首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicaemia virus (VHSV) are rhabdoviruses that infect salmonids, producing serious economic losses. Two recombinant IHN viruses were generated by reverse genetics. For one (rIHNV GFP) the IHNV NV gene was replaced with the green fluorescent protein (GFP) gene. In the other (rIHNV-Gvhsv GFP) the G gene was also exchanged for that of VHSV. No mortalities, external signs or histological lesions were observed in experimental infections conducted with the recombinant viruses. Neither the rIHNV GFP nor rIHNV-Gvhsv GFP was detected by RT-PCR in any of the examined tissues from experimentally infected fish. In order to assess their potential as vaccines against the wild type viruses, rainbow trout were vaccinated with the recombinant viruses by intraperitoneal injection and challenged 30 d later with virulent IHNV or VHSV. The GFP viruses provided protection against both wild type viruses. None of the recombinant viruses induced antibody production, and the expression of interferon (IFNalpha4) and interferon induced genes such as Mx protein and ISG-15 was not different to that of controls. The rIHNV-Gvhsv GFP did not inhibit cellular apoptosis as it was observed in an IHNV inoculated fish cell line. These studies suggest that the recombinant rIHNV-Gvhsv GFP is a promising candidate as a live recombinant vaccine and also provides a good model to further study viral pathogenicity and the molecular basis of protection against these viral infections.  相似文献   

2.
Infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) are two salmonid rhabdoviruses replicating at low temperatures (14 to 20 degrees C). Both viruses belong to the Novirhabdovirus genus, but they are only distantly related and do not cross antigenically. By using a recently developed reverse-genetic system based on IHNV (S. Biacchesi et al., J. Virol. 74:11247-11253, 2000), we investigated the ability to exchange IHNV glycoprotein G with that of VHSV. Thus, the IHNV genome was modified so that the VHSV G gene replaced the complete IHNV G gene. A recombinant virus expressing VHSV G instead of IHNV G, rIHNV-Gvhsv, was generated and was shown to replicate as well as the wild-type rIHNV in cell culture. This study was extended by exchanging IHNV G with that of a fish vesiculovirus able to replicate at high temperatures (up to 28 degrees C), the spring viremia of carp virus (SVCV). rIHNV-Gsvcv was successfully recovered; however, its growth was restricted to 14 to 20 degrees C. These results show the nonspecific sequence requirement for the insertion of heterologous glycoproteins into IHNV virions and also demonstrate that an IHNV protein other than the G protein is responsible for the low-temperature restriction on growth. To determine to what extent the matrix (M) protein interacts with G, a series of chimeric pIHNV constructs in which all or part of the M gene was replaced with the VHSV counterpart was engineered and used to recover the respective recombinant viruses. Despite the very low percentage (38%) of amino acid identity between the IHNV and VHSV matrix proteins, viable chimeric IHNVs, harboring either the matrix protein or both the glycoprotein and the matrix protein from VHSV, were recovered and propagated. Altogether, these data show the extreme flexibility of IHNV to accommodate heterologous structural proteins.  相似文献   

3.
Although Novirhabdovirus viruses, like the Infectious hematopietic necrosis virus (IHNV), have been extensively studied, limited knowledge exists on the route of IHNV entry during natural infection. A recombinant IHNV (rIHNV) expressing the Renilla luciferase gene was generated and used to infect trout. A noninvasive bioluminescence assay was developed so that virus replication in live fish could be followed hours after infection. We provide here evidence that the fin bases are the portal of entry into the fish. Confirmation was brought by the use of a nonpathogenic rIHNV, which was shown to persist in fins for 3 weeks postinfection.  相似文献   

