首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Both the establishment and outcomes of plant-fungus symbioses can be influenced by abiotic factors, the interplay of fungal and plant genotypes, and additional microbes associated with fungal mycelia. Recently bacterial endosymbionts were documented in soilborne Glomeromycota and Mucoromycotina and in at least one species each of mycorrhizal Basidiomycota and Ascomycota. Here we show for the first time that phylogenetically diverse endohyphal bacteria occur in living hyphae of diverse foliar endophytes, including representatives of four classes of Ascomycota. We examined 414 isolates of endophytic fungi, isolated from photosynthetic tissues of six species of cupressaceous trees in five biogeographic provinces, for endohyphal bacteria using microscopy and molecular techniques. Viable bacteria were observed within living hyphae of endophytic Pezizomycetes, Dothideomycetes, Eurotiomycetes, and Sordariomycetes from all tree species and biotic regions surveyed. A focus on 29 fungus/bacterium associations revealed that bacterial and fungal phylogenies were incongruent with each other and with taxonomic relationships of host plants. Overall, eight families and 15 distinct genotypes of endohyphal bacteria were recovered; most were members of the Proteobacteria, but a small number of Bacillaceae also were found, including one that appears to occur as an endophyte of plants. Frequent loss of bacteria following subculturing suggests a facultative association. Our study recovered distinct lineages of endohyphal bacteria relative to previous studies, is the first to document their occurrence in foliar endophytes representing four of the most species-rich classes of fungi, and highlights for the first time their diversity and phylogenetic relationships with regard both to the endophytes they inhabit and the plants in which these endophyte-bacterium symbiota occur.Traits related to the establishment and outcome of plant-fungus symbioses can reflect not only abiotic conditions and the unique interactions of particular fungal and plant genotypes (49, 50, 56, 59, 62, 67) but also additional microbes that interact intimately with fungal mycelia (4, 12, 42). For example, mycorrhizosphere-associated actinomycetes release volatile compounds that influence spore germination in the arbuscular mycorrhizal (AM) fungus Gigaspora margarita (Glomeromycota) (14). Levy et al. (34) describe Burkholderia spp. that colonize spores and hyphae of the AM fungus Gigaspora decipiens and are associated with decreased spore germination. Diverse “helper” bacteria have been implicated in promoting hyphal growth and the establishment of ectomycorrhizal symbioses (23, 26, 57, 70). Minerdi et al. (43) found that a consortium of ectosymbiotic bacteria limited the ability of the pathogen Fusarium oxysporum to infect and cause vascular wilts in lettuce, with virulence restored to the pathogen when ectosymbionts were removed.In addition to interacting with environmental and ectosymbiotic bacteria, some plant-associated fungi harbor bacteria within their hyphae (first noted as “bacteria-like organisms” of unknown function) (38). These bacteria, best known from living hyphae of several species of the Glomeromycota and Mucoromycotina, can alter fungal interactions with host plants in diverse ways (see references 12, 31, and 51). For example, the vertically transmitted bacterium “Candidatus Glomeribacter gigasporarum” colonizes spores and hyphae of the AM fungus Gigaspora gigasporarum (9, 10). Removal of the bacterial partner from the fungal spores suppresses fungal growth and development, altering the morphology of the fungal cell wall, vacuoles, and lipid bodies (37). In turn, the discovery of phosphate-solubilizing bacteria within Glomus mossae spores (44), coupled with the recovery of a P-transporter operon in Burkholderia sp. from Gigaspora margarita (54), suggests a competitive role in phosphate acquisition and transport by these bacteria within the AM symbiosis. Within the Mucoromycotina, Partida-Martinez and Hertweck (51) reported that a soilborne plant pathogen, Rhizopus microsporus, harbors endosymbiotic Burkholderia that produces a phytotoxin (rhizoxin) responsible for the pathogenicity of the fungus.These examples, coupled with the discovery of bacteria within hyphae of the ectomycorrhizal Dikarya (Tuber borchii; Ascomycota; Laccaria bicolor and Piriformospora indica; Basidiomycota) (5-8, 58), suggest that the capacity to harbor endohyphal bacteria is widespread among fungi. To date, however, endocellular bacteria have been recovered only from fungi that occur in the soil and rhizosphere (12, 31). Here we report for the first time that phylogenetically diverse bacteria occur within living hyphae of foliar endophytic fungi, including members of four classes of filamentous Ascomycota. We use a combination of light and fluorescence microscopy to visualize bacterial infections within living hyphae of representative strains. Then, drawing from surveys of endophytes from asymptomatic foliage of cupressaceous trees in five biogeographic provinces, we provide a first characterization of the phylogenetic relationships, host associations, and geographic distributions of endohyphal bacteria associated with focal fungal endophytes.  相似文献   

