首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulmonary vasoconstriction and vascularmedial hypertrophy greatly contribute to the elevated pulmonaryvascular resistance in patients with pulmonary hypertension. A rise incytosolic free Ca2+ ([Ca2+]cyt)in pulmonary artery smooth muscle cells (PASMC) triggers vasoconstriction and stimulates cell growth. Membrane potential (Em) regulates[Ca2+]cyt by governing Ca2+influx through voltage-dependent Ca2+ channels. Thusintracellular Ca2+ may serve as a shared signaltransduction element that leads to pulmonary vasoconstriction andvascular remodeling. In PASMC, activity of voltage-gated K+(Kv) channels regulates resting Em. In thisstudy, we investigated whether changes of Kv currents[IK(V)], Em, and[Ca2+]cyt affect cell growth by comparingthese parameters in proliferating and growth-arrested PASMC. Serumdeprivation induced growth arrest of PASMC, whereas chelation ofextracellular Ca2+ abolished PASMC growth. Resting[Ca2+]cyt was significantly higher, andresting Em was more depolarized, inproliferating PASMC than in growth-arrested cells. Consistently, wholecell IK(V) was significantly attenuated in PASMCduring proliferation. Furthermore, Emdepolarization significantly increased resting[Ca2+]cyt and augmented agonist-mediatedrises in [Ca2+]cyt in the absence ofextracellular Ca2+. These results demonstrate that reducedIK(V), depolarized Em, and elevated [Ca2+]cyt may play a criticalrole in stimulating PASMC proliferation. Pulmonary vascular medialhypertrophy in patients with pulmonary hypertension may be partlycaused by a membrane depolarization-mediated increase in[Ca2+]cyt in PASMC.

  相似文献   

2.
In Trifolium repens L. there were immediate transient depolarizationsof the membrane electropotential (Evo) when KH2PO4 was addedto phosphate-free media, but these were of the same magnitudeas the controls (K2SO4 and KCI). Furthermore, the extents ofdepolarization were the same as the expected effect of the addedK+ calculated using the Goldman equation. There was no significantdepolarization on adding H3PO4 to buffered media. Consequently,there was no evidence for a depolarization caused by phosphate.This result provides evidence that the H+–H2PO4 symportin roots of T. repens operates with a stoichiometry of 1: 1. In a group of control plants ( + P plants) and a group whichwere stressed by reducing the supply of phosphate (– Pplants), the – P plants had lower values for Evo than+P plants (– 118 mV and – 130 mV, respectively).The absence of phosphate from the measurement media also reducedEvo (mean effect = 9 mV). A significant difference in Evo between– P and + P plants persisted when phosphate was addedto – P plants. The electropotential difference acrossthe tonoplast (Evo) in – P plants became more positivewith time. Key words: White clover, membrane transport, roots, tonoplast, symport  相似文献   

3.
Summary Taking advantage of vacuolar perfusion, concentrations of K+, Cl, and H+ in the vacuole ofNitella pulchella were changed in a wide range. Both the potential difference (E vo ) and specific resistance (R vo ) between the vacuole and the external medium were scarcely affected by K+ in the vacuole, while they responded sensitively to K+ in the external medium. E vo also responded to Cl in both internal (vacuolar) and external medium. However, the sign of the response was opposite to that expected from the constant field assumption.R vo was almost independent of Cl-concentrations of both internal and external medium.The response ofE vo to internal pH was similar to that of external pH. Between pH's 4 and 8,E vo changed by about 10 mV for one unit change of both external and internal pH.E vo responded very sensitively to internal pH in the strongly acid region (30–60 mV at pH 3–4) irrespective of the concentration of KCl in the vacuole. In the alkaline region, however,E vo responded to vacuolar pH only when the KCl concentration in the vacuole was low (0.1 mM).R vo increased significantly when the vacuolar pH was lowered to 4 or 3.Increase in tonicity of the vacuolar medium to twice normal caused no significant change in bothE vo andR vo , while it raised the threshold for excitation.Even when the chemical potential gradient between the internal and external medium was made zero by replacing the cell sap for the same solution used for the external medium, a significant amount ofE vo was observed. The short-circuit current which was first outward decreased to zero or changed its direction with time. Light did not affect the current. These facts show that the possibility for the contribution of an ion pump toE vo can be excluded.The results were discussed under the assumption that responses ofE vo andR vo to either internal or external ions reflect the passive property of either tonoplast or plasmalemma.  相似文献   

