共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibroblast growth factor receptor-1 interacts with the T-cell receptor signalling pathway 总被引:1,自引:0,他引:1
Byrd VM Kilkenny DM Dikov MM Reich MB Rocheleau JV Armistead WJ Thomas JW Miller GG 《Immunology and cell biology》2003,81(6):440-450
Fibroblast growth factor receptors are expressed by some T cells, and provide costimulation for these cells. Such receptors allow T cells to respond to fibroblast growth factors expressed in response to injury and inflammation and may provide a mechanism for 'context-dependent' responses to antigens within the local microenvironment. The mechanisms by which fibroblast growth factor receptors might interact with the TCR signalling pathway are not defined. Here we show that the TCR and fibroblast growth factor receptors co-localize during combined stimulation. Signalling via fibroblast growth factor receptors alone results in phosphorylation of Lck and induces nuclear translocation of nuclear factors of activated T cells. Combined stimulation via fibroblast growth factor receptors and the TCR synergistically enhances the activation of nuclear factors of activated T cells. The results suggest that peptide growth factors produced at sites of injury and inflammation can contribute to the outcome of T-cell encounters with antigen. 相似文献
2.
Signalling by fibroblast growth factors (FGFs) through FGF receptors (FGFRs) depends on the cell-surface polysaccharide heparan sulphate (HS) [1] [2]. HS has an ordered domain structure of highly diverse saccharide motifs that present unique displays of sulphate, carboxyl and hydroxyl groups [3]. These motifs interact with many proteins, particularly growth factors. HS binds both to FGFs [4] [5] [6] and FGFRs [7], and probably activates signalling by facilitating ligand-induced receptor dimerisation [8] [9]. Nevertheless, the extent to which specific HS saccharide sequences play a regulatory role has not been established. By screening a library of structurally diverse HS decasaccharides in bioassays of FGF signalling mediated by three different FGFR isoforms, we found that saccharides showed specificity for both ligands and receptors; some saccharides selectively activated FGF signalling through different FGFR isoforms, others acted as negative regulators. We conclude that HS saccharides play critical roles in dictating the specificity of ligand-receptor interactions in FGFR signalling. Controlled alterations in HS structures [10] would provide a mechanism for regulation of cellular responsiveness to growth factors that bind HS. 相似文献
3.
Clark IB Muha V Klingseisen A Leptin M Müller HA 《Development (Cambridge, England)》2011,138(13):2705-2715
Fibroblast growth factor (FGF)-dependent epithelial-mesenchymal transitions and cell migration contribute to the establishment of germ layers in vertebrates and other animals, but a comprehensive demonstration of the cellular activities that FGF controls to mediate these events has not been provided for any system. The establishment of the Drosophila mesoderm layer from an epithelial primordium involves a transition to a mesenchymal state and the dispersal of cells away from the site of internalisation in a FGF-dependent fashion. We show here that FGF plays multiple roles at successive stages of mesoderm morphogenesis in Drosophila. It is first required for the mesoderm primordium to lose its epithelial polarity. An intimate, FGF-dependent contact is established and maintained between the germ layers through mesoderm cell protrusions. These protrusions extend deep into the underlying ectoderm epithelium and are associated with high levels of E-cadherin at the germ layer interface. Finally, FGF directs distinct hitherto unrecognised and partially redundant protrusive behaviours during later mesoderm spreading. Cells first move radially towards the ectoderm, and then switch to a dorsally directed movement across its surface. We show that both movements are important for layer formation and present evidence suggesting that they are controlled by genetically distinct mechanisms. 相似文献
4.
Wang Shen Li Yong Jiang Chao Tian Haishan 《Applied microbiology and biotechnology》2018,102(2):605-613
Applied Microbiology and Biotechnology - The fibroblast growth factor (FGF) 9 subfamily is a member of the FGF family, including FGF9, 16, and 20, potentially sharing similar biochemical functions... 相似文献
5.
Fibroblast growth factor in the human placenta 总被引:5,自引:0,他引:5
D Gospodarowicz J Cheng G M Lui D K Fujii A Baird P B?hlen 《Biochemical and biophysical research communications》1985,128(2):554-562
Fibroblast growth factor (FGF) has been purified 333,000-fold from human placenta by a combination of salt precipitation, cation-exchange chromatography, and Heparin-Sepharose affinity chromatography. Molecular weight (15-16 kDaltons), amino acid composition, bioactivity and immunological crossreactivity with bovine pituitary FGF indicate that the mitogens from the two species are closely related molecules. 相似文献
6.
