共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell elongation in the rachis of the semiaquatic fern Regnellidium diphyllum is induced by the addition of ethylene or indoleacetic acid (IAA). Experiments with whole plants or rachis segments have shown that ethylene-induced growth requires the presence of auxin. Ethylene does not cause a modification in either endogenous auxin levels or in the extent of auxin metabolism but auxin transport is reduced. Rates of ethylene production in Regnellidium are not altered by either mechanical excitation or by the addition of auxin. A two-hormone control of cell expansion is proposed in which an initial, auxin-dependent growth event pre-conditions the cells to a further subsequent (or synchronous) ethylene-dependent growth event.Abbreviation IAA
indole-3yl-acetic acid 相似文献
2.
Elongation of the shoots of three aquatic plants (Hydrocharis morsus-ranae, Regnellidium diphyllum and Ranunculus sceleratus) is stimulated by treatment with ethylene or IAA. The effects of the two hormones are additive, and experiments with an ethylene biosynthesis inhibitor and silver ions indicate that the mechanisms by which ethylene and IAA stimulate growth may be different. Hydrocharis and Ranunculus leaf discs synthesize [14C]ethylene from [14C]methionine, but no [14C]ethylene is formed by Regnellidium, suggesting the existence of an alternative pathway of ethylene biosynthesis in the fern.Abbreviations IAA
Indole-3-acetic acid
- RBA
1,2-amino-4-(2-aminoethoxy)-trans-3-butenoic acid 相似文献
3.
In dark-grown soybean (Glycine max [L.] Merr.) seedlings, exposing the roots to water-deficient vermiculite (w=–0.36 MPa) inhibited hypocotyl (stem) elongation. The inhibition was associated with decreased extensibility of the cell walls in the elongation zone. A detailed spatial analysis showed xyloglucan endotransglucosylase (XET; EC 2.4.1.207) activity on the basis of unit cell wall dry weight was decreased in the elongation region after seedlings were transplanted to low w. The decrease in XET activity was at least partially due to an accumulation of cell wall mass. Since cell number was only slightly altered, wall mass had increased per cell and probably led to increased wall thickness and decreased cell wall extensibility. Alternatively, an increase in cell wall mass may represent a mechanism for regulating enzyme activity in cell walls, XET in this case, and therefore cell wall extensibility. Hypocotyl elongation was partially recovered after seedlings were grown in low-w vermiculate for about 80 h. The partial recovery of hypocotyl elongation was associated with a partial recovery of cell wall extensibility and an enhancement of XET activity in the hypocotyl elongation zone. Our results indicate XTH proteins may play an important role in regulating cell wall extensibility and thus cell elongation in soybean hypocotyls. Our results also showed an imperfect correlation of spatial elongation and XET activity along the hypocotyls. Other potential functions of XTH and their regulation in soybean hypocotyl growth are discussed. 相似文献
4.
Robert E. Cleland 《Planta》1984,160(6):514-520
The relationship between the plastic-extensibility values (PEx) obtained in the Instron technique and the growth parameter, wall extensibility () has been evaluated for Avena sativa L. coleoptile cell walls. The possibility that PEx is proportional to the growth rate rather than to has been eliminated by showing that turgor-driven changes in the growth rate do not cause comparable changes in PEx. For Avena coleoptiles, PEx appears to be a measure of the average over the previous 60–90 min rather than a measure of the instantaneous of the growth equation. This is indicated by the fact that while PEx and the growth rate start to change simultaneously after addition of indole-3-acetic acid or KCN, the growth rate reaches a new, constant value 60–90 min before a new plateau value of PEx is obtained. Similar results are obrained with soybean (Glycine max L.) hypocotyl walls, indicating that the relationship between PEx and the parameter is a general one, although the period over which is averaged differs from tissue to tissue. In addition, it is shown that PEx can be measured more than once on the same section; a new potential for plastic extension is regenerated whenever the force vectors are changed even slightly. It is concluded that PEx is a measure of those domains in the wall where a wall-loosening event has occurred which has not been eliminated by further wall synthesis or other biochemical events.Abbreviations and symbols DP Instron plastic compliance - IAA indole-3-acetic acid - PEx Instron plastic extensibility - instantaneous wall extensibility 相似文献
5.