3.
4.
Phylogeny of the Defined Murine Microbiota: Altered Schaedler Flora   总被引:12,自引:4,他引:8       下载免费PDF全文
The “altered Schaedler flora” (ASF) was developed for colonizing germfree rodents with a standardized microbiota. The purpose of this study was to identify each of the eight ASF strains by 16S rRNA sequence analysis. Three strains were previously identified as Lactobacillus acidophilus (strain ASF 360), Lactobacillus salivarius (strain ASF 361), and Bacteroides distasonis (strain ASF 519) based on phenotypic criteria. 16S rRNA analysis indicated that each of the strains differed from its presumptive identity. The 16S rRNA sequence of strain ASF 361 is essentially identical to the 16S rRNA sequences of the type strains of Lactobacillus murinis and Lactobacillus animalis (both isolated from mice), and all of these strains probably belong to a single species. Strain ASF 360 is a novel lactobacillus that clusters with L. acidophilus and Lactobacillus lactis. Strain ASF 519 falls into an unnamed genus containing [Bacteroides] distasonis, [Bacteroides] merdae, [Bacteroides] forsythus, and CDC group DF-3. This unnamed genus is in the Cytophaga-Flavobacterium-Bacteroides phylum and is most closely related to the genus Porphyromonas. The spiral-shaped strain, strain ASF 457, is in the Flexistipes phylum and exhibits sequence identity with rodent isolates of Robertson. The remaining four ASF strains, which are extremely oxygen-sensitive fusiform bacteria, group phylogenetically with the low-G+C-content gram-positive bacteria (Firmicutes, Bacillus-Clostridium group). ASF 356, ASF 492, and ASF 502 fall into Clostridium cluster XIV of Collins et al. Morphologically, ASF 492 resembles members of this cluster, Roseburia cecicola, and Eubacterium plexicaudatum. The 16S rRNA sequence of ASF 492 is identical to that of E. plexicaudatum. Since the type strain and other viable original isolates of E. plexicaudatum have been lost, strain ASF 492 is a candidate for a neotype strain. Strain ASF 500 branches deeply in the low-G+C-content gram-positive phylogenetic tree but is not closely related to any organisms whose 16S rRNA sequences are currently in the GenBank database. The 16S rRNA sequence information determined in the present study should allow rapid identification of ASF strains and should permit detailed analysis of the interactions of ASF organisms during development of intestinal disease in mice that are coinfected with a variety of pathogenic microorganisms.  相似文献   

5.
Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in health care settings across the world. Despite its pathogenic capacity, it can be carried asymptomatically and has been found in terrestrial and marine ecosystems outside hospital environments. Little is known about these environmental strains, and few studies have been conducted on estuarine systems. Although prophage abundance and diversity are known to occur within clinical strains, prophage carriage within environmental strains of C. difficile has not previously been explored. In this study, we isolated C. difficile from sites sampled in two consecutive years in an English estuarine system. Isolates were characterized by PCR ribotype, antibiotic resistance, and motility. The prevalence and diversity of prophages were detected by transmission electron microscopy (TEM) and a phage-specific PCR assay. We show that a dynamic and diverse population of C. difficile exists within these sediments and that it includes isolates of ribotypes which are associated with severe clinical infections and those which are more frequently isolated from outside the hospital environment. Prophage carriage was found to be high (75%), demonstrating that phages play a role in the biology of these strains.  相似文献   

6.
7.
According to data on the abundance of taxonomic, physiological, and ecotrophic microbial groups, analysis of the seasonal changes in their composition under conditions of artificial (irrigation) and natural (wet land formation) soil moistening was carried out. It was revealed with statistical reliability that the greatest response to changes caused by different soil moistening modes was observed in the numbers of aerobic cellulose-degrading microorganisms, denitrifiers, and fungi. An increase in erosion resistance of steppe soils during irrigation is explained by the combined effect of physicochemical and biological processes, and by higher numbers of algae, fungi, aerobic cellulose-degrading microorganisms, and oligonitrophiles, in particular.  相似文献   