Fibroblast growth factor signaling in tumorigenesis 总被引:11,自引:0,他引:11
Fibroblast growth factors and their signaling receptors have been associated with multiple biological activities, including proliferation, differentiation and motility. Consequently, they have evoked interest as candidate oncogenes with the potential to initiate and/or promote tumorigenesis. This has resulted in a large literature describing the presence of these growth factors and their receptors in cancer cell lines and primary tumors of diverse origin. However, it is only recently that compelling evidence has emerged to implicate the fibroblast growth factors (Fgfs) and their receptors in the genesis of human cancers. Here, we outline the model systems that demonstrate the potential oncogenic nature of Fgf signaling and summarise recent evidence that implicates aberrant Fgf signaling as important in the natural history of some common human cancers. 相似文献
7.
During the development of a given organ, tissue growth and fate specification are simultaneously controlled by the activity of a discrete number of signalling molecules. Here, we report that these two processes are extraordinarily coordinated in the Drosophila wing primordium, which extensively proliferates during larval development to give rise to the dorsal thoracic body wall and the adult wing. The developmental decision between wing and body wall is defined by the opposing activities of two secreted signalling molecules, Wingless and the EGF receptor ligand Vein. Notch signalling is involved in the determination of a variety of cell fates, including growth and cell survival. We present evidence that growth of the wing primordium mediated by the activity of Notch is required for wing fate specification. Our data indicate that tissue size modulates the activity range of the signalling molecules Wingless and Vein. These results highlight a crucial role of Notch in linking proliferation and fate specification in the developing wing primordium. 相似文献
8.
Fibroblast growth factor 2 protects against renal ischaemia/reperfusion injury by attenuating mitochondrial damage and proinflammatory signalling 下载免费PDF全文
Xiao‐Hua Tan Xiao‐Meng Zheng Li‐Xia Yu Jian He Hong‐Mei Zhu Xiu‐Ping Ge Xiao‐Li Ren Fa‐Qing Ye Saverio Bellusci Jian Xiao Xiao‐Kun Li Jin‐San Zhang 《Journal of cellular and molecular medicine》2017,21(11):2909-2925
Ischaemia‐reperfusion injury (I/RI) is a common cause of acute kidney injury (AKI). The molecular basis underlying I/RI‐induced renal pathogenesis and measures to prevent or reverse this pathologic process remains to be resolved. Basic fibroblast growth factor (FGF2) is reported to have protective roles of myocardial infarction as well as in several other I/R related disorders. Herein we present evidence that FGF2 exhibits robust protective effect against renal histological and functional damages in a rat I/RI model. FGF2 treatment greatly alleviated I/R‐induced acute renal dysfunction and largely blunted I/R‐induced elevation in serum creatinine and blood urea nitrogen, and also the number of TUNEL‐positive tubular cells in the kidney. Mechanistically, FGF2 substantially ameliorated renal I/RI by mitigating several mitochondria damaging parameters including pro‐apoptotic alteration of Bcl2/Bax expression, caspase‐3 activation, loss of mitochondrial membrane potential and KATP channel integrity. Of note, the protective effect of FGF2 was significantly compromised by the KATP channel blocker 5‐HD. Interestingly, I/RI alone resulted in mild activation of FGFR, whereas FGF2 treatment led to more robust receptor activation. More significantly, post‐I/RI administration of FGF2 also exhibited robust protection against I/RI by reducing cell apoptosis, inhibiting the release of damage‐associated molecular pattern molecule HMBG1 and activation of its downstream inflammatory cytokines such as IL‐1α, IL‐6 and TNF α. Taken together, our data suggest that FGF2 offers effective protection against I/RI and improves animal survival by attenuating mitochondrial damage and HMGB1‐mediated inflammatory response. Therefore, FGF2 has the potential to be used for the prevention and treatment of I/RI‐induced AKI. 相似文献
9.