Summary In gemmalings of Riella helicophylla, auxin and ethylene stimulate elongation growth, especially of pillar cells. When the two hormones are supplied simultaneously, the effects are additive, i.e. the result is supergrowth. In the cells of the meristem, elongation is enhanced by auxin, but not by ethylene when given alone. However, these cells also respond with supergrowth to a combined treatment with auxin and ethylene. The antiauxin p-chlorophenoxyisobutyric acid suppresses both the ethylene stimulation of cell growth and the additive supergrowth. The results support the concept that auxin pre-conditions the cells to the ethylene-dependent growth event. We suggest that the response elicited by the specific cell types could be related to differences in their level of endogenous auxin.Abbreviations IAA
indole-3-acetic acid
- PCIB
p-chlorophenoxyisobutyric acid 相似文献
6.
U. Kutschera 《Planta》1990,181(3):316-323
The relationship between growth and increase in cell-wall material (wall synthesis) was investigated in hypocotyls of sunflower seedlings (Helianthus annuus L.) that were either grown in the dark or irradiated with continuous white light (WL). The peripheral three to four cell layers comprised 30–50% of the entire wall material of the hypocotyl. The increase in wall material during growth in the dark and WL, respectively, was larger in the inner tissues than in the peripheral cell layers. The wall mass per length decreased continuously, indicating that wall thinning occurs during growth of the hypocotyl. When dark-grown seedlings were transfered to WL, a 70% inhibition of growth was observed, but the increase in wall mass was unaffected. Likewise, the composition of the cell walls (cellulose, hemicellulose, pectic substances) was not affected by WL irradiation. Upon transfer of dark-grown seedlings into WL a drastic increase in wall thickness and a concomitant decrease in cell-wall plasticity was measured. The results indicate that cell-wall synthesis and cell elongation are independent processes and that, as a result, WL irradiation of etiolated hypocotyls leads to a thickening and mechanical stiffening of the cell walls. 相似文献
7.
8.
The gross composition of the outer epidermal cell wall from third internodes of Pisum sativum L. cv. Alaska grown in dim red light, and the effect of auxin on that composition, was investigated using interference microscopy. Pea outer epidermal walls contain as much cellulose as typical secondary walls, but the proportion of pectin to hemicellulose resembles that found in primary walls. The pectin and hemicellulose fractions from epidermal peels, which are enriched for outer epidermal wall but contain internal tissue as well, are composed of a much higher percentage of glucose and glucose-related sugars than has been found previously for pea primary walls, similar to non-cellulosic carbohydrate fractions of secondary walls. The epidermal outer wall thus has a composition rather like that of secondary walls, while still being capable of elongation. Auxin induces a massive breakdown of hemicellulose in the outer epidermal wall; nearly half the hemicellulose present is lost during 4 h of growth in the absence of exogenous sugar. The percentage breakdown is much greater than has been seen previously for whole pea stems. It has been proposed that a breakdown of xyloglucan could be the basis for the mechanical loosening of the outer wall. This study provides the first evidence that such a breakdown could be occurring in the outer wall.M.S. Bret-Harte would like to thank Dr. Peter M. Ray, of Stanford University, for helpful discussions and for technical and editorial assistance, Dr. Winslow R. Briggs, of the Camegie Institude of Washington, for the use of experimental facilities and for helpful discussions, Dr. Wendy K. Silk, of the University of California, Davis, for helpful discussions and financial support, Dr. Paul B. Green for financial support, and Drs. John M. Labavitch and L.C. Greve, of the University of California, Davis, for performing the -cellulose analysis on short notice, in response to a request by an anonymous reviewer. This work was supported by a National Science Foundation Graduate Fellowship to M.S. B.-H., National Science Foundation Grant DCB8801493 to Paul B. Green, and the generosity of Wendy K. Silk (Department of Land, Air, and Water Resources, University of California, Davis) during the final writing. 相似文献
9.
