首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of Na+-K+ pump activation on endothelium-dependent relaxation (EDR) and on intracellular Ca2+ concentration ([Ca2+]i) was examined in mouse aorta and mouse aortic endothelial cells (MAECs). The Na+-K+ pump was activated by increasing extracellular K+ concentration ([K+]o) from 6 to 12 mM. In aortic rings, the Na+ ionophore monensin evoked EDR, and this EDR was inhibited by the Na+/Ca2+ exchanger (NCX; reverse mode) inhibitor KB-R7943. Monensin-induced Na+ loading or extracellular Na+ depletion (Na+ replaced by Li+) increased [Ca2+]i in MAECs, and this increase was inhibited by KB-R7943. Na+-K+ pump activation inhibited EDR and [Ca2+]i increase (K+-induced inhibition of EDR and [Ca2+]i increase). The Na+-K+ pump inhibitor ouabain inhibited K+-induced inhibition of EDR. Monensin (>0.1 microM) and the NCX (forward and reverse mode) inhibitors 2'4'-dichlorobenzamil (>10 microM) or Ni2+ (>100 microM) inhibited K+-induced inhibition of EDR and [Ca2+]i increase. KB-R7943 did not inhibit K+-induced inhibition at up to 10 microM but did at 30 microM. In current-clamped MAECs, an increase in [K+]o from 6 to 12 mM depolarized the membrane potential, which was inhibited by ouabain, Ni2+, or KB-R7943. In aortic rings, the concentration of cGMP was significantly increased by acetylcholine and decreased on increasing [K+]o from 6 to 12 mM. This decrease in cGMP was significantly inhibited by pretreating with ouabain (100 microM), Ni2+ (300 microM), or KB-R7943 (30 microM). These results suggest that activation of the forward mode of NCX after Na+-K+ pump activation inhibits Ca2+ mobilization in endothelial cells, thereby modulating vasomotor tone.  相似文献   

2.
Stimulation of pig peripheral blood lymphocytes with concanavalin A (Con A) provoked a rapid increase (two- to threefold) in the rate of ouabain-inhibitable K+ uptake observable within 3-10 min of stimulation with mitogen. At least two phases can be distinguished in the activation of the Na+/K+ pump: the early phase (till 3 h) is characterized by an unaltered number of ouabain binding sites and the later phase (noted at 5 h) by an increased number of such sites. Both K+ efflux and influx increased to the same extent, thereby maintaining [K+]i at the same level as in resting cells (120 mM). Within 3 min of addition of mitogen, the rates of total and amiloride-inhibitable Na+ uptake went up two- and fourfold, respectively, thus resulting in rapid increase in [Na+]i from 20 to about 50 mM. Activation of the Na+/K+ pump was not observed when the cells were stimulated with Con A in low Na+ medium (9 mM), nor did the usual rise in [Na+]i occur. When monensin (30 microM), a Na+/H+ ionophore, was added to resting cells, an increase in both [Na+]i and active K+ uptake occurred in normal medium but not when cells were suspended in low Na+ isotonic buffer. Amiloride (500 microM), on the other hand, prevented both the Con A-induced increase in [Na+]i and the activation of the Na+/K+ pump. Despite complete inhibition of the Na+,K+-ATPase in the presence of ouabain (1 mM), Con A activated the amiloride-inhibitable Na+ uptake in the usual way. In mouse splenocytes stimulated with Con A, there was also a parallel rise in both [Na+]i and active K+ uptake but this took considerably longer to occur than was the case in pig peripheral blood lymphocytes. Increase in both ionic fluxes, the former passive and the latter active, is essential to the entry and maintenance of the cells in proliferative cycle.  相似文献   

