首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunodetection studies revealed the presence of a 20 kD cyclophilin-like protein (designated as SorgCyp20) in leaves and seeds of sorghum (Sorghum bicolor L Moench). The expression of SorgCyp20 was temporally regulated in the leaves and after attaining maximum levels at either 60 or 70 days after sowing it declined after flowering. The effect of drought stress on SorgCyp20 levels in the leaves and seeds of sorghum was stage and cultivar dependent. The drought stress-induced enhancement in SorgCyp20 levels was many times higher in the leaves (3-fold increase at 30 days after sowing) and seeds (2.5-fold increase at 9 days post anthesis) of drought tolerant cv ICSV-272 than in the drought susceptible cv SPRU-94008B. The intercultivar differences in drought stress-induced changes in SorgCyp20 expression were not related to the difference in water potential thus suggesting differential regulation of SorgCyp20 in response to stress in the two sorghum cultivars.  相似文献   

2.
Two cDNAs of the enzyme glutathione reductase (GR; EC 1.6.4.2) encoding a dual-targeted isoform (dtGR) and a cytosolic isoform (cGR), were cloned from leaves of common bean (Phaseolus vulgaris L.). Moderate drought stress (Psi w=-1.5MPa) followed by re-watering was applied to common bean cultivars, one tolerant to drought (IPA), the other susceptible (Carioca) and to cowpea (Vigna unguiculata L. Walp) cultivars, one tolerant to drought (EPACE-1), and the other susceptible (1183). mRNA levels were much higher for PvcGR than for PvdtGR in all cases. Moderate drought stress induced an up-regulation of the expression of PvcGR in the susceptible cultivars. On the contrary, PvdtGR expression decreased. In the tolerant cowpea EPACE-1, GR gene expression remained stable under drought. During recovery from drought, an up-regulation of the two GR isoforms occurred, with a peak at 6-10h after re-hydration. This suggests that moderate drought stress may lead to a hardening process and acclimation tolerance. The role of GR isoforms in plant tolerance and capacity to recover from drought stress is discussed.  相似文献   

3.
4.
Seedlings of sorghum varieties (M35-1, a drought tolerant species; SPV-839, a drought sensitive one) differing in their drought tolerance were subjected to 150 mM NaCl stress for a short duration of time (up to 72 h). Both the varieties failed to exhibit efficient ion exclusion mechanism like that of salt tolerant species, but in turn resulted in higher accumulation of Na+ and Cl ions over a period of 72 h salt stress. In addition, accumulation of calcium, potassium and proline in seedlings of sorghum varieties was moderate to short-term NaCl stress. The modulation of antioxidant components significantly diverged between the two varieties during seed germination, further the efficiency of antioxidant scavenging system is maintained during short-term NaCl treatments. In comparison to tolerant variety, the sensitive variety depicted higher SOD activity under control and salinity treatments but specific activity of catalase was significantly reduced. In contrast, drought tolerant variety exhibited efficient hydrogen peroxide scavenging mechanisms with higher catalase and GST activities under control and salt stress conditions, but not in the sensitive one. In conclusion, our comparative studies indicate that drought tolerant and susceptible varieties of sorghum induce efficient differential oxidative components of enzymatic machinery for scavenging ROS thereby alleviating the oxidative stress generated by salt stress during seedling growth.  相似文献   

5.
6.
干旱胁迫对菜苔叶片保护酶活性和膜脂过氧化的影响   总被引:21,自引:0,他引:21  
以3个不同耐旱性的菜苔(Brassica parachinensis L.H.Bailey)品种为试材,研究了干旱胁迫对叶片保护酶活性和膜脂过氧化的影响及其与抗旱性的关系。干旱胁迫条件下,菜苔叶片的电解质外渗率和MDA含量呈上升趋势,叶绿素含量、抗坏血酸含量和SOD活性呈下降趋势,CAT活性表现为先上升后下降。耐旱品种比不耐旱品种具有较高的叶绿素含量和抗坏血酸含量,具有较低的电解质外渗率和MDA含量;耐旱品种的SOD活性比不耐旱品种下降幅度小。轻度干旱胁迫下,耐旱品种的CAT活性上升幅度比不耐旱品种高;重度干旱胁迫下耐旱品种的CAT活性下降程度比不耐旱品种低。耐旱品种的POD活性在干旱条件下先上升而后降低,不耐品种的POD活性处于下降趋势。干旱6d后,耐旱品种的SOD、CAT和POD活性显著高于不耐旱品种。  相似文献   

