首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synovial joints arise through two main processes. In long bone elements, cartilaginous differentiation occurs across the locations of the prospective joints that then segment secondarily. This process occurs through the development of a noncartilaginous region known as the interzone. The interzone becomes an important signaling center to the opposing elements, which can regulate growth through such factors as GDF-5. The interzone also expresses bone morphogenetic proteins (BMPs) and their antagonists, such as noggin. Overexpression of BMPs, or the loss of noggin leads to joint fusions. The interzone also expresses Wnt-14, which appears to be specific for this region in the developing anlagen, and regulates its nonchondrogenic nature. Cavitation of the joint follows, driven by selective high-level synthesis of hyaluronan by interzone cells and presumptive synovial cells. In addition, as the interzone disperses during cavity enlargement, data are now accruing that suggest that both the synovium and articular cartilage develop from this population. Finally, the development of articular cartilage progresses through appositional growth driven by a progenitor/stem cell subpopulation that resides in the articular surface. The individual elements of the skeleton are connected together at regions termed joints or articulations. Classically, there are three broad categories of joints: immovable joints (syntharthroses); mixed articulations, in which the range of movement is limited (amphiarthroses); and the movable, or synovial, joints (diarthroses). This review concentrates on the development of the synovial joints.  相似文献   

2.
3.
4.
Changes in glycosaminoglycan (GAG) content and distribution are vital for joint development. However, their precise character has not been established. We have used immunohistochemistry (IHC) and "critical electrolyte" Alcian blue staining to assess such changes in developing chick and rabbit joints. IHC showed chondroitin sulfate labeling in chick epiphyseal cartilage but not in interzones. In contrast, prominent labeling for keratan sulfate (KS) was restricted to chick cartilage-interzone interfaces. In rabbit knees, KS labeling was also prominent at presumptive cavity borders, but weak in interzone and cartilage. Selective pre-digestion produced appropriate loss of label and undersulfated KS was undetectable. Quantification of Alcian blue staining by scanning and integrating microdensitometry showed prominent hyaluronan-like (HA-like) interzone staining, with chondroitin sulfate and weaker KS staining restricted to epiphyseal cartilage. Hyaluronidase decreased HA-like staining in the interzone. Surprisingly, keratanases also reduced HA-like but not sulfated GAG (sGAG-like) staining in the interzone. Chondroitinase ABC had little effect on HA-like staining but decreased sGAG staining in all regions. Rabbit joints also showed HA-like but not KS staining in the interzone and strong chondroitin sulfate-like staining in epiphyseal cartilage. Our findings show restricted KS distribution in the region close to the presumptive joint cavity of developing chick and rabbit joints. Alcian blue staining does not detect this moiety. Therefore, it appears that although histochemistry allows relatively insensitive quantitative assessment of GAGs, IHC increases these detection limits. This is particularly evident for KS, which exhibits immunolabeling patterns in joints from different species that is consistent with a conserved functional role in chondrogenesis.  相似文献   

5.
The extracellular matrix (ECM) plays a critical role in governing cell behavior and phenotype during limb skeletogenesis. Chondroitin sulfate proteoglycans (Cspgs) are highly expressed in the ECM of precartilage mesenchymal condensations and are important to limb chondrogenesis and cartilage structure, but little is known regarding their involvement in formation of synovial joints in the embryonic limb. Matrix versican Cspg expression has previously been reported in the epiphysis of developing long bones and presumptive joint; however, detailed analysis has not yet been conducted. In the present study we immunolocalized versican and aggrecan Cspgs during chick elbow joint morphogenesis between HH st25-41 of development. In this study we show that versican and aggrecan expression initially overlapped in the incipient cartilage model of long bones in the wing, but versican was also highly expressed in the perichondrium and presumptive joint interzone during early stages of morphogenesis (HH st25-34). By HH st36-41 versican localization was restricted to the future articular surfaces of the developing joint and surrounding joint capsule while aggrecan localized in an immediately adjacent and predominately non-overlapping region of chondrogenic cells at the epiphyses. These results suggest a potential role for versican proteoglycan in development and maintenance of the synovial joint interzone.  相似文献   