M.B. Ellman D. Yan K. Ahmadinia D. Chen H.S. An H.J. Im 《Journal of cellular biochemistry》2013,114(4):735-742
Osteoarthritis (OA) and degenerative disc disease (DDD) are similar diseases involving the breakdown of cartilage tissue, and a better understanding of the underlying biochemical processes involved in cartilage degeneration may allow for the development of novel biologic therapies aimed at slowing the disease process. Three members of the fibroblast growth factor (FGF) family, FGF‐2, FGF‐18, and FGF‐8, have been implicated as contributing factors in cartilage homeostasis. The role of FGF‐2 is controversial in both articular and intervertebral disc (IVD) cartilage as it has been associated with species‐ and age‐dependent anabolic or catabolic events. Recent evidence suggests that FGF‐2 selectively activates FGF receptor 1 (FGFR1) to exert catabolic effects in human articular chondrocytes and IVD tissue via upregulation of matrix‐degrading enzyme production, inhibition of extracellular matrix (ECM) accumulation and proteoglycan synthesis, and clustering of cells characteristic of arthritic states. FGF‐18, on the other hand, most likely exerts anabolic effects in human articular chondrocytes by activating the FGFR3 pathway, inducing ECM formation and chondrogenic cell differentiation, and inhibiting cell proliferation. These changes result in dispersed chondrocytes or disc cells surrounded by abundant matrix. The role of FGF‐8 has recently been identified as a catabolic mediator in rat and rabbit articular cartilage, but its precise biological impact on human adult articular cartilage or IVD tissue remains unknown. The available evidence reveals the promise of FGF‐2/FGFR1 antagonists, FGF‐18/FGFR3 agonists, and FGF‐8 antagonists (i.e., anti‐FGF‐8 antibody) as potential therapies to prevent cartilage degeneration and/or promote cartilage regeneration and repair in the future. J. Cell. Biochem. 114: 735–742, 2013. © 2012 Wiley Periodicals, Inc. 相似文献
10.
Presta M Dell'Era P Mitola S Moroni E Ronca R Rusnati M 《Cytokine & growth factor reviews》2005,16(2):159-178
Fibroblast growth factors (FGFs) are a family of heparin-binding growth factors. FGFs exert their pro-angiogenic activity by interacting with various endothelial cell surface receptors, including tyrosine kinase receptors, heparan-sulfate proteoglycans, and integrins. Their activity is modulated by a variety of free and extracellular matrix-associated molecules. Also, the cross-talk among FGFs, vascular endothelial growth factors (VEGFs), and inflammatory cytokines/chemokines may play a role in the modulation of blood vessel growth in different pathological conditions, including cancer. Indeed, several experimental evidences point to a role for FGFs in tumor growth and angiogenesis. This review will focus on the relevance of the FGF/FGF receptor system in adult angiogenesis and its contribution to tumor vascularization. 相似文献
11.
Qiongzhen Chen Jinmeng Li Junfeng Ma Xiaoning Yang Ming Ni Yali Zhang Xiaokun Li Zhuofeng Lin Fanghua Gong 《Journal of cellular and molecular medicine》2020,24(9):5341-5351
Fibroblast growth factor 21 (FGF21), a metabolic hormone with pleiotropic effects on glucose and lipid metabolism and insulin sensitivity, alleviates the process of acute pancreatitis (AP). However, its mechanism remains elusive. The pathological and physiological characteristics of FGF21 are observed in both patients with AP and cerulein‐induced AP models, and the mechanisms of FGF21 in response to AP are investigated by evaluating the impact of autophagy in FGF21‐treated mice and cultured pancreatic cells. Circulating levels of FGF21 significantly increase in both AP patients and cerulein‐induced AP mice, which is accompanied by the change of pathology in pancreatic injury. Replenishment of FGF21 distinctly reverses cerulein‐induced pancreatic injury and improves cerulein‐induced autophagy damage in vivo and in vitro. Mechanically, FGF21 acts on pancreatic acinar cells to up‐regulate Sirtuin‐1 (Sirt1) expression, which in turn repairs impaired autophagy and removes damaged organs. In addition, blockage of Sirt1 accelerates cerulein‐induced pancreatic injury and weakens the regulative effect in FGF21‐activated autophagy in mice. These results showed that FGF21 protects against cerulein‐induced AP by activation of Sirtuin‐1‐autophagy axis. 相似文献
12.
13.