3.
The objective of this work was to confirm that the contractile effects of ouabain and Na(+)-free solutions in guinea pig tracheal rings are associated with increments in the cytosolic free Ca2+ concentration ([Ca2+]i) in cultured tracheal smooth muscle (TSM) cells. Cultured cells were alpha-actin positive. Histamine (50 microM) and Na(+)-free solution elicited a transient increase in [Ca2+]i, while the responses to thapsigargin (1 microM) and ouabain (1 mM) were long lasting. However, carbachol (10, 200, and 500 mM) and high K(+)-solution produced no effect on [Ca2+]i, suggesting that cultured guinea pig TSM cells display a phenotype change but maintain some of the tracheal rings physiological properties. The transient rise in [Ca2+]i in response to the absence of extracellular Na+ and the effect of ouabain may indicate the participation of the Na(+)/Ca2+ exchanger (NCX) in the regulation of [Ca2+]i.  相似文献   

4.
The effects of extracellular K+ on endothelium-dependent relaxation (EDR) and on intracellular Ca2+ concentration ([Ca2+]i) were examined in mouse aorta, mouse aorta endothelial cells (MAEC), and human umbilical vein endothelial cells (HUVEC). In mouse aortic rings precontracted with prostaglandin F2alpha or norepinephrine, an increase in extracellular K+ concentration ([K+]o) from 6 to 12 mM inhibited EDR concentration dependently. In endothelial cells, an increase in [K+]o inhibited the agonist-induced [Ca2+]i increase concentration dependently. Similar to K+, Cs+ also inhibited EDR and the increase in [Ca2+]i concentration dependently. In current-clamped HUVEC, increasing [K+]o from 6 to 12 mM depolarized membrane potential from -32.8 +/- 2.7 to -8.6 +/- 4.9 mV (n = 8). In voltage-clamped HUVEC, depolarizing the holding potential from -50 to -25 mV decreased [Ca2+]i significantly from 0.95 +/- 0.03 to 0.88 +/- 0.03 microM (n = 11, P < 0.01) and further decreased [Ca2+]i to 0.47 +/- 0.04 microM by depolarizing the holding potential from -25 to 0 mV (n = 11, P < 0.001). Tetraethylammonium (1 mM) inhibited EDR and the ATP-induced [Ca2+]i increase in voltage-clamped MAEC. The intermediate-conductance Ca2+-activated K+ channel openers 1-ethyl-2-benzimidazolinone, chlorozoxazone, and zoxazolamine reversed the K+-induced inhibition of EDR and increase in [Ca2+]i. The K+-induced inhibition of EDR and increase in [Ca2+]i was abolished by the Na+-K+ pump inhibitor ouabain (10 microM). These results indicate that an increase of [K+]o in the physiological range (6-12 mM) inhibits [Ca2+]i increase in endothelial cells and diminishes EDR by depolarizing the membrane potential, decreasing K+ efflux, and activating the Na+-K+ pump, thereby modulating the release of endothelium-derived vasoactive factors from endothelial cells and vasomotor tone.  相似文献   

5.
The bacterium Vitreoscilla generates an electrical potential gradient due to sodium ion (delta psi Na+) across its membrane via respiratory-driven primary Na+ pump(s). The role of the delta psi Na+ as a driving force for ATP synthesis was, therefore, investigated. In respiring starved cells pulsed with 100 mM external Na+ [( Na+]o) there was a 167% net increase in cellular ATP concentration over basal levels compared with 0, 56, 78, and 78% for no addition, choline, Li+, and K+ controls, respectively. Doubling the [Na+]o to 200 mM boosted the net increase to 244% but a similar doubling of the choline caused only an increase to 78%. When the initial condition was intracellular Na+ ([Na+]i) = [Na+]o = 100 mM, there was a 94% net increase in cellular ATP compared with only 18 and 11% for Li+ and K+ controls, respectively, indicating that Nai+ may be the only cation tested that the cells extruded to generate the electrochemical gradient required to drive ATP synthesis. The Na(+)-dependent ATP synthesis was inhibited completely by monensin (12 microM), but only transiently by the protonophore 3,5-di-tert-butyl-4-hydroxybenzaldehyde (100 microM), further evidence that the Na+ gradient and not a H+ gradient was driving the ATP synthesis. ATP synthesis in response to an artificially imposed H+ gradient (delta pH approximately 3) in the absence of an added cation, or in the presence of Li+, K+, or choline, yielded similar delta ATP/delta pH ratios of 0.98-1.22. In the presence of Na+, however, this ratio dropped to 0.23, indicating that Na+ inhibited H(+)-coupling to ATP synthesis and possibly that H+ and Na+ coupling to ATP synthesis share a common catalyst. The above evidence adds to previous findings that under normal growth conditions Na+ is probably the main coupling cation for ATP synthesis in Vitreoscilla.  相似文献   

