共查询到20条相似文献,搜索用时 15 毫秒
1.
A single candidate 4'-phosphopantetheine transferase, identified by BLAST searches of the human genome sequence data base, has been cloned, expressed, and characterized. The human enzyme, which is expressed mainly in the cytosolic compartment in a wide range of tissues, is a 329-residue, monomeric protein. The enzyme is capable of transferring the 4'-phosphopantetheine moiety of coenzyme A to a conserved serine residue in both the acyl carrier protein domain of the human cytosolic multifunctional fatty acid synthase and the acyl carrier protein associated independently with human mitochondria. The human 4'-phosphopantetheine transferase is also capable of phosphopantetheinylation of peptidyl carrier and acyl carrier proteins from prokaryotes. The same human protein also has recently been implicated in phosphopantetheinylation of the alpha-aminoadipate semialdehyde dehydrogenase involved in lysine catabolism (Praphanphoj, V., Sacksteder, K. A., Gould, S. J., Thomas, G. H., and Geraghty, M. T. (2001) Mol. Genet. Metab. 72, 336-342). Thus, in contrast to yeast, which utilizes separate 4'-phosphopantetheine transferases to service each of three different carrier protein substrates, humans appear to utilize a single, broad specificity enzyme for all posttranslational 4'-phosphopantetheinylation reactions. 相似文献
2.
3.
A common terminal structure in glycans from animal glycoproteins and glycolipids is the lactosamine sequence Gal(beta)4GlcNAc-R (LacNAc or LN). An alternative sequence that occurs in vertebrate as well as in invertebrate glycoconjugates is GalNAc(beta)4GlcNAc-R (LacdiNAc or LDN). Whereas genes encoding beta4GalTs responsible for LN synthesis have been reported, the beta4GalNAcT(s) responsible for LDN synthesis has not been identified. Here we report the identification of a gene from Caenorhabditis elegans encoding a UDP-GalNAc:GlcNAc(beta)-R beta1,4-N-acetylgalactosaminyltransferase (Ce(beta)4GalNAcT) that synthesizes the LDN structure. Ce(beta)4GalNAcT is a member of the beta4GalT family, and its cDNA is predicted to encode a 383-amino acid type 2 membrane glycoprotein. A soluble, epitope-tagged recombinant form of Ce(beta)4GalNAcT expressed in CHO-Lec8 cells was active using UDP-GalNAc, but not UDP-Gal, as a donor toward a variety of acceptor substrates containing terminal beta-linked GlcNAc in both N- and O-glycan type structures. The LDN structure of the product was verified by co-chromatography with authentic standards and (1)H NMR spectroscopy. Moreover, Chinese hamster ovary CHO-Lec8 and CHO-Lec2 cells expressing Ce(beta)4GalNAcT acquired LDN determinants on endogenous glycoprotein N-glycans, demonstrating that the enzyme is active in mammalian cells as an authentic beta4GalNAcT. The identification and availability of this novel enzyme should enhance our understanding of the structure and function of LDN-containing glycoconjugates. 相似文献
4.
Molecular cloning of eukaryotic glycoprotein and glycolipid glycosyltransferases: a survey 总被引:7,自引:5,他引:2
The rapidity with which molecular sequence data are gatheredcontinues to grow. The result is that, for many workers, itis increasingly difficult to keep abreast of the current stateof play of molecular cloning, even for those genes that encodeproteins of special interest The clear success of the variousworldwide genome projects has made this even more apparent,and by the end of 1996 the complete determination of the nucleotidesequences of the genomes of two eukaryotes, Saccharomyces cerevisiaeand Caenorhabditis elegans, will have either been completedor will be nearing completion. This article is an attempt toprovide, in an easily accessible format, a compilation of genesand cDNAs that have been sequenced and deposited in GenBankthat encode transferase enzymes involved in eukaryotic glycoproteinor glycolipid biosynthesis. The full sequence information canbe easily retrieved from a databank, e.g. GenBank, using therelevant accession number(s). database glycosylation glycosyltransferase molecular cloning protein processing 相似文献
5.