Spatial and temporal separation of signal transduction pathways often determines the specificity in cellular responses. Recent advances have improved our understanding of how growth factor signalling is influenced by the formation of molecular complexes (signalosomes) in distinct cellular compartments. There has also been new insight into the mechanisms that determine the signalling competence of these complexes and their role in receptor endocytosis, retrograde trafficking in neurons and restricted protein biosynthesis, and many examples have been found where signalosome deregulation leads to disease. 相似文献
14.
Fibroblast growth factor interactions in the developing lung. 总被引:3,自引:0,他引:3
Cellular activities that lead to organogenesis are mediated by epithelial-mesenchymal interactions, which ultimately result from local activation of complex gene networks. Fibroblast growth factor (FGF) signaling is an essential component of the regulatory network present in the embryonic lung, controlling proliferation, differentiation and pattern formation. However, little is known about how FGFs interact with other signaling molecules in these processes. By using cell and organ culture systems, we provide evidence that FGFs, Sonic hedgehog (Shh), bone morphogenetic protein 4 (BMP-4), and TGFbeta-1 form a regulatory circuit that is likely relevant for lung development in vivo. Our data show that FGF-10 and FGF-7, important for patterning and growth of the lung bud, are differentially regulated by FGF-1, -2 and Shh. In addition, we show that FGFs regulate expression of Shh, BMP-4 and other FGF family members. Our data support a model in which Shh, TGFbeta-1 and BMP-4 counteract the bud promoting effects of FGF-10, and where FGF levels are maintained throughout lung development by other FGFs and Shh. 相似文献
15.
Summary Recent studies have determined that fibroblast growth factor (FGF) potentiates the soft agar growth responses of NRK-49F cells
to several combinations of transforming growth factors (TGFs). In the current study, two other non-transformed cell lines,
NR-6 and AKR-2B, which do not spontaneously form colonies in soft agar, were examined for their soft agar growth responses
to FGF. Both the acidic form and basic form of FGF were found to induce the soft agar growth of these cells. In the case of
NR-6 cells, the effects of TGF-β were also examined. TFG-β potentiated the soft agar growth response of NR-6 cells to FGF,
but on its own did not induce soft agar growth. Attempts to identify other factors capable of modulating the response of these
cells to FGF, led to the finding that both 12-0-tetra-decanoylphorbol-13-acetate and retinoic acid suppress FGF-induced soft
agar growth of NR-6 cells and AKRR-2B cells. The finding that FGF induces the soft agar growth of both non-transformed cell
lines, together with the findings of others that both forms of FGF are angiogenic, lends further support to the suggestion
that FGF plays a significant role in the in vivo growth of some, and possibly many, tumors.
This work was supported by grants from the Nebraska Department of Health (86-11R, 87-38), the National Institute of Child
Health and Human Development (HD 19837, HD 21568) and the National Cancer Institute (Laboratory Cancer Research Center Support
Grant CA 36727).
Editor's Statement The last several years have seen extraordinary advances in the understanding of the biochemistry and physiology
of heparin-binding growth factors. Among the activities of these peptides that may be of significance for neoplasia and wound
healingin vivo is ability to promote anchorage independent growth of some cell types. In this study the interactions among several stimulatory
and inhibitory factors are examined in a soft agar growth assay. An appreciation of these interactions is critical in attempts
to relatein vitro effects to those in the intact organism. 相似文献
16.