4.
Novirhabdovirus, infectious hematopoietic necrosis virus (IHNV), and viral hemorrhagic septicemia virus (VHSV) are fish rhabdoviruses that, in comparison to the other rhabdoviruses, contain an additional gene coding for a small nonvirion (NV) protein of unassigned function. A recombinant IHNV with the NV gene deleted but expressing the green fluorescent protein (rIHNV-Delta NV) has previously been shown to be efficiently recovered by reverse genetics (S. Biacchesi et al., J. Virol. 74:11247-11253, 2000). However, preliminary experiments suggested that the growth in cell culture of rIHNV-Delta NV was affected by the NV deletion. In the present study, we show that the growth in cell culture of rIHNV-Delta NV is indeed severely impaired but that a normal growth of rIHNV-Delta NV can be restored when NV is provided in trans by using fish cell clones constitutively expressing the NV protein. These results indicate that NV is a protein that has a crucial biological role for optimal replication of IHNV in cell culture. Although IHNV and VHSV NV proteins do not share any significant identity, we show here that both NV proteins play a similar role since a recombinant IHNV virus, rIHNV-NV(VHSV), in which the IHNV NV open reading frame has been replaced by that of VHSV, was shown to replicate as well as the wild-type (wt) IHNV into fish cells. Finally, data provided by experimental fish infections with the various recombinant viruses strongly suggest an essential role of the NV protein for the pathogenicity of IHNV. Furthermore, we show that juvenile trout immunized with NV-knockout IHNV were protected against challenge with wt IHNV. That opens a new perspective for the development of IHNV attenuated live vaccines.  相似文献   

5.
6.
Inbred lines differentially susceptible to diseases are a powerful tool to get insights into the mechanisms of genetic resistance to pathogens. In fish, chromosome manipulation techniques allow a quick production of such homozygous lines. Using gynogenesis, we produced nine homozygous clones of rainbow trout from a domestic population (INRA Sy strain). We examined the variability between clones for resistance to two rhabdoviruses, the viral haemorrhagic septicaemia virus (VHSV) and the infectious haematopoietic necrosis virus (IHNV). Intraperitoneal injections and waterborne infections were performed in parallel for both viruses. No survival was recorded after intraperitoneal injection of VHSV or IHNV, indicating that fish from all clones were fully susceptible to both viruses by this route of infection. In contrast, the different clones showed a wide range of survival frequency after waterborne infection. The resistance levels to VHSV ranged from 0 to 99% and resistance was not abrogated when resistant and sensitive animals were mixed and subjected to waterborne infection. VHSV was recovered from 10% of resistant fish after waterborne infection, confirming that virus replication was possible in this context but effective only in a low proportion of the population. The different clones also exhibited a wide range of survival (0-68%) after a waterborne infection with IHNV. Although VHSV-resistant clones were not fully resistant to IHNV, the susceptibility to IHNV and VHSV tended to be correlated, suggesting that non-specific mechanisms common to both viruses were involved.  相似文献   

7.
The recently reported SAF-1 cell line from fins of gilt-head seabream was evaluated for susceptibility to lymphocystis disease virus (LDV) and to several salmonid fish viruses, such as infectious haematopoietic necrosis virus (IHNV), viral haemorrhagic septicemia virus (VHSV) and several strains of infectious pancreatic necrosis virus (IPNV). LDV, VHSV and IHNV replicated well in the cultured fin cells as demonstrated by cell lysis and increases in viral titer. The potential use of this cell line to detect viruses from fish marine species is discussed.  相似文献   

8.
Viral hemorrhagic septicemia virus (VHSV) and infectious hematopoietic necrosis virus (IHNV) are members of the genus Novirhabdovirus within the Rhabdoviridae family, which can cause severe hemorrhagic disease in fresh- and saltwater fish worldwide. These viruses carry an additional nonvirion (NV) gene, which codes for the nonstructural NV protein that has been implicated to play a role in viral pathogenesis. To determine the precise biological function of this NV gene and its gene product, we generated NV-deficient and NV knockout recombinant VHSVs, using reverse genetics. Comparisons of the replication kinetics and markers for virus-induced apoptosis indicated that the NV-deficient and NV knockout mutant viruses induce apoptosis earlier in cell culture than the wild-type recombinant VHSV. These results suggest that the NV protein has an antiapoptotic function at the early stage of virus infection. Furthermore, we created a chimeric VHSV, in which the NV gene of VHSV was replaced by the IHNV NV gene, which was capable of suppressing apoptosis in cell culture. These results show that the NV protein of other members of Novirhabdovirus can restore the NV protein function. In this study, we also investigated the kinetics of VHSV replication during a single round of viral replication and examined the mechanism of VHSV-induced apoptosis. Our results show that VHSV infection induced caspases 3, 8 and 9 in cell culture.  相似文献   