7.
Salt-tolerant ecotypes (or cultivars, varieties, etc.) of different plant species have been long known to evolve in nature. In the past few years, plant breeders have made significant achievements regarding salt tolerance in a number of potential crops using artificial selection. The aim of this work was to evaluate and screening of the natural sea water (Red sea) tolerance of 7 Saudi local (Baish, Jazan; 17.388086, 42.524070) cultivars of sorghum (Sorghumbicolor L., Moench; Poaceae) with respect to the performance of some physiological parameters such as germination, shoot and root development which could be recommended to local farmers and plant breeders. The shoot growth of the studied sorghum cultivars were significantly affected by the exposure to sea water. Root growth was different among cultivars even when treated with normal water. The cultivar C3 (mix white and red seeds) was observed as more salt tolerant and cultivar C4 (whitish seeds) was more salt sensitive on the basis of the germination-ability and shoot development. Cultivar C3 was also observed to produce better seeds compared with the other cultivars. Results of this experiment can be useful to the local sorghum growing farmers or as a genetic resource for the development of sorghum cultivars with improved germination under salt stress.  相似文献   

8.
A relatively drought tolerant cultivar of maize ( Zea mays L. cv. Pioneer 3950) and a drought tolerant line of sorghum ( Sorghum bicolor [L.] Moench cv. ICSV 112) were grown hydroponically for 11 days. Treatments for non-ionic osmotic and salt stresses were started at the 8th day by addition of polyethylene glycol 6000 and NaCl, respectively, at 200 mOsm equivalent concentrations in the presence or absence of 0. 1 μ M abscisic acid. Relative growth rate was depressed by both stress factors, more severely for maize than sorghum. Abscisic acid increased the growth rate and reverted the negative effect of NaCl in maize, while sorghum was only slightly affected. In general, sorghum had higher levels of K+ and lower levels of Na+ and the K+/Na+ ratio was further increased by abscisic acid treatment. From the pressure-volume curves, osmotic potential, the water potential at turgor loss point, bulk elastic modulus and the water saturation deficit at initial turgor loss were estimated. Most significantly, sorghum had a higher elastic modulus than maize and it decreased under osmotic treatment, while in maize it increased under NaCl stress. The results suggest that bulk tissue turgor was not limiting growth under these conditions and underscores the possible implications of changes in the elastic condition of the cell walls in stress responses.  相似文献   

9.
Sorghum belongs to a group of economically important, silicon accumulating plants. X-ray microanalysis coupled with environmental scanning electron microscopy (ESEM) of fresh root endodermal and leaf epidermal samples confirms histological and cultivar specificity of silicification. In sorghum roots, silicon is accumulated mostly in endodermal cells. Specialized silica aggregates are formed predominantly in a single row in the form of wall outgrowths on the inner tangential endodermal walls. The density of silica aggregates per square mm of inner tangential endodermal cell wall is around 2700 and there is no significant difference in the cultivars with different content of silicon in roots. In the leaf epidermis, silicon deposits were present in the outer walls of all cells, with the highest concentration in specialized idioblasts termed 'silica cells'. These cells are dumb-bell shaped in sorghum. In both the root endodermis and leaf epidermis, silicification was higher in a drought tolerant cultivar Gadambalia compared with drought sensitive cultivar Tabat. Silicon content per dry mass was higher in leaves than in roots in both cultivars. The values for cv. Gadambalia in roots and leaves are 3.5 and 4.1% Si, respectively, and for cv. Tabat 2.2 and 3.3%. However, based on X-ray microanalysis the amount of Si deposited in endodermal cell walls in drought tolerant cultivar (unlike the drought susceptible cultivar) is higher than that deposited in the leaf epidermis. The high root endodermal silicification might be related to a higher drought resistance.  相似文献   