4.
In apple fruit, active ATP-dependent microsomal Ca2$ uptakeand respiration-dependent mitochondrial Ca2$ uptake were observed. The mitochondrial Ca2$ uptake was depressed by the calmodulinantagonists chlorpromazine hydrochloride (CPZ) and N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamidehydrochloride (W-7). The Ca2$-ATPase from apple mitochondriawas also inhibited by CPZ or W-7. The apparent Km value forCa2$ in mitochondrial Ca2$ uptake (Km=0.35 mM) was similar tothat of mitochondrial Ca2$-ATPase (Km=0.32 mM). The inhibitoryeffect of W-7 on the activity of the mitochondrial Ca2$ uptakewas closely correlated with the inhibition by W-7 of mitochondrialCa2$-ATPase (r=0.996). These findings indicate that the mitochondrialuptake of Ca2$ in apple fruit depends on the calmodulin-mediatedactivation of Ca2$-ATPase. The microsomal Ca2$ uptake was depressed by CPZ, suggestingthat the microsomal Ca2$ uptake may also be modulated by calmodulin. 1 Contribution No. C-72, Fruit Tree Research Station. (Received June 7, 1982; Accepted October 19, 1982)  相似文献   

5.
Published data suggest that the neuropeptide calcitonin gene-related peptide (CGRP) can stimulate osteoblastic bone formation; however, interest has focused on activation of cAMP-dependent signaling pathways in osteogenic cells without full consideration of the importance of cAMP-independent signaling. We have now examined the effects of CGRP on intracellular Ca2+ concentration ([Ca2+]int) and membrane potential (Em) in preosteoblastic human MG-63 cells by single-cell fluorescent confocal analysis using fluo 4-AM-fura red-AM and bis(1,3-dibarbituric acid)-trimethine oxanol [DiBAC4(3)] bis-oxonol assays. CGRP produced a two-stage change in [Ca2+]int: a rapid transient peak and a secondary sustained increase. Both responses were dose dependent with an EC50 of 0.30 nM, and the maximal effect (initially 3-fold over basal levels) was observed at 20 nM. The initial phase was sensitive to inhibition of Ca2+ mobilization with thapsigargin, whereas the secondary phase was eliminated only by blocking transmembrane Ca2+ influx with verapamil or inhibiting cAMP-dependent signaling with the Rp isomer of adenosine 3',5'-cyclic monophosphorothioate (Rp-cAMPS). These data suggest that CGRP initially stimulates Ca2+ discharge from intracellular stores by a cAMP-independent mechanism and subsequently stimulates Ca2+ influx through L-type voltage-dependent Ca2+ channels by a cAMP-dependent mechanism. In addition, CGRP dose-dependently polarized cellular Em, with maximal effect at 20 nM and an EC50 of 0.30 nM. This effect was attenuated with charybdotoxin (–20%) or glyburide (glibenclamide; –80%), suggesting that Em hyperpolarization is induced by both Ca2+-activated and ATP-sensitive K+ channels. Thus CGRP signals strongly by both cAMP-dependent and cAMP-independent signaling pathways in preosteoblastic human MG-63 cells. osteoblastic cells; calcium; membrane potential; potassium channels; adenosine 3',5'-cyclic monophosphate  相似文献   