M. Syndonia Bret-Harte 《Planta》1993,190(3):379-386
The effect of auxin on cell wall mass in the epidermis of third internodes of Pisum sativum L. cv. Alaska grown in dim red light was investigated using epidermal peels, to determine whether epidermal peels reflect the behavior of the outer epidermal cell wall. In contrast to the outer epidermal wall itself, where auxin caused thinning in proportion to growth (M.S. Bret-Harte et al, 1991, Planta 185, 462–471), auxin promoted an increase in wall mass in epidermal peels from treated internode segments in the absence of exogenously supplied sugar. The percentage gain in mass was smaller than the percentage elongation, however, so mass per unit length decreased in peels from auxin-treated segments. Epidermal peels from auxin-treated segments gained more wall mass than control peels even when adhering internal tissue at the basal end of the peel was removed. Epidermal peels also had a gross composition different from that of the outer wall alone (M.S. Bret-Harte and L.D. Talbott, 1993, Planta 190, 369–378). These discrepancies can be explained by the observation that the outer wall makes up only 30% of the mass of the epidermal peel. It appears that the inner walls of the epidermis, and walls of the outer layer of cortical cells that remain attached to the epidermis during peeling, nearly maintain their thickness by biosynthesis while the outer wall loses mass as previously described (Bret-Harte et al. 1991). These results indicate that epidermal peels may not be a good system for examining the biochemical and physiological properties of the outer epidermal cell wall.I would like to thank Dr. Peter M. Ray, of Stanford University, for the use of experimental facilities, helpful discussions, and technical and editorial assistance, Dr. Winslow R. Briggs, of the Carnegie Institute of Washington, for helpful discussions and for the use of experimental facilities, Dr. Paul B. Green, of Stanford University, for financial support, and Dr. Wendy K. Silk, of the Department of Land, Air, and Water Resources, University of California, Davis, for financial support. This work was supported by a National Science Foundation Graduate Fellowship, National Science Foundation grant DCB8801493 to Paul B. Green, and the generosity of Wendy K. Silk in the final writing. 相似文献
10.
In vitro studies of IAA-induced cell elongation in Triticum aestivum have demonstrated that lead causes a large reduction in elongation. Inhibition of elongation can be reduced by increasing the concentration of IAA, or by the addition of calcium. The inhibitory effect appears to be linked with changes in the properties of the cell walls. Experiments are described which show that lead becomes bound strongly to certain chemical substances involved in cell wall architecture. 相似文献
11.
In the zucchini squash, Cucurbita pepo, a well coordinated abscission of the female flower during fruit set is essential to obtain a fruit of commercial value. In Spain zucchini is mainly produced in greenhouses in Almería, where high temperatures during the spring-summer period provoke a cultivar-dependent defect in fruits known as the “sticky flower” syndrome. This disorder is characterised by an arrest in growth and maturation of floral organs, and a lack of female floral abscission, thus diminishing fruit shelf-life, commercial quality and value. The aim of the present work was to improve knowledge of the abscission process in C. pepo to better understand the fundamental causes of this disorder. The anatomical analysis of abscission shows a well defined male floral abscission zone (AZ), few hours after anthesis, which differs from the female zone which is not differentiated from the adjacent tissue until the abscission process has begun, and which occurs as a consequence of AZ cell enlargement and the dissolution of their cell walls. To evaluate the role of ethylene and auxins in the regulation of floral abscission in zucchini we performed several treatments, with: ethylene, added as 0.25% ethrel solution; AVG, the inhibitor of ethylene synthesis, at 100 μM; indol-3-acetic acid, 100 μM; and TIBA, the inhibitor of auxin polar transport, at 10 mM. These treatments show that ethylene is an accelerator of zucchini floral abscission, and also promotes abscission in isolated AZs of sticky flowers. On the other hand, IAA delays abscission of the female flowers, whilst the inhibitor of auxin polar transport promotes it. The activity of the cell wall hydrolytic enzymes, polygalacturonase and cellulase, sharply increased just before the shedding of zucchini floral organs (72 h after anthesis). Moreover, both enzyme activities were induced by ethylene, which partly explains the ethylene promoting effect. 相似文献
12.
We have compared the effects of cycloheximide (CHI) and two other rapid and effective inhibitors of protein synthesis, pactamycin and 2-(4-methyl-2,6-dinitroanilino)-N-methyl proprionamide (MDMP), on protein synthesis, respiration, auxin-induced growth and H+-excreation of Avena sativa L. coleoptiles. All three compounds inhibit protein synthesis without affecting respiration. The effectiveness of the inhibitors against H+-excretion and growth correlates with their ability to inhibit protein synthesis. Both CHI and MDMP inhibit auxin-induced H+-excretion after a latent period of 5–8 min, and inhibit growth after a 8–10-min lag. These results support the idea that continued protein synthesis is required in the initial stages of the growth-promoting action of auxin.Abbreviations CHI
cycloheximide
- DMSO
dimethyl sulfoxide
- FC
fusicoccin
- IAA
indole-3-acetic acid
- MDMP
2-(4-methyl-2,6-dinitroanilino)-N-methyl proprionamide 相似文献
13.