6.
Members of the Wnt gene family, encoding secreted cystein-rich glycoproteins, have been isolated from a variety of organisms. They serve as important developmental signaling molecules and have been implicated to play crucial roles in such diverse processes as cancer, organogenesis and pattern formation. Experiments by Zakany and Duboule, and Rudnicki and Brown have suggested a role for Wnt molecules in negatively regulating chondrogenesis. However, neither of the two Wnt genes used in these studies is endogenously expressed in chondrogenic regions. We and others have found that in the chick limb at least four members of the Wnt gene family, Wnt-4, Wnt-5a, Wnt-5b, and Wnt-14, are expressed in defined regions of the developing chondrogenic elements. With the exception of Wnt-5b, which is expressed in perichondrial cells and prehypertrophic chondrocytes, the expression of the three other Wnt genes is restricted to the perichondrium surrounding the cartilage element. Viral misexpression studies in the chick suggested that Wnt-4 acts as a positive signal originating from the joint region and when misexpressed accelerates chondrocyte maturation, while Wnt-5a and Wnt-5b both negatively regulate chondrocyte maturation. We have further shown that they utilize different signaling pathways; while Wnt-4 signals through the canonical Wnt-pathway, Wnt-5a and Wnt-5b do not. Interestingly, the delay in chondrocyte maturation due to Wnt-5a misexpression is associated with an up regulation of Wnt-5b expression in the prehypertropic chondrocytes. Concomitantly, Wnt-5b misexpression also delays chondrocyte maturation. However, preliminary studies suggest that the two Wnt genes affect different steps in the maturation process. Wnt signaling, however, is not only regulating chondrogenesis but is also involved in the segmentation process of the appendicular skeleton. Localized misexpression of the fourth Wnt gene, Wnt-14, which is expressed early in the presumptive joint region, induces morphological and molecular changes indicative of an early joint interzone, suggesting that Wnt-14 plays a pivotal role in the induction of the joint interzone.  相似文献   

7.
8.
The control point by which chondrocytes take the decision between the cartilage differentiation program or the joint formation program is unknown. Here, we have investigated the effect of alpha5beta1 integrin inhibitors and bone morphogenetic protein (BMP) on joint formation. Blocking of alpha5beta1 integrin by specific antibodies or RGD peptide (arginine-glycine-aspartic acid) induced inhibition of pre-hypertrophic chondrocyte differentiation and ectopic joint formation between proliferating chondrocytes and hypertrophic chondrocytes. Ectopic joint expressed Wnt14, Gdf5, chordin, autotaxin, type I collagen and CD44, while expression of Indian hedgehog and type II collagen was downregulated in cartilage. Expression of these interzone markers confirmed that the new structure is a new joint being formed. In the presence of BMP7, inhibition of alpha5beta1 integrin function still induced the formation of the ectopic joint between proliferating chondrocytes and hypertrophic chondrocytes. By contrast, misexpression of alpha5beta1 integrin resulted in fusion of joints and formation of pre-hypertrophic chondrocytes. These facts indicate that the decision of which cell fate to make pre-joint or pre-hypertrophic is made on the basis of the presence or absence of alpha5beta1 integrin on chondrocytes.  相似文献   

9.
10.
Indirect immunofluorescence has been used to study the distribution of fibronectin and collagen types I, II, and III in the developing primary and secondary palatal processes and forelimb buds of the Swiss Webster (NIH) mouse. In the palatal processes fibronectin and types I and III collagen are distributed throughout the mesenchyme. Fibronectin is present in the basement membrane, while types I and III collagen are localized in a linear, discontinuous fashion beneath the basement membrane. Fibronectin is not observed in the epithelium, including the presumptive fusion areas. In the forelimb bud these components show a similar distribution prior to chondrogenesis (early day 11). When chondrogenesis commences (late day 11 or early day 12) fibronectin and, to a lesser degree, types I and III collagen are apparently concentrated in the core mesenchyme, suggesting that fibronectin has a role in initiating chondrogenesis, perhaps by increasing cellular aggregation. Type II collagen is observed only in chondrogenic regions. The codistribution of fibronectin and types I and III collagen supports in vitro studies which indicate that cells use fibronectin to bind to collagen in the matrix. The developing chondrogenic regions appear to lose fibronectin gradually, concomitant with the appearance of type II collagen, suggesting that fibronectin is not involved in the maintenance of functional chondrocytes in their matrices.  相似文献   