9.
10.
The virulence of 5 European and 1 North American isolate of infectious haematopoietic necrosis virus (IHNV) was compared by infecting female sibling rainbow trout ('Isle of Man' strain) of different weights and ages (2, 20 and 50 g). The fish were exposed to 10(4) TCID50 IHNV per ml of water by immersion, and the mortality was recorded for 28 d. Two new IHNV isolates from Germany were included in the investigation. One was isolated from European eels kept at 23 degrees C (+/- 2 degrees C) and the other was not detectable by immunofluorescence with commercially available monoclonal antibodies recognising the viral G protein. The results showed that IHNV isolates of high or low virulence persisted in rainbow trout of all ages/weights for 28 d, with the exception of fish over 15 g in the eel IHNV (DF [diagnostic fish] 13/98)-infected groups from which the virus could not be reisolated on Day 28. The smallest fish were most susceptible to an infection with any of the IHNV isolates. The lowest cumulative mortality (18%) was observed in fingerlings infected with the North American isolate HAG (obtained from Hagerman Valley), and the highest mortality (100%) in DF 04/99 infected fish. The DF 04/99 and O-13/95 viruses caused mortality in fish independent of their weight or age. The isolates FR-32/87 and I-4008 were virulent in fish up to a weight of 20 g and caused no mortality in larger fish. In the IHNV HAG- and DF 13/98 (eel)-infected rainbow trout, no signs of disease were observed in fish weighing between 15 and 50 g. An age/weight related susceptibility of rainbow trout was demonstrated under the defined conditions for all IHNV isolates tested.  相似文献   

11.
Aquabirnaviruses, such as the infectious pancreatic necrosis virus (IPNV), Novirhabdoviruses, such as the infectious hematopoiteic necrosis virus (IHNV) and the viral hemorrhagic septicemia virus (VHSV), cause considerable losses to the salmonid industry worldwide. Coinfections of 2 viruses have been described, but the interactions between rhabdoviruses and birnaviruses have not been examined closely. Using virus titration, flow cytometry and RT-PCR assays, we compared the effect of IPNV on the replication of IHNV and VHSV in tissue culture cells. RT-PCR assays indicated that simultaneous infection of IPNV with VHSV does not affect the replication of the rhabdovirus either in the first or successive passages; the infective titers were similar in single and double infections. In contrast, coinfection of IPNV with IHNV induced a fall in infectivity, with reduced expression of IHNV viral antigens in BF-2 cells from Lepomis macrochirus and a loss of 4.5 log10 units of the infective titer after 3 successive passages. It was possible to stimulate BF-2 cells to produce significant interferon-like activity against IHNV but not against VHSV.  相似文献   

12.
B Noonan  P J Enzmann    T J Trust 《Applied microbiology》1995,61(10):3586-3591
Fragments of the glycoprotein genes of viral hemorrhagic septicemia virus (VHSV) and infectious hematopoietic necrosis virus (IHNV) were cloned into a bacterial broad-host-range expression vector under the control of the plac promoter. Western blot (immunoblot) analysis with monoclonal antibodies specific to the glycoproteins demonstrated the inducible expression of the fusion proteins in Escherichia coli. Aeromonas salmonicida is the causative agent of furunculosis in salmonid fish. It was confirmed that an avirulent strain of A. salmonicida, A440, which contains a deletion in the structural gene for the paracrystalline surface protein array, will provide protective immunity against furunculosis when used as a live attenuated vaccine. The plasmid-encoded viral epitopes were then mobilized into A440 for use as a shuttle system for the expression of fragments of the glycoprotein genes of IHNV and VHSV. Vaccination of rainbow trout with A440 containing the viral epitopes resulted in the development of protective immunity against both VHSV and IHNV. This indicates that the use of cloned fragments of the glycoproteins and the use of A. salmonicida as a shuttle system constitute a feasible approach to fish vaccine development.  相似文献   