David G. Pope 《Planta》1978,140(2):137-142
Growth of Triticum aestivum L. cv. Cappelle Desprez coleoptiles is promoted by 5.7×10–5 M indole acetic acid (IAA) as effectively in pH 3.4 buffer as in water, but IAA is not effective in the presence of buffer at pH 3.0 or 3.2 A combination of 5.7×10–5 M IAA and pH 3.4 buffer promotes growth to a greater extent than pH 3.2 buffer alone, which is optimal for acid-induced growth. IAA employed at 10–7 M is still effective at promoting growth in the presence of pH 3.4 buffer, moreover, IAA at 10–7 M interacts synergistically with the acidic buffer to promote growth. It is concluded that IAA and acid promote growth via separate mechanisms, and that IAA does not promote cell wall loosening by rendering the cell wall more acid.Abbreviation IAA
Indoleacetic acid 相似文献
14.
C. -H. Ullrich 《Planta》1978,140(3):201-211
To analyze early effects of auxin application, an apparatus was developed which continuously and simultaneously registered the curvature of 10 individual maize (Zea mays L.) coleoptiles. Resolution was less than 5 m over a range of ±0.5 mm. The data were evaluated and plotted via paper tape and Hewlett-Packard-computer. Unilateral application of 3×10-5 M indoleacetic acid (IAA) resulted in a transient inhibition of growth on the side of application for ca. 10 min (Phase I), followed by a strong stimulation (Phase II). The phytotoxin fusicoccin (FC) caused an immediate stimulation of elongation. The initial negative reaction of Phase I is auxin-specific. Only active auxins such as IAA and 1-naphtaleneacetic acid produced this initial inhibition; chemical analogs-inhibitory or neutral in long-term growth tests, e.g. phenylacetic acid-did not show any significant effects on Phase I. When the coleoptiles were symmetrically preloaded with different levels of auxin, only a large step-up of subsequent unilateral auxin application resulted in a negative phase I; a small step-up led to an immediate positive reaction. The results are discussed in context with the parallel kinetics for various other auxin-induced reactions of coleoptile cells which have already been published.Abbreviations FC
fusicoccin
- IAA
indole-3-acetic acid
- NAA
-naphthaleneacetic acid
- PAA
phenylacetic acid 相似文献
15.
Jean-Pierre Métraux 《Planta》1982,155(6):459-466
Changes in the uronide, neutral-polysacharide, and cellulose composition of the cell wall ofNitella axillaris Braun were followed throughout development of the internodes and correlated with changes in growth rate. As the cells increased in length from 4 to 80 mm during development, the relative growth rate decreased. Cell wall thickness, as measured by wall density, increased in direct proportion to diameter, indicating that cell-wall stress did not change during elogation. Cell-wall analyses were adapted to allow determination of the composition of the wall of single cells. The total amounts of uronides, neutral sugars and cellulose all increased during development. However, as the growth rate decreased, the relative proportions of uronides and neutral sugars, expressed as percent of the dry weight of the wall, decreased, while the proportion of cellulose increased. The neutral sugars liberated upon hydrolysis ofNitella walls are qualitatively similar to those found in hydrolysates of higher plant cell walls: glucose, xylose, mannose, galactose, arabinose fucose and rhamnose. Only the percentage of galactose was found to increase in walls of mature cells, while the percentage of all other sugars decreased. The rate of apposition (g of wall material deposited per unit wall surface area per hour) of neutral polysaccharides decreased rapidly with decreasing growth rate during the early stages of development. The rate of apposition of uronides decreased more steadily throughout development, while that of cellulose, after an early decline, remained constant until dropping off at the end of the elongation period. These correlations between decreasing growth rate and decreasing rate of apposition of neutral sugars and uronides indicate that synthesis of these cell-wall components could be involved in the regulation of the rate of cell elongation inNitella. 相似文献
16.
Cytochalasin B (CB) inhibits the elongation growth of maize roots, and that of wheat coleoptile segments incubated in indolyl-3-acetic acid, by over 30% after a lag period of about 60 min. This long lag is not due to poor tissue penetration by the inhibitor, but seems to reflect a property of the process inhibited by CB. The only visible ultrastructural change accompanying growth inhibition is the accumulation of secretory vesicles in the vicinity of dictyosomes, which occurs between 90 and 300 min. However, a massive accumulation of vesicles is seen after 120 min in root cap cells which possess very active dictyosomes. The results indicate that CB does not inhibit elongation growth by interfering with cytoplasmic streaming. Instead, they indicate that the drug acts to inhibit the secretion of cell wall components at some stage after vesicle production, but prior to their transport.Abbreviations CB cytochalasin B - IAA indolyl-3-acetic acid - DMSO dimethyl sulphoxide 相似文献
17.