6.
In the present work, the forward and/or reversed Na+/Ca2+ exchange in cerebellar granular cells was suppressed by substitution of Na+o by Li+ before, during, and after exposure to glutamate for varied time and also using the inhibitor KB-R7943 of the reversed exchange. After glutamate challenge for 1 min, Na+o/Li+ substitution did not influence the recovery of low [Ca2+]i in a calcium-free medium. A 1-h incubation with 100 microM glutamate induced in the neurons a biphasic and irreversible [Ca2+]i rise (delayed calcium deregulation (DCD)), enhancement of [Na+]i, and decrease in the mitochondrial potential. If Na+o had been substituted by Li+ before the application of glutamate, i.e. the exchange reversal was suppressed during the exposure to glutamate, the number of cells with DCD was nearly fourfold lowered. However, addition of the Na+/K+-ATPase inhibitor ouabain (0.5 mM) not preventing the exchange reversal also decreased DCD in the presence of glutamate. Both exposures decreased the glutamate-caused loss of intracellular ATP. Glucose deprivation partially abolished protective effects of the Na+o/Li+ substitution and ouabain. KB-R7943 (10 microM) increased 7.4-fold the number of cells with the [Ca2+]i decreased to the basal level after the exposure to glutamate. Thus, reversal of the Na+/Ca2+ exchange reinforced the glutamate-caused perturbations of calcium homeostasis in the neurons and slowed the recovery of the decreased [Ca2+]i in the post-glutamate period. However, for development of DCD, in addition to the exchange reversal, other factors are required, in particular a decrease in the intracellular concentration of ATP.  相似文献   

7.
The effect of inhibition of Na+/K(+)-ATPase by ouabain on the arginine vasopressin (AVP)-induced increase in intracellular Na+ concentration [( Na+]i) was examined in cultured rat vascular smooth muscle cells (VSMC) by the direct measurement of [Na+]i using a fluorescent indicator dye. AVP at a concentration of 1 x 10(-9) M or higher increased [Na+]i in a dose-dependent manner in cultured rat VSMC. The preincubation of cells with 1 x 10(-4) M ouabain for 1 hr at 37 degrees C did not affect the basal [Na+]i but enhanced the 1 x 10(-6) M AVP-induced increase in [Na+]i. The preincubation was not necessary because similar results were obtained after the simultaneous administration of AVP and ouabain. The treatment with ouabain did not affect the intracellular pH changes induced by AVP. These results therefore indicate that the inhibition of Na+/K(+)-ATPase enhances the AVP-induced increase in [Na+]i by decreasing cellular Na+ efflux in cultured rat VSMC.  相似文献   

8.
Unidirectional and net Na+ fluxes modified by changes in internal Na+ concentration ([Na+]i) were studied in human red blood cells incubated in K+-free solutions containing 10-minus 4 m ouabain. An increase in [Na+]i brought about (a) a reduction in net Na+ gain, (b) no change in Na+ influx, (c) a reduction in the rate constant for Na+ effux and (d) an increase in Na+ efflux. Similar reductions in net Na+ gain were observed when the changes in [Na+]i were carried out at constant [K+]i. In addition, the rate constant for 42K+ efflux was not affected by changes in [Na+]i. The electrical membrane potential (as determined from the chloride distribution ratio) was also constnat. Furosemide (10-minus 3 M) increased the net Na+ gain in concentration reduced Na+ efflux and increased Na+ influx: the magnitude of these effects was dependent onthe intracellular Na+. The reduction in the net Na+ gain as [Na+]i increased was unaffected by depletion of cellular ATP to values below 10 mumol/1 cells, and this effect was independent of the depletion method used  相似文献   