11.
We have performed a quantitative analysis of the various collagens biosynthesized by organ cultures of whole embryonic-chick sternum and its separate anatomical regions corresponding to the zones of permanent hyaline and presumptive-calcification cartilages. Our studies demonstrated that embryonic-chick sternum devotes a large portion of its biosynthetic commitment towards production of Type X collagen, which represented approx. 18% of the total newly synthesized collagen. Comparison of the collagens biosynthesized by the permanent hyaline cartilage and by the cartilage from the presumptive-calcification zone demonstrated that Type X-collagen production was strictly confined to the presumptive-calcification region. Sequential extraction of the newly synthesized Type X collagen demonstrated the existence of two separate populations. One population (approx. 20%) was composed of easily extractable molecules that were solubilized with 1.0 m-NaCl/50 mM-Tris/HCI buffer, pH 7.4. The second population was composed of molecules that were not extractable even after repeated pepsin digestion, but became completely solubilized after treatment with 20 mM-dithiothreitol/0.15 M-NaCl buffer at neutral pH. These results suggest that most of the Type X collagen normally exists in the tissue as part of a pepsin-resistant molecular aggregate that may be stabilized by disulphide bonds. Quantitative analysis of the proportion of Type X collagen relative to the other collagens synthesized in the cultures indicated that this collagen was a major biosynthetic product of the presumptive-calcification cartilage, since it represented about 35% of the total collagen synthesized by this tissue. In contrast, the permanent hyaline cartilage did not display any detectable synthesis of Type X collagen. When compared on a per-cell basis, the chondrocytes from the presumptive-calcification zone synthesized approx. 33% more Type X collagen than the amount of Type II collagen synthesized by the chondrocytes from the permanent-hyaline-cartilage zone. Subsequently, it was demonstrated that Type X collagen is a structural component of chick sternum matrix, since quantitative amounts could be extracted from the region of presumptive calcification of 17-day-old chick-embryo sterna and from the calcified portion of adult-chick sterna. The strict topographic distribution in the expression of Type X collagen biosynthesis to the zone of presumptive calcification suggests that this collagen may play an important role in initiation or progression of tissue calcification.  相似文献   

12.
The relaxation site of ColE1 has been located within the restriction fragment HpaII L, which is 148 base-pairs in length. Restriction mapping data indicate that the relaxation nick (the presumptive origin of transfer) of ColE1 is located at a distance of 250 to 300 nucleotides away from the replication origin, downstream in the direction of replication. This result is consistent with the observation made by Inselburg (1977), that the relaxation phenomenon probably does not play a direct role in vegetative replication of ColE1. The sequence of 185 nucleotides surrounding the relaxation site has been determined and this contains a translational symmetry and several 2-fold rotational symmetries. These symmetric elements may be recognition sites for proteins involved in the conjugal transfer of ColE1. The sequence further demonstrates that the relaxation site, unlike the cis A nicking site of φX174, is located in an intercistronic region. The site of the relaxation break has a 2-fold rotational symmetry.  相似文献   

13.
14.
Summary The differentiation was studied of presumptive eye material developing in the absence of ectoderm. Explants were made of the anterior (forebrain- and eye-forming) part of the neural plate, without the lateral neural folds, of early to mid-neurulae ofRana temporaria andR. esculenta. The underlying endomesoderm as well as the outer layer of the neural plate were removed prior to explantation. Consequently the explants did not become surrounded by epidermis. The explants segregated into a mass of forebrain tissue and a single retina, which did not assume the typical cup shape. In between these two components an interzone developed, consisting of incompletely differentiated layers of iris tissue. In the interzone typical lentoids, as well as lentoids continuous with other tissue components, differentiated. The formation of lentoids in the absence of ectoderm is discussed in terms of the availability of a lens-inducing agent. It is assumed that in the interzone the lens-inducing agent acts on tissue components which are competent for lens formation. The formation of lens-like tissue may be regarded as analogous to lens regeneration in newts.The author wishes to express her sincere appreciation to Prof. G. V. Lopashov for his advice and encouragement throughout the course of this study, to Mrs. Nina A. Ivanova for expert technical assistance, and to Dr. J. Faber (Hubrecht Laboratory, Utrecht) for the correction of the English.  相似文献   