8.
The human small intestine is a key site for interactions between the intestinal microbiota and the mucosal immune system. Here we investigated the immunomodulatory properties of representative species of commonly dominant small-intestinal microbial communities, including six streptococcal strains (four Streptococcus salivarius, one S. equinus, one S. parasanguinis) one Veillonella parvula strain, one Enterococcus gallinarum strain, and Lactobacillus plantarum WCFS1 as a bench mark strain on human monocyte-derived dendritic cells. The different streptococci induced varying levels of the cytokines IL-8, TNF-α, and IL-12p70, while the V. parvula strain showed a strong capacity to induce IL-6. E. gallinarum strain was a potent inducer of cytokines and TLR2/6 signalling. As Streptococcus and Veillonella can potentially interact metabolically and frequently co-occur in ecosystems, immunomodulation by pair-wise combinations of strains were also tested for their combined immunomodulatory properties. Strain combinations induced cytokine responses in dendritic cells that differed from what might be expected on the basis of the results obtained with the individual strains. A combination of (some) streptococci with Veillonella appeared to negate IL-12p70 production, while augmenting IL-8, IL-6, IL-10, and TNF-α responses. This suggests that immunomodulation data obtained in vitro with individual strains are unlikely to adequately represent immune responses to mixtures of gut microbiota communities in vivo. Nevertheless, analysing the immune responses of strains representing the dominant species in the intestine may help to identify immunomodulatory mechanisms that influence immune homeostasis.  相似文献   

9.
The intestinal microbiota has been found to play a central role in the colonization of Salmonella enterica serovar Typhimurium in the gastrointestinal tract. In this study, we present a novel process through which Salmonella benefit from inflammatory induced changes in the microbiota in order to facilitate disease. We show that Salmonella infection in mice causes recruitment of neutrophils to the gut lumen, resulting in significant changes in the composition of the intestinal microbiota. This occurs through the production of the enzyme elastase by neutrophils. Administration of recombinant neutrophil elastase to infected animals under conditions that do not elicit neutrophil recruitment caused shifts in microbiota composition that favored Salmonella colonization, while inhibition of neutrophil elastase reduced colonization. This study reveals a new relationship between the microbiota and the host during infection.  相似文献   

10.
Sooty mould fungi are ubiquitous, abundant consumers of insect-honeydew that have been little-studied. They form a complex of unrelated fungi that coexist and compete for honeydew, which is a chemically complex resource. In this study, we used scanning electron microscopy in combination with T-RFLP community profiling and ITS-based tag-pyrosequencing to extensively describe the sooty mould community associated with the honeydews of two ecologically important New Zealand coelostomidiid scale insects, Coelostomidia wairoensis and Ultracoelostoma brittini. We tested the influence of host plant on the community composition of associated sooty moulds, and undertook limited analyses to examine the influence of scale insect species and geographic location. We report here a previously unknown degree of fungal diversity present in this complex, with pyrosequencing detecting on average 243 operational taxonomic units across the different sooty mould samples. In contrast, T-RFLP detected only a total of 24 different “species” (unique peaks). Nevertheless, both techniques identified similar patterns of diversity suggesting that either method is appropriate for community profiling. The composition of the microbial community associated with individual scale insect species varied although the differences may in part reflect variation in host preference and site. Scanning electron microscopy visualised an intertwined mass of fungal hyphae and fruiting bodies in near-intact physical condition, but was unable to distinguish between the different fungal communities on a morphological level, highlighting the need for molecular research. The substantial diversity revealed for the first time by pyrosequencing and our inability to identify two-thirds of the diversity to further than the fungal division highlights the significant gap in our knowledge of these fungal groups. This study provides a first extensive look at the community diversity of the fungal community closely associated with the keystone insect-honeydew systems of New Zealand’s native forests and suggests there is much to learn about sooty mould communities.  相似文献   