6.
Polyamines are essential for cell migrationduring early mucosal restitution after wounding in the gastrointestinaltract. Activity of voltage-gated K+ channels (Kv) controlsmembrane potential (Em) that regulates cytoplasmicfree Ca2+ concentration([Ca2+]cyt) by governing thedriving force for Ca2+ influx. This study determinedwhether polyamines are required for the stimulation of cell migrationby altering K+ channel gene expression,Em, and[Ca2+]cyt in intestinal epithelialcells (IEC-6). The specific inhibitor of polyamine synthesis,-difluoromethylornithine (DFMO, 5 mM), depleted cellularpolyamines (putrescine, spermidine, and spermine), selectivelyinhibited Kv1.1 channel (a delayed-rectifier Kv channel) expression,and resulted in membrane depolarization. Because IEC-6 cells did notexpress voltage-gated Ca2+ channels, the depolarizedEm in DFMO-treated cells decreased [Ca2+]cyt as a result of reduceddriving force for Ca2+ influx through capacitativeCa2+ entry. Migration was reduced by 80% in thepolyamine-deficient cells. Exogenous spermidine not only reversed theeffects of DFMO on Kv1.1 channel expression, Em,and [Ca2+]cyt but also restoredcell migration to normal. Removal of extracellular Ca2+ orblockade of Kv channels (by 4-aminopyridine, 1-5 mM) significantly inhibited normal cell migration and prevented the restoration of cellmigration by exogenous spermidine in polyamine-deficient cells. Theseresults suggest that polyamine-dependent intestinal epithelial cellmigration may be due partially to an increase of Kv1.1 channelexpression. The subsequent membrane hyperpolarization raises[Ca2+]cyt by increasing the drivingforce (the electrochemical gradient) for Ca2+ influx andthus stimulates cell migration.

  相似文献   

7.
Glutamate dehydrogenase (GDH) (EC 1.4.1.3 [EC] .) purified from greentobacco callus mitochondria was activated markedly by Ca2$ inthe amination reaction. This activation was detectable evenat concentrations below 5 µM Ca2$. Saturation curves for the three substrates of the aminationreaction showed normal Michaelis-Menten kinetics in the presenceof 1 mM of Ca2$, but pronounced substrate inhibition occurredwithout Ca2$. The effect of Ca2$ was chiefly on the maximalvelocity. The saturation curve for NH4Cl in the presence of Ca2$ was modulatedby a change in pH. The apparent Km value for NH4Cl markedlydecreased whereas that for -ketoglutarate increased slightlywhen the pH was raised from 7.3 to 9.0. In contrast, the Kmfor NADH was little affected by raising the pH. The characteristicof GDH which increases its affinity for NH4Cl when the pH israised may be compatible with the detoxification of ammonia. 1 Present address: Mochida Pharmaceutical Co., Ltd. (Received August 24, 1981; Accepted November 28, 1981)  相似文献   

8.
Activity of glucose 6-phosphate dehydrogenase (D-glucose 6-phosphate:NADP oxidoreductase, EC 1.1.1.49 [EC] ) preparation from sweet potatoroot tissue was markedly altered in the presence of variousions. Cations or anions were effective in the following order:Na$, K$>Tris$>NH4$>Mg2$>Ca2$, or Cl>NO3,HPO42–>SO42–>HCO3. Activity was inhibitedat high concentrations of Ca2$, and HCO3,. In an investigationon the dependence of the activity on pH, two activity peakswere clearly observed at low ionic strength. Ionic strength altered both the Km and Vmax for glucose 6-phosphate(G6P). A Lineweaver-Burk plot for the enzyme, with respect toG6P, showed a bimodal nature at low ionic strength; suggestingnegative cooperativity. Deviation from linearity of the plotwas less with an increase in the ionic strength. 1 Present address: Institute of Applied Microbiology, Universityof Tokyo, Bunkyo-ku, Tokyo 113. (Received September 18, 1971; )  相似文献   

9.
Using permeabilized characean cells in which the ionic conditionsat the cytoplasmic side of the tonoplast are easily controlled,effects of Ca2+ ion on tonoplast potential were examined. Whenthe cell was treated with 1 µM Ca2+, the tonoplast potential(EM became positive in a complicated manner in Chara corallinawhile it simply became negative in Nitella axilliformis. Whenthe cell was treated with 9-antracenecarboxylic acid, a Cl-channelinhibitor, Em became more negative and the response of Em toCa2+ was significantly suppressed. It is suggested that Ca2+activates Cl-channel at a low concentration and inactivatesat a higher one in C. corallina while it simply inactivate Cl-channelin N. axilliformis. 1Present address: Biological Laboratory, The University of theAir, Wakaba 2-11, Wakaba, 260 Japan. (Received August 22, 1988; Accepted December 26, 1988)  相似文献   

