首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ubiquilin 1 (UBQLN1) is a ubiquitin-like protein, which has been shown to play a central role in regulating the proteasomal degradation of various proteins, including the presenilins. We recently reported that DNA variants in UBQLN1 increase the risk for Alzheimer disease, by influencing expression of this gene in brain. Here we present the first assessment of the effects of UBQLN1 on the metabolism of the amyloid precursor protein (APP). For this purpose, we employed RNA interference to down-regulate UBQLN1 in a variety of neuronal and non-neuronal cell lines. We demonstrate that down-regulation of UBQLN1 accelerates the maturation and intracellular trafficking of APP, while not interfering with alpha-, beta-, or gamma-secretase levels or activity. UBQLN1 knockdown increased the ratio of APP mature/immature, increased levels of full-length APP on the cell surface, and enhanced the secretion of sAPP (alpha- and beta-forms). Moreover, UBQLN1 knockdown increased levels of secreted Abeta40 and Abeta42. Finally, employing a fluorescence resonance energy transfer-based assay, we show that UBQLN1 and APP come into close proximity in intact cells, independently of the presence of the presenilins. Collectively, our findings suggest that UBQLN1 may normally serve as a cytoplasmic "gatekeeper" that may control APP trafficking from intracellular compartments to the cell surface. These findings suggest that changes in UBQLN1 steady-state levels affect APP trafficking and processing, thereby influencing the generation of Abeta.  相似文献   

2.
Although mutations in the amyloid-beta precursor protein (APP) gene are known to confer high risk of Alzheimer disease (AD) to a small percentage of families in which it has early onset, convincing evidence of a major role for the APP locus in late-onset AD has not been forthcoming. In this report, we have used a covariate-based affected-sib-pair linkage method to analyze the chromosome 21 clinical and genetic data obtained on affected sibships by the National Institute of Mental Health Alzheimer Disease Genetics Initiative. The baseline model (without covariates) gave a LOD score of 0.02, which increases to 1.43 when covariates representing the additive effects of E2 and E4 are added. Larger increases in LOD scores were found when age at last examination/death (LOD score 5.54; P=.000002) or age at onset plus disease duration (LOD score 5.63; P=.000006) were included in the linkage model. We conclude that the APP locus may predispose to AD in the very elderly.  相似文献   

3.
Alzheimer disease is associated with extracellular deposits of amyloid beta-peptides in the brain. Amyloid beta-peptides are generated by proteolytic processing of the beta-amyloid precursor protein by beta- and gamma-secretases. The cleavage by secretases occurs predominantly in post-Golgi secretory and endocytic compartments and is influenced by cholesterol, indicating a role of the membrane lipid composition in proteolytic processing of the beta-amyloid precursor protein. To analyze the role of glycosphingolipids in these processes we inhibited glycosyl ceramide synthase, which catalyzes the first step in glycosphingolipid biosynthesis. The depletion of glycosphingolipids markedly reduced the secretion of endogenous beta-amyloid precursor protein in different cell types, including human neuroblastoma SH-SY5Y cells. Importantly, secretion of amyloid beta-peptides was also strongly decreased by inhibition of glycosphingolipid biosynthesis. Conversely, the addition of exogenous brain gangliosides to cultured cells reversed these effects. Biochemical and cell biological experiments demonstrate that the pharmacological reduction of cellular glycosphingolipid levels inhibited maturation and cell surface transport of the beta-amyloid precursor protein. In the glycosphingolipid-deficient cell line GM95, cellular levels and maturation of beta-amyloid precursor protein were also significantly reduced as compared with normal B16 cells. Together, these data demonstrate that glycosphingolipids are implicated in the regulation of the subcellular transport of the beta-amyloid precursor protein in the secretory pathway and its proteolytic processing. Thus, enzymes involved in glycosphingolipid metabolism might represent targets to inhibit the production of amyloid beta-peptides.  相似文献   

4.
5.
Human bleomycin hydrolase (hBH) is a neutral cysteine protease genetically associated with increased risk for Alzheimer disease. We show here that ectopic expression of hBH in 293APPwt and CHOAPPsw cells altered the processing of amyloid precursor protein (APP) and increased significantly the release of its proteolytic fragment, beta amyloid (Abeta). We also found that hBH interacted and colocalized with APP as determined by subcellular fractionation, in vitro binding assay, and confocal immunolocalization. Metabolic labeling and pulse-chase experiments showed that ectopic hBH expression increased secretion of soluble APPalpha/beta products without changing the half-life of cellular APP. We also observed that this increased Abeta secretion was independent of hBH isoforms. Our findings suggest a regulatory role for hBH in APP processing pathways.  相似文献   