15.
Collagen autoimmunity and arthritis   总被引:7,自引:0,他引:7  
Collagen-induced arthritis in animals is an example of polyarthritis that sufficiently resembles human rheumatoid arthritis to be used as a model. It is caused by immunizing susceptible animals with type II collagen isolated from articular cartilage. Susceptibility is genetically determined and linked to the major histocompatibility locus. It is important because some human arthritis is also associated with major histocompatibility genes and may be caused or aggravated by the presence of autoimmunity to normal cartilage components. Collagen-induced arthritis is also important because it is an example of immunologically mediated joint destruction, which may share some of the mechanisms present in human disease. Although it is caused by autoimmunity to collagen, susceptibility and responsiveness to type II collagen are not completely correlated, and there are examples of animals with high levels of collagen immunity who do not develop arthritis. The initial lesion appears to be the deposition of an antibody on the surface of articular cartilage, which precedes development of overt arthritis by several days. Disease can be readily transferred with specific antibody. Arthritogenic antibodies appear to have restricted epitope specificity, which may partially explain the disparities between responsiveness to immunization with collagen and susceptibility to arthritis, but precise delineation of the epitopes involved has not yet been accomplished. Complement activation also appears to be intimately involved since the disease correlates with the presence of high levels of complement-binding IgG isotypes, and passive transfer is possible only into complement-sufficient recipients. Inflammation progresses rapidly so that cartilage destruction and marginal erosion develop over a period of a few days. Collagen-induced arthritis offers a unique opportunity to study autoimmune-mediated arthritis in which the inducing antigen is well characterized and readily available. Analysis of the disease has permitted the proposal of a schema for its pathogenesis.  相似文献   

16.
Deletion analysis of the mouse alpha 1(III) collagen promoter.   总被引:3,自引:2,他引:1       下载免费PDF全文
A chimeric gene was constructed by fusing the DNA sequences containing the 5' flanking region of the mouse alpha 1(III) collagen gene to the coding sequence of the bacterial chloramphenicol acetyltransferase (CAT) gene. Transient transfection experiments indicated that the alpha 1(III) promoter is active in NIH 3T3 fibroblasts and BC3H1 smooth muscle cells. The activity of the alpha 1(III) collagen promoter-CAT plasmid is stimulated approximately ten fold by the presence of the SV40 enhancer element. Removing sequences upstream of -200 stimulates the activity of the chimeric gene eight fold. Further deletion analysis identified sequences located between -350 and -300 that were instrumental in repressing the activity of the promoter. This 50 bp region contains a direct repeat sequence that may be involved in the regulation of the mouse alpha 1(III) collagen gene. Truncating the alpha 1(III) promoter to -80 further stimulated expression. We propose that the positive regulatory elements of this gene appear to be located within the first 80 bp of the promoter, whereas elements located further upstream exert a negative effect on the expression of the gene. Regulation of the alpha 1(III) gene contrasts with that of the alpha 2(I) collagen gene, which appears to be regulated by several positive elements located in various regions of the promoter.  相似文献   

17.
The corneal stroma of the chick embryo is deposited in two steps. The primary stroma is laid down by the corneal epithelium and it contains type I, type II and type IX collagens. Its formation is subsequent to the presumptive epithelial cells' migration onto the lens capsule (which is rich in type IV collagen). The secondary, ultimate stroma is synthesized by fibroblasts whcih, on day 5 of development, invade the swollen primary stroma. It is composed of a matrix of thin (25 nm), regular fibrils containing type I and type V collagens.We found that a chick corneal epithelium isolated from either a 6-day or a 14-day embryo was able to produce, in vitro, stroma-containing type I collagen fibrils. However, the amount of collagen deposited and its organization were highly dependent on the substratum used. Plastic or purified bovine type I collagen substrata led to the release of very few fibrils. Purified human type IV collagen induced the production of an abundant matrix made of large irregular collagen fibrils.When compared to native corneal stroma, there were two aspects in which this matrix differed: (1) it contained only type I collagen, as shown by indirect immunofluorescence, and (2) there were numerous large, irregular fibrils of about 100 to 130 nm in diameter.In conclusion, it is suggested that purified type IV collagen substitutes, in part, for the basement membrane and allows the production of a corneal stroma-like matrix by an embryonic corneal epithelium in culture. This production is possible even with a 14-day epithelium which, in vivo, is no more involved in the synthesis of the stroma collagens. Moreover, the regulatory effect of type II collagen, previously suggested by in vivo observations, may be confirmed in this in vitro system by the appearance of large fibrils in the newly deposited stroma that are made only by type I collagen.  相似文献   