11.
12.
Commensal bacteria control the micro-ecology of metazoan epithelial surfaces with pivotal effect on tissue homeostasis and host defense. In contrast to the upper respiratory tract, the lower respiratory tract of healthy individuals has largely been considered free of microorganisms. To understand airway micro-ecology we studied microbiota of sterilely excised lungs from mice of different origin including outbred wild mice caught in the natural environment or kept under non-specific-pathogen-free (SPF) conditions as well as inbred mice maintained in non-SPF, SPF or germ-free (GF) facilities. High-throughput pyrosequencing of reverse transcribed 16S rRNA revealed metabolically active murine lung microbiota in all but GF mice. The overall composition across samples was similar at the phylum and family level. However, species richness was significantly different between lung microbiota from SPF and non-SPF mice. Non-cultivatable Betaproteobacteria such as Ralstonia spp. made up the major constituents and were also confirmed by 16S rRNA gene cloning analysis. Additionally, Pasteurellaceae, Enterobacteria and Firmicutes were isolated from lungs of non-SPF mice. Bacterial communities were detectable by fluorescent in situ hybridization (FISH) at alveolar epithelia in the absence of inflammation. Notably, higher bacterial abundance in non-SPF mice correlated with more and smaller size alveolae, which was corroborated by transplanting Lactobacillus spp. lung isolates into GF mice. Our data indicate a common microbial composition of murine lungs, which is diversified through different environmental conditions and affects lung architecture. Identification of the microbiota of murine lungs will pave the path to study their influence on pulmonary immunity to infection and allergens using mouse models.  相似文献   

13.
The effect of psychological stress on the gastrointestinal microbiota is widely recognized. Chronic psychological stress may be associated with increased disease activity in inflammatory bowel disease, but the relationships among psychological stress, the gastrointestinal microbiota, and the severity of colitis is not yet fully understood. Here, we examined the impact of 12-week repeated water-avoidance stress on the microbiota of two inbred strains of T cell receptor alpha chain gene knockout mouse (background, BALB/c and C57BL/6) by means of next-generation sequencing of bacterial 16S rRNA genes. In both mouse strains, knockout of the T cell receptor alpha chain gene caused a loss of gastrointestinal microbial diversity and stability. Chronic exposure to repeated water-avoidance stress markedly altered the composition of the colonic microbiota of C57BL/6 mice, but not of BALB/c mice. In C57BL/6 mice, the relative abundance of genus Clostridium, some members of which produce the toxin phospholipase C, was increased, which was weakly positively associated with colitis severity, suggesting that expansion of specific populations of indigenous pathogens may be involved in the exacerbation of colitis. However, we also found that colitis was not exacerbated in mice with a relatively diverse microbiota even if their colonic microbiota contained an expanded phospholipase C-producing Clostridium population. Exposure to chronic stress also altered the concentration of free immunoglobulin A in colonic contents, which may be related to both the loss of bacterial diversity in the colonic microbiota and the severity of the colitis exacerbation. Together, these results suggest that long-term exposure to psychological stress induces dysbiosis in the immunodeficient mouse in a strain-specific manner and also that alteration of microbial diversity, which may be related to an altered pattern of immunoglobulin secretion in the gastrointestinal tract, might play a crucial role in the development of chronic stress-induced colitis.  相似文献   

14.
Tumourigenesis within the intestine is potently driven by deregulation of the Wnt pathway, a process epigenetically regulated by the chromatin remodelling factor Brg1. We aimed to investigate this interdependency in an in vivo setting and assess the viability of Brg1 as a potential therapeutic target. Using a range of transgenic approaches, we deleted Brg1 in the context of Wnt-activated murine small intestinal epithelium. Pan-epithelial loss of Brg1 using VillinCreERT2 and AhCreERT transgenes attenuated expression of Wnt target genes, including a subset of stem cell-specific genes and suppressed Wnt-driven tumourigenesis improving animal survival. A similar increase in survival was observed when Wnt activation and Brg1 loss were restricted to the Lgr5 expressing intestinal stem cell population. We propose a mechanism whereby Brg1 function is required for aberrant Wnt signalling and ultimately for the maintenance of the tumour initiating cell compartment, such that loss of Brg1 in an Apc-deficient context suppresses adenoma formation. Our results highlight potential therapeutic value of targeting Brg1 and serve as a proof of concept that targeting the cells of origin of cancer may be of therapeutic relevance.  相似文献   

15.
16.

Background

Few studies describing eukaryotic communities in the human gut microbiota have been published. The objective of this study was to investigate comprehensively the repertoire of plant and fungal species in the gut microbiota of an obese patient.