Hypocotyls of dark-grown 6-day-old seedlings of Phaseolus vulgaris L. proved to be sufficiently homogeneous to permit studies relating the rate of cell elongation to the composition of the primary cell walls. Whereas the levels of cellulose and uronic acids remained practically constant during and after cell extension, all other components showed major or minor changes. Cell-wall protein, as such, decreased by more than 50%, but indications are that hydroxyproline-rich glycoprotein increased with a decreasing rate of cell elongation, concomitant with a rise in the degree of arabinosylation of wall-bound hydroxyproline. As cell elongation slowed down, non-cellulosic glucose accumulated, presumably in the form of a -(1–4)glucan closely associated with cellulose. These findings confirm the notion that the primary cell wall is a highly dynamic structure. 相似文献
18.
Cytokinins inhibit hypocotyl elongation in darkness but have no obvious effect on hypocotyl length in the light. However, we found that cytokinins do promote hypocotyl elongation in the light when ethylene action is blocked. A 50% increase in Arabidopsis thaliana (L.) Heynh. hypocotyl length was observed in response to N6-benzyladenine (BA) treatment in the presence of Ag+. The level of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid was strongly increased, indicating that ethylene biosynthesis was up-regulated by treatment with cytokinin. Furthermore, the effects of cytokinins on hypocotyl elongation were also tested using a series of mutants in the cascade of the ethylene-signal pathway. In the ethylene-insensitive mutants etr1-3 and ein2-1, cytokinin treatment resulted in hypocotyl lengths comparable to those of wild-type seedlings treated with both Ag+ and BA. A similar phenotypical response to cytokinin was observed when auxin transport was blocked by -naphthylphthalamic acid (NPA). Applied cytokinin largely restored cell elongation in the basal and middle parts of the hypocotyls of NPA-treated seedlings and at the same time abolished the NPA-induced decrease in indole-3-acetic acid levels. Our data support the hypothesis that, in the light, cytokinins interact with the ethylene-signalling pathway and conditionally up-regulate ethylene and auxin synthesis. 相似文献
19.
The effects of peeling and wounding on the indole-3-acetic acid (IAA) and fusicoccin (FC) growth response of etiolated Pisum sativum L. cv. Alaska stem tissue were examined. Over a 5 h growth period, peeling was found to virtually eliminate the IAA response, but about 30% of the FC response remained. In contrast, unpeeled segments wounded with six vertical slits exhibited significant responses to both IAA and FC, indicating that peeling does not act by damaging the tissue. Microscopy showed that the epidermis was removed intact and that the underlying tissue was essentially undamaged. Neither the addition of 2% sucrose to the incubation medium nor the use of a range of IAA concentrations down to 10-8 M restored IAA-induced growth in peeled segments, suggesting that lack of osmotic solutes and supra-optimal uptake of IAA were not important factors over this time period. It is concluded that, although the possibility remains that peeling merely allows leakage of hydrogen ions into the medium, it seems more likely that peeling off the epidermis removes the auxin responsive tissue.Abbreviations IAA
indole-3-acetic acid
- FC
fusicoccin 相似文献
20.
The effect of indole-3-acetic acid (IAA) on the elongation rates of 2 mm corn (Zea mays L.) root segments induced by citrate-phosphate buffer (or unbuffered) solutions of pH 4.0 and 7.0 was studied. At pH 7.0, auxin initially reduced the elongation rate in both buffered and unbuffered solutions. Only in buffer at pH 7.0 was auxin at a concentration of 0.1 M found to promote the elongation rate though briefly. THis promoted rate represented only ca. 20% of the rate achieved with only buffer at pH 4.0. Auxin in pH 4.0 buffered and unbuffered solutions only served to reduce the elongation rates of root segments. Some comparative experiments were done using 2 mm corn coleoptile segments. Auxin (pH 6.8) promoted the elongation rate of coleoptile segments to a level equal or greater than the maximal H ion-induced rate. The two responses of root segments to auxin are compared to auxin action in coleoptile growth. 相似文献