10.
11.
The physiological response to drought was measured in two common bean varieties with contrastive susceptibility to drought stress. A subtractive cDNA library was constructed from the two cultivars, Phaseolus vulgaris'Pinto Villa' (tolerant) and 'Carioca' (susceptible). 18 cDNAs displayed protein-coding genes associated with drought, cold and oxidative stress, signal transduction, plant defense, chloroplast function and unknown function. A cDNA coding for an aquaporin (AQP) was selected for further analyses. The open reading frames (ORFs) of AQPs from 'Pinto Villa' and 'Carioca' were compared and despite their similarity, accumulated differentially in the plant organs, as demonstrated by Northern blot and in situ hybridization. A phylogenetic analysis of the deduced amino acid sequence with other AQPs suggested a tonoplast-located protein. Under drought conditions, the levels of AQP mRNA from the susceptible cultivar decreased to undetectable levels; by contrast, 'Pinto Villa' mRNA was present and restricted the phloem tissue. This would allow 'Pinto Villa' to maintain vascular tissue functions under drought stress.  相似文献   

12.
A greenhouse experiment was carried out to investigate the influence of the arbuscular mycorrhizal (AM) fungus (Glomus intraradices Schenck & Smith) on metabolic changes in tropical maize (Zea mays L.) under drought. Two cultivars, Tuxpeno sequia CO (drought sensitive) and C8 (drought resistant), were subjected for 3 weeks to water stress following tasselling (75–95 days after sowing). Fully expanded 7th or 8th leaves were sampled and assessed for levels of chlorophyll, sugars, proteins, and amino acids. Chlorophyll content was not altered either by water stress or the presence of mycorrhizae. Mycorrhizal plants (M+) had higher total and reducing sugars than nonmycorrhizal plants (M-) at the end of 3 weeks of the drought cycle. An increase in protein content was observed with drought stress in M + plants of the cultivar C0. Most of the amino acids showed a linear increase during the period of water stress in M+ and M- plants for both cultivars. Total amino acids increased by 40.6% and 43.7% in M- plants of C0 and C8, respectively. With the presence of AM fungus, amino acid levels increased by only 10.7% and 19.2% of leaf dry mass in C0 and C8, respectively. Alanine, asparagine, glutamine, and glycine accounted for 70% of the amino acid pool. Under drought, AM inoculation enabled the plants to retain considerable amounts of sugars and proteins, especially in the drought-sensitive cultivar C0. This may be of physiological importance in helping the plant to withstand moderate drought.  相似文献   

13.
Five cultivars of tomato having different levels of salt stress tolerance were exposed to different treatments of NaCl (0, 3 and 6 g L−1) and ZnO-NPs (0, 15 and 30 mg L−1). Treatments with NaCl at both 3 and 6 g L−1 suppressed the mRNA levels of superoxide dismutase (SOD) and glutathione peroxidase (GPX) genes in all cultivars while plants treated with ZnO-NPs in the presence of NaCl, showed increments in the mRNA expression levels. This indicated that ZnO-NPs had a positive response on plant metabolism under salt stress. Superior expression levels of mRNA were observed in the salt tolerant cultivars, Sandpoint and Edkawy while the lowest level was detected in the salt sensitive cultivar, Anna Aasa. SDS–PAGE showed clear differences in patterns of protein expression among the cultivars. A negative protein marker for salt sensitivity and ZnO-NPs was detected in cv. Anna Aasa at a molecular weight of 19.162 kDa, while the tolerant cultivar Edkawy had two positive markers at molecular weights of 74.991 and 79.735 kDa.  相似文献   

14.
Cell membrane stability (CMS) in suspension cultures of two groundnut cultivars was studied under polyethylene glycol(PEG)-induced water stress. There was a negative relationship between PEG concentration in the medium and membrane stability measured as electrolyte leakage. The CMS values in the cell cultures correlated well with the whole plant tissue and permitted the differentiation of cultivars based on their known response to drought stress. The cell membrane stability was lower (more electrolyte leakage) when cells were grown in culture as compared to the intact plant tissue. Kadiri-3, the drought tolerant cultivar maintained higher CMS than JL-24, the drought susceptible one. With increasing PEG levels the concentration of Potassium in cultured cells declined in both cultivars. However, Kadiri-3 maintained higher K values than JL-24 accompanied with greater cell membrane stability. Total soluble sugars also increased with increasing stress in both cultivars; the increase being higher in Kadiri-3. There was no significant change in the total free amino acids but proline accumulated markedly in both varieties. However, no relationship was found between proline levels and CMS. The results demonstrated that CMS test can also be used under in vitro conditions to differentiate the drought tolerant and susceptible cultivars and the cellular K level has a positive relationship with membrane stability.  相似文献   