A cDNA clone encoding a cysteine proteinase of the papain superfamily has been isolated from the hepatopancreas of northern shrimp Pandalus borealis (NsCys). NsCys shares the highest identity of 64% with a cathepsin L-like cysteine proteinase from lobster, and its identity to the well-characterized mammalian cathepsins S, L, and K falls within a narrow range of 54-59%. However, it differs from each of these cathepsins in certain key residues including, for example, the unique occurrence of tryptophan and cysteine residues at the structurally important S2 subsite. Consequently, NsCys produced in Pichia pastoris appears to be distinct in various physicokinetic properties. The recombinant enzyme is active and stable over a wide range of pH values, and its substrate specificity is unusual, as demonstrated by its poor affinity for phenylalanine residues. Instead, it shows the highest specificity for proline residues, a property similar to cathepsin K. Unlike cathepsin K, however, NsCys cleaves valine residues more efficiently than leucine. Similar results were obtained with the natural peptide substrate glucagon. The shrimp proteinase is further distinguished by its potent collagenolytic activity, resulting in a cleavage pattern reminiscent of bacterial collagenase. To distinguish such unique structural and enzymatic properties, we propose the trivial name "crustapain" for the shrimp proteinase, indicating that it is a papain-like cysteine proteinase from a crustacean species. 相似文献
6.
H Nishida 《Bioinformatics (Oxford, England)》2001,17(12):1224-1225
I selected 82 proteins that were related to amino acid biosynthesis in the genome of Escherichia coli. I then searched the extensive sequence homology for each of the selected proteins from among the proteins of E.coli. The result showed that 30 proteins of the selected proteins had extensive sequence homology within the selected proteins, and 21 proteins had extensive sequence homology to proteins outside the selected proteins. In addition, the enzymes with broad substrate specificity play an important role in the amino acid biosynthesis. I demonstrate here that some substrate-specific enzymes evolved from an ancestor enzyme with broad substrate specificity. CONTACT: hnishida@iam.u-tokyo.ac.jp 相似文献
7.
van Die Irma; van Tetering Angelique; Bakker Hans; van den Eijnden Dirk H.; Joziasse David H. 《Glycobiology》1996,6(2):157-164
The choice for a heterologous expression system to produce glycoproteintherapeutics highly depends on its potential to perform mammalian-likeposttranslational modifications such as glycosylation. To gainmore insight into the glycosylation potential of the baculovirusmediated insect cell expression system, we have studied theexpression of glycosyltransferases involved in complex-typeN-glycosylation. Lepidopteran insect cell lines derived fromTrichoplusia ni, Spodoptera frugiperda, and Mamestra brassicaewere found to express a ß1 相似文献
8.
Purification and characterization of yeast L-kynurenine aminotransferase with broad substrate specificity 总被引:1,自引:0,他引:1
L-Kynurenine aminotransferase [L-kynurenine:2-oxoglutarate aminotransferase (cyclizing), EC 2.6.1.7] has been purified to homogeneity and crystallized from cell-free extracts of a yeast, Hansenula schneggii, grown in a medium containing L-tryptophan as an inducer. The enzyme has a molecular weight of about 100,000 and consists of two subunits identical in molecular weight (52,000). The enzyme exhibits absorption maxima at 280, 335, and 430 nm, and contains 2 mol of pyridoxal 5'-phosphate per mol of enzyme. The enzyme-bound pyridoxal 5'-phosphate shows negative circular dichroic extrema, in contrast with other pyridoxal 5'-phosphate acting on L-amino acids. In addition to L-kynurenine and alpha-ketoglutarate, which are the most preferred substrates, a large number of L-amino acids and alpha-keto acids can serve as substrates; the extremely broad substrate specificity is the most characteristic feature of this yeast enzyme. The enzyme activity is significantly affected by both carbonyl and sulfhydryl reagents. Certain dicarboxylic acids such as adipate and pimelate act as competitive inhibitors. Addition of various substrate amino acids to the culture medium results in the inductive formation of aminotransferases which are immunochemically indistinguishable from L-kynurenine aminotransferase. 相似文献
9.
10.
N-Carbomoyl-L-amino acid amidohydrolase was purified to homogeneity for the first time from Alcaligenes xylosoxidans. The enzyme showed high affinity toward N-carbomoyl-L-amino acids with long-chain aliphatic or aromatic substituents, and hydrolyzed those with short-chain substituents quite well. The enzyme hydrolyzed N-formyl- and N-acetylamino acids quickly and very slowly, respectively. The enzyme did not hydrolyze -ureidopropionate and ureidosuccinate. The relative molecular mass of the native enzyme was about 135 000 and the enzyme consisted of two identical polypeptide chains. The enzyme activity was significantly inhibited by sulfhydryl reagents and required the following divalent metal ions: Mn2+, Ni2+ and Co2+. 相似文献
11.
A cytosine-specific DNA methyltransferase (EC 2.1.1.37) has been purified to near homogeneity from a mealybug (Planococcus lilacinus). The enzyme can methylate cytosine residues in CpG sequences as well as CpA sequences. The apparent molecular weight of the enzyme was estimated as 135,000 daltons by FPLC. The enzyme exhibits a processive mode of action and a salt dependance similar to mammalian methylases. Mealybug methylase exhibits a preference for denatured DNA substrates. 相似文献
12.