18.
Very little is known about the regulation of morphogenesis in synovial joints. Mechanical forces generated from muscle contractions are required for normal development of several aspects of normal skeletogenesis. Here we show that biophysical stimuli generated by muscle contractions impact multiple events during chick knee joint morphogenesis influencing differential growth of the skeletal rudiment epiphyses and patterning of the emerging tissues in the joint interzone. Immobilisation of chick embryos was achieved through treatment with the neuromuscular blocking agent Decamethonium Bromide. The effects on development of the knee joint were examined using a combination of computational modelling to predict alterations in biophysical stimuli, detailed morphometric analysis of 3D digital representations, cell proliferation assays and in situ hybridisation to examine the expression of a selected panel of genes known to regulate joint development. This work revealed the precise changes to shape, particularly in the distal femur, that occur in an altered mechanical environment, corresponding to predicted changes in the spatial and dynamic patterns of mechanical stimuli and region specific changes in cell proliferation rates. In addition, we show altered patterning of the emerging tissues of the joint interzone with the loss of clearly defined and organised cell territories revealed by loss of characteristic interzone gene expression and abnormal expression of cartilage markers. This work shows that local dynamic patterns of biophysical stimuli generated from muscle contractions in the embryo act as a source of positional information guiding patterning and morphogenesis of the developing knee joint.  相似文献   

19.
Wnt signaling plays important roles in skeletal development. However, the activation and function of canonical Wnt signaling in joint development remains unclear. We analyzed the lineage identity and developmental changes of the Wnt-responsive cells during synovial joint formation as well as adulthood in the Wnt signaling reporter TOPgal transgenic mice. At embryonic day (E) 12.5, we found that the TOPgal was inactivated in the presumptive joint forming interzone, but it was intensively activated in the cartilage anlage of developing long bones and digits. At E14.5, the TOPgal activity was found in a subgroup of the articular chondrocyte lineage cells, which were co-immunolabeled with Doublecortin intensively and with Vinculin weakly. At E18.5, the TOPgal/Doublecortin co-immunolabeled cells were found in the superficial layer of the developing articular cartilage. During postnatal development, the TOPgal(+) articular chondrocytes were abundant at P7 and decreased from P10. A small number of TOPgal(+) articular chondrocytes were also found in adult joints. Our study suggests an age- and lineage-specific role of canonical Wnt signaling in joint development and maintenance.  相似文献   

20.
K Kikukawa  K Suzuki 《Teratology》1992,46(5):509-523
The osteochondrodysplasia rat (ocd/ocd) is a lethal dwarfism. The ocd/ocd shows histological abnormalities of the epiphysis, characterized by a decrease in amount of glycosaminoglycans (GAGs) in the extracellular matrix (ECM). The present study describes histochemical and immunohistochemical distributions of GAGs, type II collagen, and fibronectin (FN) in abnormal humeral cartilage of the ocd/ocd fetuses on days 16-21 of gestation. A wide-spread region with severe necrosis was observed in the cartilage on days 20 and 21. The affected cartilage has small amounts of ECM, irregular columnizations, thinner hypertrophic zones, and expanded and pyknotic chondrocytes on days 16-21 of gestation. The severely expanded chondrocytes did not have cytoplasmic glycogens on days 19-21. Reactions for chondroitin sulfate (CS) and hyaluronic acid (HA) in the ECM were consistently lower in ocd/ocd than in +/+ during the entire period of observation, although there were granules immunoreactive to CS within the chondrocytes of ocd/ocd. The distribution of type II collagen seemed normal in relatively normal regions in the affected cartilage. Strong reactions for CS, HA, type II collagen, and FN were present in the necrotic region on days 20 and 21 of gestation. These findings suggest that the affected chondrocyte may have some defects in releasing ECM substances, which may be released by the process of cell rupture. We hypothesize that some defects in releasing processes inherent to the ocd/ocd cartilage may relate to cellular differentiation and cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号