10.
The role of mitochondria inCa2+ homeostasis is controversial.We employed the Ca2+-sensitive dyerhod 2 with novel, high temporal and spatial resolution imaging toevaluate changes in the matrix freeCa2+ concentration of individualmitochondria([Ca2+]m)in agonist-stimulated, primary cultured aortic myocytes. Stimulation with 10 µM serotonin (5-HT) evoked modest cytosolicCa2+ transients[cytosolic freeCa2+ concentration([Ca2+]cyt)<500 nM; measured with fura 2] and triggered contractions inshort-term cultured myocytes. However, 5-HT triggered a large mitochondrial rhod 2 signal (indicating pronounced elevation of [Ca2+]m)in only 4% of cells. This revealed heterogeneity in the responses ofindividual mitochondria, all of which stained with MitoTracker GreenFM. In contrast, stimulation with 100 µM ATP evoked large cytosolicCa2+ transients (>1,000 nM) andinduced pronounced, reversible elevation of[Ca2+]m(measured as rhod 2 fluorescence) in 60% of cells. This mitochondrial Ca2+ uptake usually lagged behindthe cytosolic Ca2+ transient peakby 3-5 s, and[Ca2+]mdeclined more slowly than did bulk[Ca2+]cyt.The uptake delay may prevent mitochondria from interfering with rapidsignaling events while enhancing the mitochondrial response to large,long-duration elevations of[Ca2+]cyt.The responses of arterial myocytes to modest physiological stimulationdo not, however, depend on such marked changes in [Ca2+]m.  相似文献   

11.
Decoding of fast cytosolic Ca2+ concentration ([Ca2+]i) transients by mitochondria was studied in permeabilized cat ventricular myocytes. Mitochondrial [Ca2+] ([Ca2+]m) was measured with fluo-3 trapped inside mitochondria after removal of cytosolic indicator by plasma membrane permeabilization with digitonin. Elevation of extramitochondrial [Ca2+] ([Ca2+]em) to >0.5 µM resulted in a [Ca2+]em-dependent increase in the rate of mitochondrial Ca2+ accumulation ([Ca2+]em resulting in half-maximal rate of Ca2+ accumulation = 4.4 µM) via Ca2+ uniporter. Ca2+ uptake was sensitive to the Ca2+ uniporter blocker ruthenium red and the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone and depended on inorganic phosphate concentration. The rates of [Ca2+]m increase and recovery were dependent on the extramitochondrial [Na+] ([Na+]em) due to Ca2+ extrusion via mitochondrial Na+/Ca2+ exchanger. The maximal rate of Ca2+ extrusion was observed with [Na+]em in the range of 20–40 mM. Rapid switching (0.25–1 Hz) of [Ca2+]em between 0 and 100 µM simulated rapid beat-to-beat changes in [Ca2+]i (with [Ca2+]i transient duration of 100–500 ms). No [Ca2+]m oscillations were observed, either under conditions of maximal rate of Ca2+ uptake (100 µM [Ca2+]em, 0 [Na+]em) or with maximal rate of Ca2+ removal (0 [Ca2+]em, 40 mM [Na+]em). The slow frequency-dependent increase of [Ca2+]m argues against a rapid transmission of Ca2+ signals between cytosol and mitochondria on a beat-to-beat basis in the heart. [Ca2+]m changes elicited by continuous or pulsatile exposure to elevated [Ca2+]em showed no difference in mitochondrial Ca2+ uptake. Thus in cardiac myocytes fast [Ca2+]i transients are integrated by mitochondrial Ca2+ transport systems, resulting in a frequency-dependent net mitochondrial Ca2+ accumulation. mitochondrial Ca2+; excitation-contraction coupling; cardiomyocytes  相似文献   

12.
Activation of K+-Channel in Membrane Excitation of Nitella axilliformis   总被引:1,自引:0,他引:1  
Two processes of the K+ channel activation in plasma membraneexcitation are suggested for Nitella axilliformis. One is relatedto the repolarizing process in the action potential and theother to the after-hyperpolarization (AH). Extra- and intracellulartetraethylammonium (TEA+) and extracellular Co2+ prolonged theaction potential, indicating involvement of K+ channel activationin the repolarizing process of the action potential. The following findings showed that AH is caused by K+ channelactivation. First, AH was inhibited by extracellular K+ andRb+ but not by Na+ and Li+. Second, it was not inhibited byintracellular TEA+ but by extracellular TEA+. Third, the membraneconductance increased during AH. Generation of AH was dependenton the level of the resting membrane potential [(Em)rest] whichis affected by the activity of the electrogenic H+ pump. AHwas generated, when (Em)rest was more positive than a criticalvalue, which was supposed to be the equilibrium potential forK+ across the plasma membrane. Since extracellular Ca2+ competed with extracellular TEA+ andCo2+ in prolonging the action potential, and sometimes in inhibitingAH, Ca2+ may be involved in the K+ channel activation. (Received June 11, 1983; Accepted September 21, 1983)  相似文献   