6.
7.
8.
Alzheimer amyloid precursor protein (APP) is the precursor for the Abeta peptide involved in pathogenesis of Alzheimer's disease. The soluble ectodomain fragment of APP (sAPP) functions as a growth factor for epithelial cells, suggesting an important function for APP outside neuronal tissue. Previous studies have shown that in polarized epithelial cells, APP is targeted to the basolateral domain. Tyr653 within the cytoplasmic tail of APP mediates the basolateral targeting of APP, but the sorting machinery that binds to this residue has largely remained unknown. In this study, we analyzed the role of adaptor complexes in the polarized sorting of APP. We show that the medium subunit mu1B of the epithelia-specific adaptor protein (AP)-1B binds onto the cytoplasmic tail of APP in a Tyr653-dependent way. Moreover, ectopic expression of mu1B in cells lacking AP-1B resulted in correction of apical missorting of wild-type but not Tyr653Ala APP. Basolateral secretion of sAPP was found to be independent of Tyr653. We propose a model for polarized targeting of APP according to which sorting of APP to basolateral domain is dependent on binding of AP-1B on Tyr653 in basolateral endosomes. This model is in accordance with the current understanding of sorting mechanisms mediating polarized targeting of membrane proteins.  相似文献   

9.
β-amyloid (Aβ) is the main constituent of senile plaques seen in Alzheimer's disease. Aβ is derived from the amyloid precursor protein (APP) via proteolytic cleavage by proteases β- and β-secretase. In this study, we examined content and localization of β-secretase-cleaved APP (β-sAPP) in brain tissue sections from the frontal, temporal and occipital lobe. Strong granular β-sAPP staining was found throughout the gray matter of all three areas, while white matter staining was considerably weaker. β-sAPP was found to be localized in astrocytes and in axons. We found the β-sAPP immunostaining to be stronger and more extensive in gray matter in Alzheimer disease (AD) cases than controls. The axonal β-sAPP staining was patchy and unevenly distributed for the AD cases, indicating impaired axonal transport. β-sAPP was also found surrounding senile plaques and cerebral blood vessels. The results presented here show altered β-sAPP staining in the AD brain, suggestive of abnormal processing and transport of APP.  相似文献   

10.
Proteolytic processing of the Alzheimer amyloid precursor protein (APP) results in the generation of at least two distinct classes of biologically relevant peptides: (1) the amyloid beta peptides which are believed to be involved in the pathogenesis of Alzheimer's disease and (2) the soluble N-terminal ectodomain (sAPP) which exhibits a protective but as yet ill-defined effect on neurons and epithelial cells. In this report we present an overview on the functions of sAPP as an epithelial growth factor. This function involves specific binding of sAPP to membrane rafts and results in signal transduction and various physiological effects in epithelial cells as different as keratinocytes and thyrocytes. At nanomolar concentrations sAPP induces a two to fourfold increase in the rate of cell proliferation and cell migration. Specific inhibition of APP expression by antisense techniques results in decreased sAPP release and in reduced proliferative and motogenic activities. Proliferation and migration are known to be part of complex processes such as wound healing which, therefore, might be facilitated by the growth factor function of sAPP.  相似文献   

11.
Accumulation of the amyloid A beta peptide, which is derived from a larger precursor protein (APP), and the formation of plaques, are major events believed to be involved in the etiology of Alzheimer's disease. Abnormal regulation of the metabolism of APP may contribute to the deposition of plaques. APP is an integral membrane protein containing several putative phosphorylation sites within its cytoplasmic domain. We report here that APP is phosphorylated at Thr668 by p34cdc2 protein kinase (cdc2 kinase) in vitro, and in a cell cycle-dependent manner in vivo. At the G2/M phase of the cell cycle, when APP phosphorylation is maximal, the levels of mature APP (mAPP) and immature APP (imAPP) do not change significantly. However, imAPP is altered qualitatively. Furthermore, the level of the secreted extracellular N-terminal domain (APPS) is decreased and that of the truncated intracellular C-terminal fragment (APPCOOH) is increased. These findings suggest the possibility that phosphorylation-dependent events occurring during the cell cycle affect the metabolism of APP. Alterations in these events might play a role in the pathogenesis of Alzheimer's disease.  相似文献   