13.
An 80% methanolic extract of Rhus verniciflua Stokes bark showed significant anti-viral activity against fish pathogenic infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) in a cell-based assay measuring virus-induced cytopathic effect (CPE). Activity-guided fractionation and isolation for the 80% methanolic extract of R. verniciflua yielded the most active ethyl acetate fraction, and methyl gallate (1) and four flavonoids: fustin (2), fisetin (3), butin (4) and sulfuretin (5). Among them, fisetin (3) exhibited high antiviral activities against both IHNV and VHSV showing EC50 values of 27.1 and 33.3 μM with selective indices (SI = CC50/EC50) more than 15, respectively. Fustin (2) and sulfuretin (5) displayed significant antiviral activities showing EC50 values of 91.2–197.3 μM against IHNV and VHSV. In addition, the antiviral activity of fisetin against IHNV and VHSV occurred up to 5 hr post-infection and was not associated with direct virucidal effects in a timed addition study using a plaque reduction assay. These results suggested that the bark of R. verniciflua and isolated flavonoids have significant anti-viral activity against IHNV and VHSV, and also have potential to be used as anti-viral therapeutics against fish viral diseases.  相似文献   

14.
Rainbow trout antibodies (Abs) binding to recombinant fragments (frgs) derived from the protein G of the viral haemorrhagic septicemia virus (VHSV)-07.71 strain, could be detected by ELISA (frg-ELISA) in sera from trout surviving laboratory-controlled infections. Abs were detected not only by using sera from trout infected with the homologous VHSV isolate but also with the VHSV-DK-201433 heterologous isolate, which had 13 amino acid changes. Sera from healthy trout and/or from trout surviving infectious haematopoietic necrosis virus (IHNV) infection, were used to calculate cut-off absorbances to differentiate negative from positive sera. Specific anti-VHSV Abs could then be detected by using any of the following frgs: frg11 (56-110), frg15 (65-250), frg16 (252-450) or G21-465. While high correlations were found among the ELISA values obtained with the different frgs, no correlations between any frg-ELISA and complement-dependent 50% plaque neutralization test (PNT) titres could be demonstrated. Between 4 and 10 weeks after VHSV infection, more trout sera were detected as positives by using heterologous frg-ELISA rather than homologous PNT. Furthermore, the percentage of positive sera detected by frg11-ELISA increased with time after infection to reach 100%, while those detected by complement-dependent PNT decreased to 29.4%, thus confirming that the lack of neutralizing Abs does not mean the lack of any anti-VHSV Abs in survivor trout sera. Preliminary results with sera from field samples suggest that further refinements of the frg-ELISA could allow detection of anti-VHSV trout Abs in natural outbreaks caused by different heterologous VHSV isolates. The homologous frg-ELISA method could be useful to follow G immunization attempts during vaccine development and/or to best understand the fish Ab response during VHSV infections. The viral frgs approach might also be used with other fish species and/or viruses.  相似文献   

15.
A recombinant viral hemorrhagic septicemia virus (rVHSV-deltaNV-EGFP) containing the enhanced green fluorescent protein (EGFP) gene instead of the NV gene was produced using the reverse-genetics method. For use as a positive control, another recombinant virus (rVHSV-wild) was also generated, which had an identical nucleotide sequence to the wild-type VHSV genome except for a few artificially replaced nucleotides. The rVHSVs were rescued using a system controlled by T7 RNA polymerase supplied by a retroviral vector. Generation of rVHSV-deltaNV-EGFP and rVHSV-wild was confirmed by sequencing of RT-PCR products, and rescue of infectious rVHSVs was confirmed by observation of plaque formation. Replication efficiency of rVHSV-wild was distinctly lower than that of wild-type VHSV, suggesting that the artificially replaced nucleotides, especially when immediately preceding the G or NV gene start codons, might affect the replication of the virus. Replication of rVHSV-deltaNV-EGFP was slightly lower than that of rVHSV-wild when epithelioma papulosum cyprini cells were infected with multiplicity of infection (MOI) 1.0, but much lower when cells were infected with MOI 0.00001. These results suggest that the NV gene plays an important role in VHSV replication through interactions with host-cell responses, and the lower replication ability of rVHSV-wild compared to wild-type VHSV might be caused by replaced nucleotides just before the NV gene open reading frame (ORF) rather than the G gene ORF. In olive flounder Paralichthys olivaceus, rVHSV-wild produced slower-progressing mortalities than wild-type VHSV, whereas rVHSV-deltaNV-EGFP pathogenesis was highly attenuated. These results suggest that the NV protein of VHSV may play an important role not only in viral replication but also in viral pathogenesis.  相似文献   