Molecular cloning and characterization of a novel dual specificity phosphatase, MKP-5. 总被引:14,自引:0,他引:14
A group of dual specificity protein phosphatases negatively regulates members of the mitogen-activated protein kinase (MAPK) superfamily, which consists of three major subfamilies, MAPK/extracellular signal-regulated kinase (ERK), stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), and p38. Nine members of this group of dual specificity phosphatases have previously been cloned. They show distinct substrate specificities for MAPKs, different tissue distribution and subcellular localization, and different modes of inducibility of their expression by extracellular stimuli. Here we have cloned and characterized a novel dual specificity phosphatase, which we have designated MKP-5. MKP-5 is a protein of 482 amino acids with a calculated molecular mass of 52.6 kDa and consists of 150 N-terminal amino acids of unknown function, two Cdc25 homology 2 regions in the middle, and a C-terminal catalytic domain. MKP-5 binds to p38 and SAPK/JNK, but not to MAPK/ERK, and inactivates p38 and SAPK/JNK, but not MAPK/ERK. p38 is a preferred substrate. The subcellular localization of MKP-5 is unique; it is present evenly in both the cytoplasm and the nucleus. MKP-5 mRNA is widely expressed in various tissues and organs, and its expression in cultured cells is elevated by stress stimuli. These results suggest that MKP-5 is a novel type of dual specificity phosphatase specific for p38 and SAPK/JNK. 相似文献
13.
Mammalian chitinase and chitinase-like proteins are members of a recently discovered gene family. Thus far, neither chitin nor chitin synthase has been found in mammals. The existence of chitinase genes in mammals is intriguing and the physiologic functions of chitinases are not clear. Human chitotriosidase, also called chitinase 1 (chit1), has been cloned. It has been found that high levels of serum chitotriosidase are associated with several diseases, but the physiologic functions of this enzyme are still unclear. To facilitate the studies in animal models we cloned and characterized a cDNA that encodes the mouse chitotriosidase. The open reading frame of this cDNA predicts a protein of 464 amino acids with a typical chitinase structure, including a signal peptide, a highly conserved catalytic domain and a chitin-binding domain. The predicted amino acid sequence is highly homologous to that of human chitotriosidase and to that of mouse acidic mammalian chitinase. Sequence analysis indicates that the mouse chitotriosidase gene has 12 exons, spanning a 40-kb region in mouse chromosome 1. The constitutive expression of mouse chitotriosidase is restricted to brain, skin, bone marrow, kidney, tongue, stomach and testis. Recombinant expression of the cloned cDNA demonstrated that the encoded protein is secreted and has chitinolytic activity that is sensitive to the specific chitinase inhibitor allosamidin and has the ability to bind to chitin particles. Substitution mutations at the conserved catalytic site completely abolished the enzymatic activity of the recombinant protein. These studies illustrate that mouse chitotriosidase is a typical chitinase that belongs to the mammalian chitinase gene family. 相似文献
14.
Cheong Na Eun Choi Yeon Ok Lee Kyun Oh Kim Woe Yeon Jung Bae Gyo Chi Yong Hun Jeong Jin Sook Kim Kanghwa Cho Moo Je Lee Sang Yeol 《Plant molecular biology》1999,40(5):825-834
A cDNA (C2C-Prx) corresponding to a 2Cys-peroxiredoxin (2Cys-Prx) was isolated from a leaf cDNA library of Chinese cabbage. The predicted amino acid sequence of C2C-Prx has 2 conserved cysteines and several peptide domains present in most of the 2Cys-Prx subfamily members. It shows the highest sequence homology to the 2Cys-Prx enzymes of spinach (88%) and Arabidopsis (86%). Southern analysis using the cDNA insert of C2C-Prx revealed that it consists of a small multigene family in Chinese cabbage genome. RNA blot analysis showed that the gene was predominantly expressed in the leaf tissue of Chinese cabbage seedlings, but the mRNA was generally expressed in most tissues of mature plant, except roots. The expression of C2C-Prx was slightly induced by treatment with H2O2 (100M) or Fe3+/O2/DTT oxidation system, but not by ABA (50 M) or GA3 (10 M). The C2C-Prx is encoded as a preprotein of 273 amino acids containing a putative chloroplast-targeting signal of 65 amino acids at its N-terminus. The N-terminally truncated recombinant protein (C2C-Prx) migrates as a dimer in a non-reducing SDS-polyacrylamide gel and as a monomer in a reducing condition. The C2C-Prx shows no immuno cross-reactivity to antiserum of the yeast thiol-specific antioxidant protein, and vice versa. The C2C-Prx prevents the inactivation of glutamine synthetase and the DNA cleavage in the metal-catalyzed oxidation system. In the yeast thioredoxin system containing thioredoxin reductase, thioredoxin, and NADPH, the C2C-Prx exhibits peroxidase activity on H2O2. 相似文献
15.