12.
Comorbid depression of Alzheimer's disease (AD) is a common mood disorder in the elderly and a broad spectrum of antidepressants have been used for its treatment. Abeta peptides and other derivatives of the amyloid precursor protein (APP) have been implicated as central to the pathogenesis of AD. However, the functional relationship of APP and its proteolytic derivatives to antidepressant therapy is not known. In this study, Western blotting was used to test the ability of the tricyclic antidepressant (TCA) imipramine or the selective serotonin reuptake inhibitor (SSRI) citalopram to change the release of APP and the protein kinase C (PKC) content. Both antidepressants increased APP secretion in primary rat neuronal cultures. Imipramine or citalopram enhanced the level of secreted APP by 3.2- or 3.4-fold, respectively. Increases in PKC level were observed only after imipramine treatment. These in vitro data suggest that both TCA and SSRI are able to interfere with the APP metabolism. Imipramine promotes the non-amyloidogenic route of APP processing via stimulatory effects on PKC. We propose that PKC is not involved in the mechanism underlying the effects of citalopram on the APP metabolism. Since the secreted APP is not further available for the pathological cleavage of beta- and gamma-secretases, antidepressant medication might be beneficial in AD therapy.  相似文献   

13.
The major pathological change in Alzheimer's disease is the deposition of amyloid beta/A4-protein (beta P) in the brain. beta P is derived from a small part of the much larger amyloid protein precursor (APP). In the normal condition, APP is cleaved in the interior of beta P, preventing the formation of beta P, by a hypothetical proteinase "secretase". To characterize this enzyme, APP and mutated APPs were expressed by cDNA transfection in COS-1 cells, a monkey kidney fibroblast derived cell line. The mutant APPs with the mutations of the proposed cleavage site (Gln686-Lys687) were processed in the same way as wild APP. The deleted mutant APP (deletion of Arg676-Asp694) was also cleaved in a similar way to wild APP. The cleavage site of this deletion mutant was located at the 12 amino acid residues from the predicted membrane spanning domain. Hence, "secretase" cleaves APP, depending not on its specific amino acid sequence, but probably on the relative conformation with plasma membrane.  相似文献   

14.
We have previously shown that inhibiting protein-tyrosine kinase increased whereas inhibiting protein-tyrosine phosphatase (PTP) decreased renal outer medullary potassium channel 1 (ROMK1) channel activity (1). We have now used confocal microscopy, the patch clamp technique, and biotin labeling to further examine the role of tyrosine phosphorylation in regulating ROMK1 trafficking. Human embryonic kidney 293 cells were cotransfected with c-Src and green fluorescent protein-ROMK1, which has the same biophysical properties as those of ROMK1. Patch clamp studies have shown that phenylarsine oxide (PAO), an inhibitor of PTP, decreased the activity of ROMK1. Moreover, addition of PAO reduced the cell surface localization of green fluorescent protein-ROMK1 detected by confocal microscopy and diminished the surface ROMK1 density by 65% measured by biotin labeling. Also, PAO treatment significantly increased the phosphorylation of ROMK1. The notion that the effect of PAO is mediated by stimulating tyrosine phosphorylation-induced endocytosis of ROMK1 has also been supported by findings that mutating the tyrosine residue 337 of ROMK1 to alanine abolished the effect of PAO. Finally, the inhibitory effect of PAO on ROMK1 was completely blocked in the cells co-transfected with dominant negative dynamin (dynaminK44A). This indicates that the tyrosine phosphorylation-induced endocytosis of ROMK1 is dynamin-dependent. We conclude that inhibiting PTP increases ROMK1 phosphorylation and results in a dynamin-dependent internalization of the channel.  相似文献   

15.
A human glioma cell line (Bu-17) was stably transfected with full-length cDNA encoding beta/A4 amyloid protein precursor (APP). When the transfectants were treated with protease inhibitors (leupeptin, E-64, and antipain) and the lysosomotropic agent chloroquine, aberrantly processed fragments of APP having molecular sizes of 8-30 kDa were detected with an antibody against the carboxyl-terminal sequence of APP. Immunocytochemistry revealed that these fragments were localized in the lysosome-like organelles. Treatment of the APP cDNA transfectants with chloroquine for 3 days caused cellular degeneration, and leupeptin and E-64 enhanced chloroquine-induced cytotoxicity. These results suggest that inhibition of lysosomal hydrolases impairs intracellular APP metabolism to generate aberrantly processed fragments that induce cytotoxicity.  相似文献   