15.
分析不同基因型小麦品种逆境萌发过程中种子萌发相关酶活性及基因表达差异,明确在逆境条件下,种子活力与种子萌发相关酶活性及基因表达量的关系.通过标准发芽试验和逆境(冷浸、人工老化、干旱胁迫)发芽试验,测定4个小麦品种种子活力、萌发过程中可溶性总糖和可溶性蛋白含量、α-淀粉酶活性、半胱氨酸蛋白酶活性及相关基因表达量.结果表明:干旱、人工老化和冷浸胁迫3种逆境对种子活力都有一定影响.不同萌发条件下,可溶性总糖含量呈现先小幅度升高后小幅度降低再迅速升高的趋势;而可溶性蛋白含量随着萌发时间的延长呈现逐渐下降的趋势.α-淀粉酶活性整体呈现逐渐升高的趋势,但在冷浸胁迫处理后,豫农949和轮选061的α-淀粉酶活性在萌发60 h后出现下降.半胱氨酸蛋白酶活性整体呈先降低后升高的趋势,但在干旱胁迫条件下,豫农949、豫麦49-198和轮选061的半胱氨酸蛋白酶活性呈现先升高后降低再升高的趋势.不同逆境萌发条件下,α-AMY(α-淀粉酶基因)表达量整体呈先上升后下降的趋势.冷浸胁迫处理后,轮选061的α-AMY表达量高于对照,在其他逆境萌发条件下,4个品种的α-AMY表达量均低于对照;人工老化处理后,长4738的CP(半胱氨酸蛋白酶基因)表达量与对照差异不显著,在其他逆境萌发条件下,4个品种的CP表达量均高于对照.种子萌发期间,不同萌发条件下α-淀粉酶和半胱氨酸蛋白酶活性与其基因表达并没有直接关系,α-淀粉酶活性与可溶性总糖含量达到显著正相关,半胱氨酸蛋白酶活性与可溶性蛋白含量的相关性不显著.在标准发芽条件下,α-淀粉酶活性与活力指数呈显著正相关,而在逆境萌发过程中,其相关性不显著.冷浸胁迫处理后,半胱氨酸蛋白酶活性与活力指数呈显著正相关,但在标准发芽、干旱胁迫、人工老化处理后,其相关性不显著.  相似文献   

16.
Ramanjulu  S.  Sreenivasulu  N.  Sudhakar  C. 《Photosynthetica》1998,35(2):279-283
Three-month-old mulberry (Morus alba L.) cultivars (drought tolerant S13 and drought sensitive S54) were subjected to water stress for 15 d. Water stress decreased the leaf water potential, net photosynthetic rate (PN), and stomatal conductance (gs) in both the cultivars. However, the magnitude of decline was comparatively greater in the sensitive cultivar (S54). Intercellular CO2 concentration (Ci) was unaltered during mild stress, but significantly increased at severe stress in both cultivars. The photosystem 2 activity significantly declined only at a severe stress in both cultivars. The Ci/gs ratio representing the mesophyll efficiency was greater in the tolerant cultivar S13. Involvement of stomatal and/or non-stomatal components in declining PN depended on the severity and duration of stress. However, the degree of non-stomatal limitations was relatively less in the drought tolerant cultivar.  相似文献   