Ataxia-telangiectasia mutated (ATM) is the gene product mutated in ataxia-telangiectasia (A-T), which is an autosomal recessive disorder with symptoms including neurodegeneration, cancer predisposition and premature aging. ATM is thought to play a pivotal role in signal transduction in response to genotoxic DNA damage. To study the physiological and developmental functions of ATM using the zebrafish model system, we cloned the zebrafish homolog cDNA of human ATM (hATM), zebrafish ATM (zATM), analyzed the expression pattern of zATM during early development, and further developed the system to study loss of zATM function in zebrafish embryos. Employing information available from the zebrafish genomic database, we utilized a PCR-based approach to isolate zATM cDNA clones. Sequence analysis of zATM showed a high level homology in the functional domains of hATM. The putative FAT, phosphoinositide 3-kinase-like, and FATC domains of zATM, which regulate ATM kinase activity and functions, were the most highly conserved regions, exhibiting 64-94% amino acid identity to the corresponding domains in hATM, while exhibiting approximately 50% amino acid identity outside these domains. The zATM gene is expected to consist of 62 coding exons, and we have identified at least 55 exons encompassing more than 100kb of nucleotide sequence, which encodes about 9 kb of cDNA. By in situ hybridization, zATM mRNA was detected ubiquitously with a dramatic increase at the 18-somite stage, then more specifically in the eye, brain, trunk, and tail at later stages. To inhibit zATM expression and function, we designed and synthesized splice-blocking antisense-morpholino oligonucleotides targeting the phosphoinositide 3-kinase-like domain. We demonstrated that this knockdown of zATM caused abnormal development upon ionizing radiation-induced DNA damage. Our data suggest that the ATM gene is structurally and functionally conserved in vertebrates from zebrafish to human. 相似文献
16.
Molecular cloning, expression, and functional characterization of a cystatin from pineapple stem 总被引:1,自引:0,他引:1
A cDNA fragment encoding the cysteine protease inhibitor, cystatin, was cloned from pineapple (Ananas comosus) stem. This clone was constructed in a fusion vector and was easily over-expressed in Escherichia coli; satisfactory over-expression of non-fusion cystatin was achieved after an additional start codon was inserted prior to its coding sequence. Both recombinant cystatins were predominately found in the soluble fraction of the cell extract, and were demonstrated to be functionally active in a reverse zymographic assay. The fusion and non-fusion cystatins were separately purified to homogeneity via a His-tag or papain-coupling affinity column. Effective inhibitory activity against papain was detected with both the fusion and non-fusion cystatins with comparable K(i) values of 1.18 x 10(-10) M and 9.53 x 10(-11) M, respectively. The recombinant cystatins were found to be thermally stable up to 60 degrees C. Inhibition of the endogenous protease activity in minced fish muscle revealed that the recombinant pineapple cystatins might be an adequate stabilizer to prevent protein degradation during industrial food processing. 相似文献
17.
Sugahara T Liu CC Govind Pai T Liu MC 《Biochemical and biophysical research communications》2003,300(3):725-730
By searching the zebrafish expressed sequence tag (EST) database, we have identified a cDNA clone encoding a putative zebrafish cytosolic sulfotransferase (ST). This cDNA was isolated and subjected to nucleotide sequencing. Analysis of the sequence data revealed that this novel zebrafish ST displays 32-35% amino acid sequence identity to members of all major cytosolic ST gene families. Therefore, this zebrafish ST, while belonging to the cytosolic ST gene superfamily, appears to be independent from all known constituent ST gene families. Recombinant zebrafish ST, expressed using the pET23c prokaryotic expression vector and purified from transformed Escherichia coli cells, migrated as a 34-kDa protein upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified zebrafish ST displayed sulfating activities toward dopamine and thyroid hormones (T(3) and T(4)), with a pH optimum spanning 7-9. The enzyme also exhibited activities toward a number of xenobiotics including some flavonoids, isoflavonoids, and other phenolic compounds. A thermostability experiment revealed the enzyme to be relatively stable over a temperature range between 20 and 48 degrees C. Among 10 divalent metal cations tested, Fe(++), Hg(++), Co(++), Zn(++), Cu(++), and Cd(++) exhibited dramatic inhibitory effects on the activity of the enzyme. These results constitute a first study on the cloning, expression, and characterization of a zebrafish cytosolic ST. 相似文献
18.