16.
The aim of this study was to determine whether L-glutamate, a major excitatory transmitter in the cerebral cortex, modulates the proteolytic cleavage of the amyloid precursor protein (APP) in the brain through specific receptor activation. Native rat brain cerebral cortical slices were stimulated either with L-glutamate or various glutamate receptor agonists, and the soluble APP derivatives released into the incubation medium were assayed by Western blot analysis. Immunoprecipitation with specific antibodies revealed that in the medium only secretory forms of APP lacking intact C-terminus were present, whereas in the brain slices both C- and N-terminal intact APP products were detectable. L-glutamate induced the release of secretory APP from cortical slices in a concentration-dependent but biphasic manner, with the highest release at 50 μM L-glutamate and smaller effects at higher glutamate concentrations. To determine whether the effect of L-glutamate is mediated through distinct glutamate receptor subtypes, brain slices were incubated in the presence of various specific glutamate receptor agonists. Activation of the alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) receptor with 50 nM (RS)-bromohomoibotenic acid resulted in a reduced release of secretory APP by 17%±3 (P<0.01, one tailed Student's t-test) compared to the incubation without any drug. Stimulation of the metabotropic glutamate receptor with 50 nM (2S,3S,4S)--(carboxycyclopropyl)-glycine (L-CCG-I) led to an enhanced release of secretory APP by 39%±3 (P<0.001), whereas activation of the N-methyl-D-aspartate (NMDA) receptor with 50 nM (1R,3R)-1-aminocyclopentane-1,3-dicarboxylic acid ((1R,3R)-ACPD) did not significantly change the secretion of APP compared to the incubation without any drug. The data suggest that: (i) cortical glutamatergic neurotransmission is involved in APP metabolism; and (ii) the stimulation of APP cleavage in cerebral cortical brain slices is mainly mediated by the metabotropic but not the NMDA glutamate receptor subtype, whereas the AMPA receptor subtype seems to inhibit the secretory path of APP processing.  相似文献   

17.
The 39-43 residue polypeptide (amyloid beta protein, beta A4) deposited as amyloid in Alzheimer's disease (AD) is derived from a set of 695-770 residue precursors referred to as the amyloid beta A4 protein precursor (beta APP). In each of the 695, 751, and 770 residue precursors, the 43 residue beta A4 is an internal peptide that begins 99 residues from the COOH-terminus of the beta APP. Each holoform is normally cleaved within the beta A4 to produce a large secreted derivative as well as a small membrane associated fragment. Neither of these derivatives can produce amyloid because neither contains the entire beta A4 peptide. In this study, we employ cells stably transfected with full length beta APP695, beta APP751, or beta APP770 expression constructs to show that phorbol ester activation of protein kinase C substantially increases the production of secreted forms from each isoform. By increasing processing of beta APP in the secretory pathway, PKC phosphorylation may help to prevent amyloid deposition.  相似文献   

18.
Amyloid beta-peptide (Abeta) is implicated as the major causative agent in Alzheimer's disease (AD). Abeta is produced by the processing of the amyloid precursor protein (APP) by BACE1 (beta-secretase) and gamma-secretase. Many inhibitors have been developed for the secretases. However, the inhibitors will interfere with the processing of not only APP but also of other secretase substrates. In this study, we describe the development of inhibitors that prevent production of Abeta by specific binding to the beta-cleavage site of APP. We used the hydropathic complementarity (HC) approach for the design of short peptide inhibitors. Some of the HC peptides were bound to the substrate peptide (Sub W) corresponding to the beta-cleavage site of APP and blocked its cleavage by recombinant human BACE1 (rhBACE1) in vitro. In addition, HC peptides specifically inhibited the cleavage of Sub W, and not affecting other BACE1 substrates. Chemical modification allowed an HC peptide (CIQIHF) to inhibit the processing of APP as well as the production of Abeta in the treated cells. Such novel APP-specific inhibitors will provide opportunity for the development of drugs that can be used for the prevention and treatment of AD with minimal side effects.  相似文献   

19.
Amyloid precursor protein (APP) plays a central role in Alzheimer disease. A proteolytic-breakdown product of APP, called beta-amyloid, is a major component of the diffuse and fibrillar deposits found in Alzheimer diseased brains. The normal physiological role of APP remains largely unknown despite much work. A knowledge of its function will not only provide insights into the genesis of the disease but may also prove vital in the development of an effective therapy. Here we describe the 1.8 A resolution crystal structure of the N-terminal, heparin-binding domain of APP (residues 28-123), which is responsible, among other things, for stimulation of neurite outgrowth. The structure reveals a highly charged basic surface that may interact with glycosaminoglycans in the brain and an abutting hydrophobic surface that is proposed to play an important functional role such as dimerization or ligand binding. Structural similarities with cysteine-rich growth factors, taken together with its known growth-promoting properties, suggests the APP N-terminal domain could function as a growth factor in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号