes within colonies. This can be explained with mite dispersal occuring between colonies and bottlenecks of mite populations within colonies. The observed absence of isolation by distance could be the result from genetic drift and/or from mites dispersing even between remote bat colonies, whose members may meet at mating sites in autumn or in hibernacula in winter. Our data show that the population structure of this parasitic wing mite is influenced by its own demography and the peculiar social system of its bat host.  相似文献   

19.
Kerth G  Mayer F  Petit E 《Molecular ecology》2002,11(8):1491-1498
Maternity colonies of the communally breeding, nonmigratory Bechstein's bat consist of closely related females that live together with unrelated females, and average colony relatedness is low despite the absence of immigration. We compared the genetic structure of both nuclear and mitochondrial microsatellites in order to quantify sex-specific dispersal rates. More specifically, we aimed at testing whether male dispersal is able to balance the genetic effect of strong (absolute) female philopatry. Absolute female philopatry, indicated by an extreme mitochondrial DNA population differentiation of 96%, was indeed opposed by strong (possibly complete) male dispersal. Based on our knowledge of the biology of Myotis bechsteinii, we conclude that inbreeding avoidance is likely to be the crucial factor driving male dispersal in this species.  相似文献   

20.
Drone aggregations are a widespread phenomenon in many stingless bee species (Meliponini), but the ultimate and proximate causes for their formation are still not well understood. One adaptive explanation for this phenomenon is the avoidance of inbreeding, which is especially detrimental for stingless bees due to the combined effects of the complementary sex-determining system and the small effective population size caused by eusociality and monandry. We analyzed the temporal genetic dynamics of a drone aggregation of the stingless bee Scaptotrigona mexicana with microsatellite markers over a time window of four weeks. We estimated the drones of the aggregation to originate from a total of 55 colonies using sibship re-construction. There was no detectable temporal genetic differentiation or sub-structuring in the aggregation. Most important, we could exclude all colonies in close proximity of the aggregation as origin of the drones in the aggregation, implicating that they originate from more distant colonies. We conclude that the diverse genetic composition and the distant origin of the drones of the S. mexicana drone congregation provides an effective mechanism to avoid mating among close relatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号