17.
Drought is the most crucial environmental factor that limits productivity of many crop plants. Exploring novel genes and gene combinations is of primary importance in plant drought tolerance research. Stress tolerant genotypes/species are known to express novel stress responsive genes with unique functional significance. Hence, identification and characterization of stress responsive genes from these tolerant species might be a reliable option to engineer the drought tolerance. Safflower has been found to be a relatively drought tolerant crop and thus, it has been the choice of study to characterize the genes expressed under drought stress. In the present study, we have evaluated differential drought tolerance of two cultivars of safflower namely, A1 and Nira using selective physiological marker traits and we have identified cultivar A1 as relatively drought tolerant. To identify the drought responsive genes, we have constructed a stress subtracted cDNA library from cultivar A1 following subtractive hybridization. Analysis of?~1,300 cDNA clones resulted in the identification of 667 unique drought responsive ESTs. Protein homology search revealed that 521 (78?%) out of 667 ESTs showed significant similarity to known sequences in the database and majority of them previously identified as drought stress-related genes and were found to be involved in a variety of cellular functions ranging from stress perception to cellular protection. Remaining 146 (22?%) ESTs were not homologous to known sequences in the database and therefore, they were considered to be unique and novel drought responsive genes of safflower. Since safflower is a stress-adapted oil-seed crop this observation has great relevance. In addition, to validate the differential expression of the identified genes, expression profiles of selected clones were analyzed using dot blot (reverse northern), and northern blot analysis. We showed that these clones were differentially expressed under different abiotic stress conditions. The implications of the analyzed genes in abiotic stress tolerance are discussed in our study.  相似文献   

18.
Roots, leaves, and intermediate sections between roots and leaves (ISRL) of wheat seedlings show different physiological functions at the protein level. We performed the first integrative proteomic analysis of different tissues of the drought‐tolerant wheat cultivar Hanxuan 10 (HX‐10) and drought‐sensitive cultivar Chinese Spring (CS) during a simulated drought and recovery. Differentially expressed proteins (DEPs) in the roots (122), ISRLs (146), and leaves (163) showed significant changes in expression in response to drought stress and recovery. Numerous DEPs associated with cell defense and detoxifications were significantly regulated in roots and ISRLs, while in leaves, DEPs related to photosynthesis showed significant changes in expression. A significantly larger number of DEPs related to stress defense were upregulated in HX‐10 than in CS. Expression of six HSPs potentially related to drought tolerance was significantly upregulated under drought conditions, and these proteins were involved in a complex protein–protein interaction network. Further phosphorylation analysis showed that the phosphorylation levels of HSP60, HSP90, and HOP were upregulated in HX‐10 under drought stress. We present an overview of metabolic pathways in wheat seedlings based on abscisic acid signaling and important protein expression patterns.  相似文献   

19.

Background and Aims

Flooding slows seed germination, imposes fatalities and delays seedling establishment in direct-seeded rice. This study describes responses of contrasting rice genotypes subjected to flooding or low oxygen stress during germination and discusses the basis of tolerance shown by certain cultivars.

Methods

In one set of experiments, dry seeds were sown in soil and either watered normally or flooded with 10 cm of water. Seedling survival and shoot and root growth were assessed and seed portions of germinating seedlings were assayed for soluble sugars and starch concentrations. The whole germinating seedlings were assayed for amylase and peroxidase activities and for ethylene production. Activities of enzymes associated with anaerobic respiration were examined and gene expression was analysed separately with seeds germinating under different amounts of dissolved oxygen in dilute agar.

Key Results

Flooding during germination reduced survival but to a lesser extent in tolerant genotypes. Starch concentration in germinating seeds decreased while sugar concentration increased under flooding, but more so in tolerant genotypes. Amylase activity correlated positively with elongation (r = 0·85 for shoot and 0·83 for root length) and with plant survival (r = 0·92). Tolerant genotypes had higher amylase activity and higher RAmy3D gene expression. Ethylene was not detected in seeds within 2 d after sowing, but increased thereafter, with a greater increase in tolerant genotypes starting 3 d after sowing. Peroxidase activity was higher in germinating seeds of sensitive genotypes and correlated negatively with survival.

Conclusions

Under low oxygen stress, tolerant genotypes germinate, grow faster and more seedlings survive. They maintain their ability to use stored starch reserves through higher amylase activity and anaerobic respiration, have higher rates of ethylene production and lower peroxidase activity as germinating seeds and as seedlings. Relevance of these traits to tolerance of flooding during germination and early growth is discussed.Key words: Amylase, anoxia, crop establishment, direct-seeded rice, ethylene, flooding, germination, hypoxia, Oryza sativa  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号