13.
The relationship between coleoptile elongation and alcoholicfermentation of rice under anoxia is examined using seeds either:(a) N2 flushed during submergence, (b) incubated in stagnantdeoxygenated agar at 0·1% w/v to simulate the stagnantconditions of waterlogged soil, or (c) incubated in waterloggedsoil. Coleoptile elongation growth was greater for N2 flushing> stagnant agar > soil; seed survival was also greatestin this order over 1-5 d. Ethanol concentrations in coleoptiles and intact seeds (cv.IR42) were approximately 300 and 100 mol m-3 respectively whenseeds were grown 3 d in stagnant agar, however 92% of the ethanolin seeds diffused into the external medium when solutions weremixed for 5-10 s. Coleoptile growth under anoxia was relatedto rates of ethanol synthesis (RE) in different treatments;there was greater coleoptile growth and RE for seeds in N2 flushedsolutions than in stagnant deoxygenated agar. Coleoptile growthof individual seeds was also related to the RE of each seedat 2-3 d after anoxia (r2 = 0·46). Analysis of different tissues was important in evaluating growthand metabolism of coleoptiles. Although the coleoptile onlyaccounted for 0·7% of seed dry weight at 3 d after anoxia,it contained 21% of the ethanol produced by rice seeds. Therewere also three-fold higher rates of RE on a fresh weight basisin expanding tissues in the base of the coleoptile relativeto the elongated tissues at the apex. Results are discussedin terms of the importance of environmental conditions usedto impose anoxia, quantification of RE in specific tissues andthe possibility that under stagnant conditions high ethanolconcentrations in tissues may limit RE and coleoptile growth.Copyright1994, 1999 Academic Press Anoxia, ethanol, alcoholic fermentation, Oryza sativa L., rice, submergence  相似文献   

14.
Membrane potential and resistance, each of which was the sumof those of the plasmalemma and tonoplast, measured in the coenocyticthallus of Boergesenia forbesii were 6.7 mv inside positiveand 2.8 k.cm2, respectively. Protoplasm squeezed from the thallus into artificial sea water(ASW) formed numerous spherical bodies, which are termed aplanospore-likecells (simply "spores"). The following electrical propertiesof the "spores" 20–40 hr after squeezing were obtained:potential difference (p.d.) across plasmalemma (Eco) was –66mv (– means inside negative), plasmalemma resistance 665cm2, p.d. across the tonoplast (Evc) +73 mv, and tonoplast resistance2.6 k.cm2. Tenfold increase in external [K+] caused +45 mv changein Eco and +17 mv in Evc. The plasmalemma was entirely depolarizedin Ca++-free ASW or ASW containing Triton X-100. When the "spore" was immersed in potassium-rich (277 mil) ASW,Eco was almost zero and the tonoplast showed two states (I andII, Eve about +70 mv and +20 mv, respectively). Evc went backand forth between the two states spontaneously or when a smallcurrent was applied. In most cases oscillatory changes in Evcoccurred after the lapse of a long time in the K+-rich sea water.Membrane resistances in states I and II were 5 and 9 k.cm2,respectively. (Received July 11, 1977; )  相似文献   