9.
Using K+-selective microelectrodes, [K+]o was measured in the subretinal space of the isolated retina of the toad, Bufo marinus. During maintained illumination, [K+]o fell to a minimum and then recovered to a steady level that was approximately 0.1 mM below its dark level. Spatial buffering of [K+]o by Müller (glial) cells could contribute to this reaccumulation of K+. However, superfusion with substances that might be expected to block glial transport of K+ had no significant effect upon the reaccumulation of K+. These substances included blockers of gK (TEA+, Cs+, Rb+, 4-AP) and a gliotoxin (alpha AAA). Progressive slowing of the rods' Na+/K+ pump (perhaps caused by a light-evoked decrease in [Na+]i) also could contribute to this reaccumulation of K+ by reducing the uptake of K+ from the subretinal space. As evidence for a major contribution by this mechanism, treatments designed to prevent such slowing of the pump reversibly blocked reaccumulation. These treatments included superfusion with 2 microM ouabain, or lowering [K+]o, PO2, or temperature. It is likely that such treatments inhibit the pump, increase [Na+]i, and attenuate any light-evoked decrease in [Na+]i. The results are consistent with the following hypothesis. At light onset, the decrease in rod gNa will reduce the Na+ influx and the resulting rod hyperpolarization will reduce the K+ efflux. In combination with these reduced passive fluxes, the continuing active fluxes will lower both [K+]o and [Na+]i, which in turn will inhibit the pump. In support of this hypothesis, the solutions to a pair of coupled differential equations that model changes in both [K+]o and [Na+]i match quantitatively the time course of the observed changes in [K+]o during and after maintained illumination for all stimuli examined.  相似文献   

10.
Although low Na+ is known to increase the intracellular Ca2+ concentration ([Ca2+]i) in cardiac muscle, the exact mechanisms of low Na+ -induced increases in [Ca2+]i are not completely defined. To gain information in this regard, we examined the effects of low Na+ (35 mM) on freshly isolated cardiomyocytes from rat heart in the absence and presence of different interventions. The [Ca2+]i in cardiomyocytes was measured fluorometrically with Fura-2 AM. Following a 10 min incubation, the low Na+ -induced increase in [Ca2+], was only observed in cardiomyocytes depolarized with 30 mM KCl, but not in quiescent cardiomyocytes. In contrast, low Na+ did not alter the ATP-induced increase in [Ca2+]i in the cardiomyocytes. This increase in [Ca2+]i due to low Na+ and elevated KCl was dependent on the extracellular concentration of Ca2+ (0.25-2.0 mM). The L-type Ca2+ -channel blockers, verapamil and diltiazem, at low concentrations (1 microM) depressed the low Na+, KCl-induced increase in [Ca2+]i without significantly affecting the response to low Na+ alone. The low Na+, high KCl-induced increase in [Ca2+]i was attenuated by treatments of cardiomyocytes with high concentrations of both verapamil (5 and 10 microM), and diltiazem (5 and 10 microM) as well as with amiloride (5-20 microM), nickel (1.25-5.0 mM), cyclopiazonic acid (25 and 50 microM) and thapsigargin (10 and 20 microM). On the other hand, this response was augmented by ouabain (1 and 2 mM) and unaltered by 5-(N-methyl-N-isobutyl) amiloride (5 and 10 microM). These data suggest that in addition to the sarcolemmal Na+ - Ca2+ exchanger, both sarcolemmal Na+ - K+ ATPase, as well as the sarcoplasmic reticulum Ca2+ -pump play prominent roles in the low Na+ -induced increase in [Ca2+]i.  相似文献   