16.
Viral hemorrhagic septicemia virus (VHSV), belonging to the genus Novirhabdovirus in the family of Rhabdoviridae, causes a highly contagious disease of fresh and saltwater fish worldwide. Recently, a novel genotype of VHSV, designated IVb, has invaded the Great Lakes in North America, causing large-scale epidemics in wild fish. An efficient reverse genetics system was developed to generate a recombinant VHSV of genotype IVb from cloned cDNA. The recombinant VHSV (rVHSV) was comparable to the parental wild-type strain both in vitro and in vivo, causing high mortality in yellow perch (Perca flavescens). A modified recombinant VHSV was generated in which the NV gene was substituted with an enhanced green fluorescent protein gene (rVHSV-ΔNV-EGFP), and another recombinant was made by inserting the EGFP gene into the full-length viral clone between the P and M genes (rVHSV-EGFP). The in vitro replication kinetics of rVHSV-EGFP was similar to rVHSV; however, the rVHSV-ΔNV-EGFP grew 2 logs lower. In yellow perch challenges, wtVHSV and rVHSV induced 82-100% cumulative per cent mortality (CPM), respectively, whereas rVHSV-EGFP produced 62% CPM and rVHSV-ΔNV-EGFP caused only 15% CPM. No reversion of mutation was detected in the recovered viruses and the recombinant viruses stably maintained the foreign gene after several passages. These results indicate that the NV gene of VHSV is not essential for viral replication in vitro and in vivo, but it plays an important role in viral replication efficiency and pathogenicity. This system will facilitate studies of VHSV replication, virulence, and production of viral vectored vaccines.  相似文献   

17.
18.
We examined the ability of several fish viruses to induce protection against homologous or heterologous viruses in single or double infections, and assessed whether such protection is correlated with innate immunity or expression of the Mx gene. Monolayers of BF2 cells pre-treated with supernatants of brown trout (Salmo trutta L.) macrophage cultures that had been stimulated with either polyinosinic polycytidylic acid (poly I:C) or viruses, such as infectious pancreatic necrosis virus (IPNV), infectious haematopoietic necrosis virus (IHNV) or a mixture of the two, showed varying degrees of protection against viral infections. The virus showing the strongest induction was IPNV, and the antiviral activity against IHNV was also high: around 6 log(10) reduction of virus yield. Consequently, the IPNV-IHNV co-infection yield was also reduced by varying amounts. In vivo, the cumulative mortality observed in the IPNV-IHNV co-infected fish was always less than that in those with a single infection. Stimulation with poly I:C for 7 days significantly reduced cumulative mortality in single-infected fish, but not in the double-infected, in which the IPNV was the only virus isolated from moribund animals. By RT-PCR, Mx was expressed in all the organ samples tested (kidney, liver and spleen) from virus-stimulated fish at 1, 2 and 3 days. By qRT-PCR the extent and timing of Mx expression was shown to differ in the poly I:C and the single or dual viral infections. The highest increase in Mx expression (21.6-fold above basal levels) occurred (after 24 h) in fish infected with the IHNV, and expression remained high until day 7. Mx expression in fish infected with IPNV peaked later, at 2 days post infection, and also remained high until day 7. The dual infection with IPNV-IHNV induced high Mx expression on day 1, which peaked on day 2 and remained high until day 7. These results indicate that activation of the immune system could explain the interference and loss of IHNV in the IPNV-IHNV co-infections.  相似文献   