Methodology/Principal Findings

A stool specimen was collected from a 27-year-old Caucasian woman with a body mass index of 48.9 who was living in Marseille, France. Plant and fungal species were identified using a PCR-based method incorporating 25 primer pairs specific for each eukaryotic phylum and universal eukaryotic primers targeting 18S rRNA, internal transcribed spacer (ITS) and a chloroplast gene. The PCR products amplified using these primers were cloned and sequenced. Three different culture media were used to isolate fungi, and these cultured fungi were further identified by ITS sequencing. A total of 37 eukaryotic species were identified, including a Diatoms (Blastocystis sp.) species, 18 plant species from the Streptophyta phylum and 18 fungal species from the Ascomycota, Basidiomycota and Chytridiocomycota phyla. Cultures yielded 16 fungal species, while PCR-sequencing identified 7 fungal species. Of these 7 species of fungi, 5 were also identified by culture. Twenty-one eukaryotic species were discovered for the first time in human gut microbiota, including 8 fungi (Aspergillus flavipes, Beauveria bassiana, Isaria farinosa, Penicillium brevicompactum, Penicillium dipodomyicola, Penicillium camemberti, Climacocystis sp. and Malassezia restricta). Many fungal species apparently originated from food, as did 11 plant species. However, four plant species (Atractylodes japonica, Fibraurea tinctoria, Angelica anomala, Mitella nuda) are used as medicinal plants.

Conclusions/Significance

Investigating the eukaryotic components of gut microbiota may help us to understand their role in human health.  相似文献   

17.
Many litter-decay fungi secrete heme-thiolate peroxygenases that oxidize various organic chemicals, but little is known about the role or mechanism of these enzymes. We found that the extracellular peroxygenase of Agrocybe aegerita catalyzed the H2O2-dependent cleavage of environmentally significant ethers, including methyl t-butyl ether, tetrahydrofuran, and 1,4-dioxane. Experiments with tetrahydrofuran showed the reaction was a two-electron oxidation that generated one aldehyde group and one alcohol group, yielding the ring-opened product 4-hydroxybutanal. Investigations with several model substrates provided information about the route for ether cleavage: (a) steady-state kinetics results with methyl 3,4-dimethoxybenzyl ether, which was oxidized to 3,4-dimethoxybenzaldehyde, gave parallel double reciprocal plots suggestive of a ping-pong mechanism (Km(peroxide), 1.99 ± 0.25 mm; Km(ether), 1.43 ± 0.23 mm; kcat, 720 ± 87 s−1), (b) the cleavage of methyl 4-nitrobenzyl ether in the presence of H218O2 resulted in incorporation of 18O into the carbonyl group of the resulting 4-nitrobenzaldehyde, and (c) the demethylation of 1-methoxy-4-trideuteromethoxybenzene showed an observed intramolecular deuterium isotope effect [(kH/kD)obs] of 11.9 ± 0.4. These results suggest a hydrogen abstraction and oxygen rebound mechanism that oxidizes ethers to hemiacetals, which subsequently hydrolyze. The peroxygenase appeared to lack activity on macromolecular ethers, but otherwise exhibited a broad substrate range. It may accordingly have a role in the biodegradation of natural and anthropogenic low molecular weight ethers in soils and plant litter.Recently, a new group of extracellular peroxygenases was described in agaric fungi that are ubiquitous biodegraders of lignocellulose in soils and plant litter. These heme-thiolate enzymes catalyze H2O2-dependent halogenations and hydroxylations of numerous aromatic substrates, and thus show some functional similarity to heme chloroperoxidase and to cytochromes P450 (P450s),3 which are also heme-thiolate proteins (14). However, the best-characterized fungal peroxygenase, from Agrocybe aegerita, exhibits low sequence identity (∼25%) with heme chloroperoxidase and no significant sequence identity with the P450s (5). On the other hand, the absorption spectrum of the native peroxygenase and of its carbon monoxide adduct closely resemble those of P450s (6). So far, little is known about the catalytic cycle of the A. aegerita peroxygenase.The physiological function of these peroxygenases is also unclear, but their extracellular location suggests a role in the biodegradation or detoxification of organic chemicals encountered by the fungi. Ethers stand out as potential substrates for several reasons. First, ether linkages are widespread in soils and litter, not only in abundant natural substances such as lignin, flavonoids, and lignans, but also in anthropogenic compounds that include many solvents, biocides, and surfactants (711). Second, an oxidative mechanism is required for the biodegradation of ethers, which are relatively recalcitrant because they do not hydrolyze at physiological pH values (7). Finally, it is already known that functionally similar monooxygenases, including P450s, are capable of ether scission and have a role in the intracellular metabolism of these compounds by some organisms (7, 1215).Here we show that the extracellular peroxygenase from A. aegerita cleaves many ethers, including some significant environmental pollutants, and we evaluate some limitations on the etherolytic reactions that the enzyme can accomplish. In addition, we report data from stoichiometrical analyses, steady-state kinetics experiments, an H218O2-labeling study, and intramolecular deuterium isotope effect determinations. These results provide insights into the enzymatic mechanism for ether cleavage.  相似文献   