Nan Wang Yetong Dong Xiejun Xu Yingjie Shen Zhiyuan Huang Yin Yu Zhili Liu Wenjie Gong Siyi Zhang Yeyi Zheng Yonghuan Song Zhongxin Zhu Litai Jin Weitao Cong 《Cell proliferation》2022,55(11)
ObjectivesUltraviolet light B (UVB) irradiation can induce skin injury and result in keratinocytes proliferation inhibition. However, the molecular understanding of the repair during UVB‐induced cell proliferation inhibition remains poorly understood. The purpose of this study was to explore the role and potential mechanism of FGF10 in promoting keratinocytes cell cycle and proliferation after UVB injury.Materials and MethodsExpression of FGF10 protein was analysed in skin treated with UVB radiation by immunohistochemistry. The proliferation potential was examined by Immunofluorescence, Western Blot and RT‐PCR under UVB radiation, treated with FGF10 protein or overexpression of FGF10 using adeno‐associated virus. CCK8 kit was used to further detect cell proliferation ability.ResultsWe found that FGF10 is highly expressed in skin treated with UVB. Overexpression of FGF10 has a protective effect against UVB‐induced skin damage by balancing epidermal thickness and enhancing epidermal keratinocytes proliferation. Importantly, FGF10 is found to alleviate UVB‐induced downregulation of YAP activity, then promoting keratinocytes proliferation. Disruption of YAP function, either with the small molecule YAP inhibitor Verteporfin (VP) or YAP small‐interfering RNA (siRNA), largely abolishes the protective activity of FGF10 on epidermal keratinocytes proliferation. Meanwhile, disruption of ERK kinase (MEK) activity with U0126 or ERK siRNA hinder the positive influence of FGF10 on UVB‐induced skin injury.ConclusionFGF10 promotes epidermal keratinocytes proliferation during UVB‐induced skin injury in an ERK/YAP‐dependent manner.Schematic illustration of the protective effects of FGF10 on keratinocytes under UVB radiation. UVB radiation would cause skin injury and proliferation inhibition. In this study, we revealed that FGF10 promotes keratinocytes cell cycle and proliferation via ERK/YAP signalling pathway. 相似文献
17.
C Z Borland J L Schutzman M J Stern 《BioEssays : news and reviews in molecular, cellular and developmental biology》2001,23(12):1120-1130
Growth factor receptor tyrosine kinases (RTKs), such as the fibroblast growth factor receptor (FGFR), play a major role in how cells communicate with their environment. FGFR signaling is crucial for normal development, and its misregulation in humans has been linked to developmental abnormalities and cancer. The precise molecular mechanisms by which FGFRs transduce extracellular signals to effect specific biologic responses is an area of intense research. Genetic analyses in model organisms have played a central role in our evolving understanding of these signal transduction cascades. Genetic studies in the nematode C. elegans have contributed to our knowledge of FGFR signaling by identifying genes involved in FGFR signal transduction and linking their gene products together into signaling modules. This review will describe FGFR-mediated signal transduction in C. elegans and focus on how these studies have contributed to our understanding of how FGFRs orchestrate the assembly of intracellular signaling pathways. 相似文献
18.
成纤维细胞生长因子21(FGF21)作为新近发现的内源性调节物质代谢因子,可由人体两大内分泌器官肝脏及骨骼肌分泌,其在调节代谢性疾病方面的生理作用近年来被医学界密切关注.大量研究发现FGF21可增加能量消耗、降低血浆与肝脏甘油三脂及低密度脂蛋白水平;调节葡萄糖代谢,发挥增强脂肪细胞摄取葡萄糖能力、降低血糖及抑制胰高血糖素分泌的作用.在临床2型糖尿病及非酒精性脂肪肝患者血浆中FGF21水平与对照组的显著差异具有统计学意义,且在控制其它因素后,其与病情的预后显著相关.而对于心血管病患者,FGF21可能通过其各项生理作用,拮抗心肌细胞凋亡及增强心肌抗氧化能力,一定程度上延缓心血管疾病的发生发展,但FGF21上述调节代谢相关性疾病的生理作用机制及途径目前尚不完全明确.本文简述FGF21的生物学特性及在代谢性疾病中的研究进展. 相似文献
19.
20.
Epidermal growth factor (EGF) receptor (EGFR) signalling regulates diverse cellular functions, promoting cell proliferation, differentiation, migration, cell growth and survival. EGFR signalling is critical during embryogenesis, in particular in epithelial development, and disruption of the EGFR gene results in epithelial immaturity and perinatal death. EGFR signalling also functions during wound healing responses through accelerating wound re-epithelialisation, inducing cell migration, proliferation and angiogenesis. Upregulation of EGFR signalling is often observed in carcinomas and has been shown to promote uncontrolled cell proliferation and metastasis. Therefore aberrant EGFR signalling is a common target for anticancer therapies. Various reports indicate that EGFR signalling primarily occurs at the plasma membrane and EGFR degradation following endocytosis greatly attenuates signalling. Other studies argue that EGFR internalisation is essential for complete activation of downstream signalling cascades and that endosomes can serve as signalling platforms. The aim of this review is to discuss current understanding of intersection between EGFR signalling and trafficking. 相似文献