19.
The genome sequence of a hypervirulent novirhabdovirus, viral hemorrhagic septicemia virus (VHSV) French strain 23-75, was determined. Compared to the genome of the prototype Fil3 strain, a number of substitutions, deletions, and insertions were observed. Following the establishment of a plasmid-based minigenome replication assay, recombinant VHSV (rVHSV) was successfully recovered. rVHSV exhibits wild-type-like growth properties in vitro as well as in vivo in rainbow trout. The dispensable role of NV for the novirhabdovirus replication was confirmed by generating rVHSV-ΔNV, in which the NV gene was deleted. This deletion mutant was shown to be as debilitated as that previously described for infectious hematopoietic necrosis virus (IHNV), a distantly related novirhabdovirus (S. Biacchesi, M. I. Thoulouze, M. Bearzotti, Y. X. Yu, and M. Bremont, J. Virol. 74:11247-11253, 2000). Recombinant VHSV and IHNV expressing tdTomato and GFPmax reporter genes, respectively, were generated, demonstrating the potential of these rhabdoviruses to serve as viral vectors. Interestingly, rIHNV-GFPmax could be recovered using the replicative complex proteins of either virus, whereas rVHSV-Tomato could be recovered only by using its own replicative complex, reflecting that the genome signal sequences of VHSV are relatively distant from those of IHNV and do not allow their cross-recognition. Moreover, the use of heterologous protein combinations underlined the importance of strong protein-protein interactions for the formation of a functional ribonucleoprotein complex. The rIHNV-GFPmax and rVHSV-Tomato viruses were used to simultaneously coinfect cell monolayers. It was observed that up to 74% of the cell monolayer was coinfected by both viruses, demonstrating that a limited interference phenomenon exists during the early stage of primary infection, and it was not mediated by a cellular antiviral protein or by some of the viral proteins.Viral hemorrhagic septicemia virus (VHSV) is a member of the Novirhabdovirus genus in the Rhabdoviridae family. VHSV is considered by many countries and international organizations to be one of the most important viral pathogens of finfish (38). During recent years, VHSV has been isolated from at least 50 different species from marine and freshwater fish and is present throughout the northern hemisphere (45). The transmission of the virus from fish to fish occurs directly through the water or by contact between infected and healthy individuals. VHSV is thought to enter the body through the gills or possibly through wounds on the skin. However, we recently showed that fins may represent the main portal of entry for the novirhabdoviruses (25). The virus usually causes severe hemorrhages in the skin, muscles, eyes, kidney, and liver, with mortality rates as high as 90%. As for all members of the Rhabdoviridae family, the VHSV genome consists of a negative-sense single-stranded RNA molecule of about 11 kb encoding five structural proteins: N, the nucleoprotein; P, a polymerase-associated protein; M, the matrix protein; G, the unique viral surface glycoprotein; and L, the large RNA-dependent RNA polymerase. In addition, like the other members of the Novirhabdovirus genus, such as infectious hematopoietic necrosis virus (IHNV), the VHSV genome encodes a small nonstructural NV protein, which has been shown to be dispensable for IHNV replication in cell culture and is involved in virus-induced pathogenicity in rainbow trout (8, 50).The sequence analysis of the glycoprotein (G) and nucleoprotein (N) genes of VHSV has shown that VHSV isolates can be divided into four genotypes that generally correlate with geographic location rather than the host species (4, 19, 47, 49). Isolates belonging to VHSV genotypes I, II, and III are present in continental Europe, the north Atlantic Ocean, the Baltic Sea, the North Sea, and waters around Scotland. Genotype IV consists of isolates from the marine environment in North America. Recently, viral hemorrhagic septicemia has become an emerging disease of freshwater fish in the Great Lakes region of North America (2, 54). Thus, it is quite obvious that VHSV is becoming a worldwide and very-broad-host-range fish virus and that the development of efficient vaccines is needed. Reverse genetics, allowing the introduction of targeted modifications into the viral genome and the production of attenuated live vaccine, may help to fight this rapidly spreading and emerging virus. It is routinely observed in farm trouts exposed to viral diseases that VHSV and IHNV coexist (26). By developing experimental coinfections by VHSV and IHNV in rainbow trout, Brudeseth et al. studied the pathogenesis and virus distribution (10). They found that both viruses established an infection and raised similar virus titers in kidneys, but the distribution of IHNV was more restricted in internal organs during the acute stage of the infection and was not detected in the brain. However, it generally is admitted that infection by one virus renders host cells resistant to a superinfecting virus.Superinfection exclusion, also known as homologous interference, is the phenomenon in which a cell infected with one type of virus or transfected with a viral replicon becomes resistant to a secondary infection with the same virus, whereas infection with unrelated viruses normally is unaffected (40, 51). Superinfection exclusion has been observed in a broad range of viruses, including vaccinia virus (14, 18), human immunodeficiency virus (HIV) (36, 37), vesicular stomatitis virus (VSV) (32, 43, 53), Borna disease virus (BDV) (24), measles virus (34), Sindbis virus (28), Semliki Forest virus (44), rubella virus (15), hepatitis C virus (HCV) (40, 51), and bovine viral diarrhea virus (BVDV) (31). Mechanisms of exclusion are diverse and have not been determined in all cases, but mechanisms described so far are caused by competition among different viruses for critical replicative pathways (for example, the use of the same receptors for the entry) or depend on the direct interaction of products of the primary infection with the secondary infecting virus. For example, the superinfection exclusion of VSV was found to be caused by a combination of three distinct effects on endocytosis by VSV-infected cells: (i) a decreased rate of the formation of endocytic vesicles, (ii) a decreased rate of the internalization of receptor-bound ligands, and (iii) a competition with newly synthesized virus for the occupancy of coated pits (43). In contrast, the cytoplasmic accumulation of BDV nucleocapsid components appeared to prevent subsequent infection through a blockage of the polymerase activity of incoming viruses (24). Superinfection exclusion by BVDV was the result of dual mechanisms that were mediated by the structural protein E2, which blocks the entry of a homologous second virus, and by a blockage at the level of replication dependent on the level of primary viral RNA replication but not influenced by the expression of viral structural proteins, as observed for BDV (31). HIV employs its early gene product Nef to efficiently interfere with superinfection at the virus entry step by downregulating cell surface receptors (36). Finally, vaccinia virus expresses in newly infected cells two surface proteins that mark cells as infected and induce the repulsion of superinfecting viruses (18).In the present study, we described a reverse-genetics system for VHSV allowing the generation of a wild-type-like recombinant VHSV and a recombinant virus expressing a red fluorescent protein (Tomato). The system is based on the French strain 23/75 of VHSV, which is a hypervirulent and devastating strain for farmed rainbow trout belonging to genotype I (serotype III) and was isolated in France in 1975 from a brown trout (16, 23). Thus, this system provides a suitable starting point for identifying potential virulence determinants, as demonstrated by the deletion of the NV gene, and for developing attenuated derivatives as candidate vaccines. Using the available reverse-genetics system elaborated with IHNV, a recombinant IHNV expressing a green fluorescent protein (GFP) also was produced (8), and it was of interest to study whether a superinfection exclusion phenomenon could be observed between both VHSV and IHNV, whose cohabitation has been recorded often. We showed that up to 74% of a cell monolayer could be simultaneously infected by the viruses, demonstrating a limited viral interference between salmonid novirhabdoviruses and that, based on previous data, chimeric or pseudotyped viruses could be generated (6).  相似文献   