18.
Increased intestinal chloride secretion through chloride channels, such as the cystic fibrosis transmembrane conductance regulator (CFTR), is one of the major molecular mechanisms underlying enterotoxigenic diarrhea. It has been demonstrated in the past that the intracellular energy sensing kinase, the AMP-activated protein kinase (AMPK), can inhibit CFTR opening. We hypothesized that pharmacological activation of AMPK can abrogate the increased chloride flux through CFTR occurring during cholera toxin (CTX) mediated diarrhea.Chloride efflux was measured in isolated rat colonic crypts using real-time fluorescence imaging. AICAR and metformin were used to activate AMPK in the presence of the secretagogues CTX or forskolin (FSK). In order to substantiate our findings on the whole tissue level, short-circuit current (SCC) was monitored in human and murine colonic mucosa using Ussing chambers. Furthermore, fluid accumulation was measured in excised intestinal loops.CTX and forskolin (FSK) significantly increased chloride efflux in isolated colonic crypts. The increase in chloride efflux could be offset by using the AMPK activators AICAR and metformin. In human and mouse mucosal sheets, CTX and FSK increased SCC. AICAR and metformin inhibited the secretagogue induced rise in SCC, thereby confirming the findings made in isolated crypts. Moreover, AICAR decreased CTX stimulated fluid accumulation in excised intestinal segments.The present study suggests that pharmacological activation of AMPK effectively reduces CTX mediated increases in intestinal chloride secretion, which is a key factor for intestinal water accumulation. AMPK activators may therefore represent a supplemental treatment strategy for acute diarrheal illness.  相似文献   

19.
We examined the impact of Helicobacter pylori infection on the murine gastric microbiota by culture and terminal-restriction fragment length polymorphism and found that neither acute nor chronic H. pylori infection substantially affected the gastric microbial composition. Interestingly, the total H. pylori burden detected by real-time PCR was significantly higher than that revealed by viable counts, suggesting that the antigenic load sustaining H. pylori-induced gastritis could be considerably higher than previously believed.  相似文献   

20.
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by the fungus Paracoccidioides brasiliensis (Pb). The cyclosporin A (CsA) is an immunosuppressant drug that inhibits calcineurin and has been described as a potential antifungal drug. The present study investigated the effect of CsA on the immune response, fungal load/antigenemia in experimental murine PCM. It was used four groups of BALB/c mice: (a) infected with 1 × 105 Pb18 yeast cells (Pb), (b) infected and treated with CsA every other day 10 mg/kg of CsA (s.c.) during 30 days (Pb/CsA), (c) treated with CsA (CsA) and (d) no infected/treated (PBS). The immune response was evaluated by lymphocyte proliferation, DTH assays to exoAgs, ELISA for IgG anti-gp43 (specific immune responses) and cytokine serum levels (IFN-γ, TNF-α, IL-4 and IL-10). Fungal load was determined by lung colony-forming units (CFU) counts, lung and liver histopathology analysis and antigenemia determined by inhibition-ELISA. As expected, CsA was able to inhibit the specific cellular and humoral immune response (P < 0.05), with decrease in serum IFN-γ, TNF-α and IL-4 levels (P < 0.05). Cyclosporin A treatment also resulted in significantly decreased lung Pb CFU (P < 0.05) as well as a lower number of yeasts in the lung and liver (P < 0.05) by histopathology. In concordance, the decreased antigenemia was observed in Pb/CsA group (P < 0.05). In conclusion, even with immunosuppressive action, treatment with CsA results in decreased lung fungal load/antigenemia in experimental PCM in BALB/c mice. Further study is required to determine whether this represents less severe disease or protection by CsA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号