15.
Pancreatitis is an inflammatory disease of pancreatic acinar cells whereby intracellular calcium concentration ([Ca2+]i) signaling and enzyme secretion are impaired. Increased oxidative stress has been suggested to mediate the associated cell injury. The present study tested the effects of the oxidant, hydrogen peroxide, on [Ca2+]i signaling in rat pancreatic acinar cells by simultaneously imaging fura-2, to measure [Ca2+]i, and dichlorofluorescein, to measure oxidative stress. Millimolar concentrations of hydrogen peroxide increased cellular oxidative stress and irreversibly increased [Ca2+]i, which was sensitive to antioxidants and removal of external Ca2+, and ultimately led to cell lysis. Responses were also abolished by pretreatment with (sarco)endoplasmic reticulum Ca2+-ATPase inhibitors, unless cells were prestimulated with cholecystokinin to promote mitochondrial Ca2+ uptake. This suggests that hydrogen peroxide promotes Ca2+ release from the endoplasmic reticulum and the mitochondria and that it promotes Ca2+ influx. Lower concentrations of hydrogen peroxide (10–100 µM) increased [Ca2+]i and altered cholecystokinin-evoked [Ca2+]i oscillations with marked heterogeneity, the severity of which was directly related to oxidative stress, suggesting differences in cellular antioxidant capacity. These changes in [Ca2+]i also upregulated the activity of the plasma membrane Ca2+-ATPase in a Ca2+-dependent manner, whereas higher concentrations (0.1–1 mM) inactivated the plasma membrane Ca2+-ATPase. This may be important in facilitating "Ca2+ overload," resulting in cell injury associated with pancreatitis. oxidant stress; pancreatitis; calcium pump  相似文献   

16.
The cell-membrane resistance (Rm) of Vigna hypocotyls was examined,and the effects of osmotic stress, ionic stress and IAA on Rmwere investigated. Rm decreased by 64 to 77% under osmotic stressin the presence of absorbable solutes (40 mM sorbitol, 15 mMKC1, 30 mM sucrose; or 40 mM sorbitol, 15 mM KC1, 30 mM sucroseplus 10–4 M IAA) or under ionic stress (50 mM NaCl or50 mM KC1). Rm was not changed by perfusion with 10–4M IAA. Therefore, the hyper-polarizations of the membrane potentialobserved in both cases should be ascribed totally to the activationof the electrogenic proton pump. Although Rm showed an increaseof 1.6 fold when the hypocotyls were subjected to osmotic stress(100 mM sorbitol or 100 mM sorbitol plus 10–4 M IAA),83.6% or 92.4% of the hyperpolarization of the membrane potential(Vpx was also the result of the activation of the pump. Theresults, calculated on the basis of the current source model,support the viewpoint that the hyperpolarization of the cellmembrane potential of Vigna hypocotyls under osmotic stress,ionic stress or in the presence of IAA is an expression of theactivation of the proton pump, and is not caused by an increasein Rm. 1 Present address: Researchers and Planners of Natural Environment, Yotsugi Bldg. (2F), 1-5-4 Horinouchi, Suginami-Ku, Tokyo,166 Japan 2 Present address: Graduate School of Integrated Science, YokohamaCity University, 22-2 Seto, Kanazawa-Ku, Yokohama, 236 Japan (Received February 14, 1991; Accepted July 24, 1991)  相似文献   

17.
The electromotive force (Em) of the plasma membrane of the tonoplast-freecell of Chara australis decreased when the electrogenic pumpwas stopped by removing ATP or Mg2+ from the cell. Such a cellshowed a rapid light-induced potential change (rLPC). Threefactors were considered to be responsible for the generationof rLPC; removal of Mg-ATP, stoppage of the electrogenic pumpand membrane depolarization per se. Tonoplast-free cells having enough Mg-ATP occasionally showedsmall Em (–87— –116 mV) due to stoppage ofthe electrogenic pump. Since the rLPC was induced in such cells,removal of Mg-ATP cannot be the factor. Cells having large Emdue to active pump activity also showed rLPC when the potentialdifference across the plasma membrane (Vm) was depolarized byan outward electric current; evidence that not the stoppageof the pump but membrane depolarization is a necessary conditionfor the generation of rLPC. In the rLPC Vm always changed in the negative direction. However,calculation of Em revealed the existence of a reversal potential[ (Em)rev] toward which Em converged from either more negativeor more positive values. The (Em)rev approximately coincidedwith the equilibrium potential for K+ across the plasma membrane.Intracellular anions occupying lower positions in the lyotropicseries inhibited rLPC. (Received February 9, 1981; Accepted May 16, 1981)  相似文献   