20.
A recombinant viral hemorrhagic septicemia virus (rVHSV-ΔNV-EGFP) that has enhanced green fluorescent protein (EGFP) gene instead of NV gene was previously generated using reverse genetics technology. In this study, potential of the rVHSV-ΔNV-EGFP to be used as a live oral vaccine candidate was assessed. The presence of the recombinant virus in internal organs of orally administered olive flounder (Paralichthys olivaceus) was analyzed by semi-quantitative RT-PCR. Although the recombinant VHSV-specific band was detected only when the number of PCR cycle was increased to 35, the band was detected from internal organs, such as kidney, spleen, and liver of fish that were reared at either 15 °C or 20 °C till even 20 days, suggesting that a few orally administered rVHSV-ΔNV-EGFP might be transported to internal organs, and might keep weak replication ability in the organs. VHSV-neutralizing activity was induced by oral immunization of olive flounder with the NV gene knock-out recombinant VHSV not only in skin and intestinal mucus but also in serum, suggesting that mucosal and systemic adaptive immune responses were elicited by oral immunization. In challenge experiment, groups of fish immunized with 10?, 10?, and 2 × 10? PFU of rVHSV-ΔNV-EGFP/fish showed 25%, 50%, and 70% of relative percent survival (RPS), respectively. The RPSs were elevated to 60%, 75%, and 90% by a boost immunization in fish boost immunized with 10?, 10?, and 2 × 10? PFU of rVHSV-ΔNV-EGFP, respectively. The cumulative mortality of fish in the control groups was 100%. Conclusionly, the present results demonstrate that the NV gene knock-out recombinant VHSV administered orally to olive flounder can induce dose- and boosting-dependent VHSV-neutralizing antibody in mucus and serum, and can provide a high protection in olive flounder against a virulent VHSV challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号