Peña-Montes C González A Castro-Ochoa D Farrés A 《Applied microbiology and biotechnology》2008,78(4):603-612
Aspergillus nidulans PW1 produces an extracellular carboxylesterase activity that acts on several lipid esters when cultured in liquid media containing
olive oil as a carbon source. The enzyme was purified by gel filtration and ion exchange chromatography. It has an apparent
MW and pI of 37 kDa and 4.5, respectively. The enzyme efficiently hydrolyzed all assayed glycerides, but showed preference toward short-
and medium-length chain fatty acid esters. Maximum activity was obtained at pH 8.5 at 40°C. The enzyme retained activity after
incubation at pHs ranging from 8 to11 for 12 h at 37°C and 6 to 8 for 24 h at 37°C. It retained 80% of its activity after
incubation at 30 to 70°C for 30 min and lost 50% of its activity after incubation for 15 min at 80°C. Noticeable activation
of the enzyme is observed when Fe2+ ion is present at a concentration of 1 mM. Inhibition of the enzyme is observed in the presence of Cu2+, Fe3+, Hg2+, and Zn2+ ions. Even though the enzyme showed strong carboxylesterase activity, the deduced N-terminal amino acid sequence of the purified
protein corresponded to the protease encoded by prtA gene. 相似文献
19.
Ceramide kinase, a novel lipid kinase. Molecular cloning and functional characterization 总被引:1,自引:0,他引:1
Sugiura M Kono K Liu H Shimizugawa T Minekura H Spiegel S Kohama T 《The Journal of biological chemistry》2002,277(26):23294-23300
Ceramide-1-phosphate is a sphingolipid metabolite that has been implicated in membrane fusion of brain synaptic vesicles and neutrophil phagolysosome formation. Ceramide-1-phosphate can be produced by ATP-dependent ceramide kinase activity, although little is known of this enzyme because it has not yet been highly purified or cloned. Based on sequence homology to sphingosine kinase type 1, we have now cloned a related lipid kinase, human ceramide kinase (hCERK). hCERK encodes a protein of 537 amino acids that has a catalytic region with a high degree of similarity to the diacylglycerol kinase catalytic domain. hCERK also has a putative N-myristoylation site on its NH(2) terminus followed by a pleckstrin homology domain. Membrane but not cytosolic fractions from HEK293 cells transiently transfected with a hCERK expression vector readily phosphorylated ceramide but not sphingosine or other sphingoid bases, diacylglycerol or phosphatidylinositol. This activity was clearly distinguished from those of bacterial or human diacylglycerol kinases. With natural ceramide as a substrate, the enzyme had a pH optimum of 6.0-7.5 and showed Michaelis-Menten kinetics, with K(m) values of 187 and 32 microm for ceramide and ATP, respectively. Northern blot analysis revealed that hCERK mRNA expression was high in the brain, heart, skeletal muscle, kidney, and liver. A BLAST search analysis using the hCERK sequence revealed that putative ceramide kinases (CERKs) exist widely in diverse multicellular organisms including plants, nematodes, insects, and vertebrates. Phylogenetic analysis revealed that CERKs are a new class of lipid kinases that are clearly distinct from sphingosine and diacylglycerol kinases. Cloning of CERK should provide new molecular tools to investigate the physiological functions of ceramide-1-phosphate. 相似文献
20.
A cDNA clone, MT-d, encoding metalloprotease precursor was isolated from snake (Agkistrodon halys brevicaudus) venom gland cDNA library. MT-d-I protein containing both metalloprotease and disintegrin domains, and MT-d-II protein containing the metalloprotease domain only were expressed in Escherichia coli and refolded successfully into their functional forms. Each of the refolded enzyme species exhibited distinct substrate specificity. Proteolytic activity of the MT-d-1 was able to hydrolyse type I gelatin, type-III and V collagens in contrast with the catalytic function of MT-d-II. MT-d-I protein having metalloprotease activity was also able to inhibit platelet aggregation. Functionally active MT-d-I protein underwent autoproteolytic processing in vitro to produce metalloprotease and disintegrin; this processing was accompanied by significant changes in the substrate specificity of the enzyme activity. Experimental evidence strongly suggests that the disintegrin domain in the metalloprotease precursor modulates the catalytic function of the enzyme in hydrolysing extracellular matrix proteins. 相似文献