18.
The objectives of this research were to determine thecontribution of excitation-contraction (E-C) coupling failure to the decrement in maximal isometric tetanic force(Po) in mouse extensor digitorumlongus (EDL) muscles after eccentric contractions and to elucidatepossible mechanisms. The left anterior crural muscles of femaleICR mice (n = 164) wereinjured in vivo with 150 eccentric contractions.Po, caffeine-,4-chloro-m-cresol-, andK+-induced contracture forces,sarcoplasmic reticulum (SR) Ca2+release and uptake rates, and intracellularCa2+ concentration([Ca2+]i)were then measured in vitro in injured and contralateral control EDLmuscles at various times after injury up to 14 days. On the basis ofthe disproportional reduction inPo (~51%) compared with caffeine-induced force (~11-21%), we estimate that E-C coupling failure can explain 57-75% of thePo decrement from 0 to 5 days postinjury. Comparable reductions inPo andK+-induced force (51%), and minorreductions (0-6%) in the maximal SRCa2+ release rate, suggest thatthe E-C coupling defect site is located at the t tubule-SR interfaceimmediately after injury. Confocal laser scanning microscopy indicatedthat resting[Ca2+]iwas elevated and peak tetanic[Ca2+]iwas reduced, whereas peak4-chloro-m-cresol-induced[Ca2+]iwas unchanged immediately after injury. By 3 days postinjury, 4-chloro-m-cresol-induced[Ca2+]ibecame depressed, probably because of decreased SRCa2+ release and uptake rates(17-31%). These data indicate that the decrease inPo during the first several daysafter injury primarily stems from a failure in the E-C couplingprocess.

  相似文献   

19.
SYNOPSIS. Crayfish have a long evolutionary history in temperatefresh water (FW). Ion regulation is challenged by low externalconcentrations of Na, Cl, and Ca (<1 mM). In intermolt theprimary concern is Na and Cl balance; around ecdysis the emphasisswitches to Ca regulation as the cuticle is decalcified/calcified.Compared with marine crustaceans, intermolt crayfish maintaina reduced extracellular (EC) osmolality and have lower permeabilityto both ions and water. Hyperregulation involves active branchialuptake of Na and Cl and the unique ability to produce a hypotonicurine. Ion uptake involves apical electroneutral ion exchange(Na$ for H$; Cl for HCO3–; counterions providedfrom CO2 via carbonic anhydrase) followed by active basolateraltransport of Na via the Na pump, with Cl following passively.Reabsorption of 95% of filtered electrolytes at the antennalgland (kidney) involves similar subcellular mechanisms in amorphologically differentiated region of the distal tubule.Intermolt crayfish exhibit negative Ca balance (passive effluxunopposed by uptake) tolerable in view of the large cuticularCaCO3 reserve. In premolt, cuticular Ca is reabsorbed. A smallamount is stored as gastroliths, the remainder is lost via branchialexcretion and in the discarded exuviae. At ecdysis, FW uptakegenerates the physical force for shedding, leaving the crayfishwith dilute hemolymph and a Ca deficiency. Levels of EC Na andCl are restored by intensive postmolt branchial uptake. Mineralizationof the soft exoskeleton involves remobilization of stored Caand branchial uptake of Ca and HCO3. Transepithelial Ca transportinvolves Ca2$ ATPase and Ca2$/Na$ exchange. The importance ofexternal electrolytes and pH in postmolt ion regulation is explored,as are some allometric considerations.  相似文献   

20.
REES  A. R. 《Annals of botany》1963,27(4):615-626
Three experiments on the growth of watered nursery oil palmsare described, the results of which provide estimates of seasonalvariation in net assimilation rate (EA) and relative growth-rate(Rw) in the tropics (6° 33' N.). The range of values obtained for EA and Rw is similar to thatfound with seedlings and during early growth in the nursery(EA = o.I8–o.32 g/dm2/week, Rw= o.84–I.70 per cent/day)and there is very little effect of season on EA; such variationas exists appears to be related to solar radiation. A spacing experiment indicated that EA is independent of leafarea index (L) when L is below about 2.2, but that above thislevel EA decreases with increasing L, falling to zero at L =5.4. The crop growth-rate (C) is maximal when L is between 2.5and 3, the maximum value observed was o.62 g/dm2/week (equivalentto 3.22 x104 kg/ha/annum). These results are compared with other estimates of growth andassimilation rates of seedling, nursery and adult oil palms,and are discussed in relation to the efficiency of energy fixation,and apparent growth-rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号