11.
Long term elevation of the intracellular Na+/K+ ratio inhibits macromolecule synthesis and proliferation in the majority of cell types studied so far, including vascular smooth muscle cells (VSMC). We report here that inhibition of the Na+,K+ pump in VSMC by ouabain or a 1-h preincubation in K+-depleted medium attenuated apoptosis triggered by serum withdrawal, staurosporine, or okadaic acid. In the absence of ouabain, both DNA degradation and Caspase-3 activation in VSMC undergoing apoptosis were insensitive to modification of the extracellular Na+/K+ ratio as well as to hyperosmotic cell shrinkage. In contrast, protection of VSMC from apoptosis by ouabain was abolished under equimolar substitution of Na+o with K+o, showing that the antiapoptotic action of Na+,K+ pump inhibition was caused by inversion of the intracellular Na+/K+ ratio. Unlike VSMC, the same level of increment of the [Na+]i/[K+]i ratio caused by a 2-h preincubation of Jurkat cells with ouabain did not affect chromatin cleavage and Caspase-3 activity triggered by treatment with Fas ligand, staurosporine, or hyperosmotic shrinkage. Thus, our results show for the first time that similar to cell proliferation, maintenance of a physiologically low intracellular Na+/K+ ratio is required for progression of VSMC apoptosis.  相似文献   

12.
Previous studies have indicated that 20-hydroxyeicosatetraenoic acid (20-HETE) inhibits Na+ transport in the medullary thick ascending loop of Henle (mTALH), but the mechanisms involved remain uncertain. The present study compared the effects of 20-HETE with those of ouabain and furosemide on intracellular Na+ concentration ([Na+]i), Na+ -K+ -ATPase activity, and 86Rb+ uptake, an index of Na+ transport, in mTALH isolated from rats. Ouabain (2 mM) increased, whereas furosemide (100 microM) decreased, [Na+]i in the mTALH of rats. Ouabain and furosemide inhibited 86Rb+ uptake by 91 and 30%, respectively. 20-HETE (1 microM) had a similar effect as ouabain and increased [Na+]i from 19 +/- 1 to 30 +/- 1 mM. 20-HETE reduced Na+ -K+ -ATPase activity by 30% and 86Rb+ uptake by 37%, but it had no effect on 86Rb+ uptake or [Na+]i in the mTALH of rats pretreated with ouabain. 20-HETE inhibited 86Rb+ uptake by 12% and increased [Na+]i by 19 mM in mTALH pretreated with furosemide. These findings indicate that 20-HETE secondarily inhibits Na+ transport in the mTALH of the rat, at least, in part by inhibiting the Na+ -K+ -ATPase activity and raising [Na+]i.  相似文献   

13.
We investigated the effect of high (12, 20, and 50 mM) extracellular K+ concentrations ([K+]0) on [U-14C] acetate oxidation to CO2 in cerebral cortex slices of control and perinatal malnourished rats. High [K+]o increased the acetate oxidation, compared with a medium containing 2.7 mM [K+]0. By investigating the mechanisms involved in this stimulation, it was shown that (i) ouabain (1 mM) and monensin (10 microM) prevented this increase; (ii) in a medium with physiological [K+]0 (2.7 mM), the decreasing of [Na+]0 stimulated acetate oxidation. These results suggest that the stimulatory effect of [K+]0 on acetate oxidation was due to the decreasing of Na1 levels. Considering that malnutrition could alter the activity of Na+,K(+)-ATPase and/or other pertinent proteins, its effect on acetate oxidation was investigated. The malnutrition, which altered the body and cerebral weight of rats, did not modify the acetate oxidation in any protocol.  相似文献   

14.
The effects of zero extracellular Ca2+ on the contractility of rat diaphragmatic strips in vitro were studied in conjunction with various pharmacological agents known to influence the intracellular Ca2+ concentration: the Na+ ionophore, monensin, and the Na(+)-K+ pump inhibitor, ouabain, which enhance [Ca2+]i, caffeine, which induces Ca2+ release from the sarcoplasmic reticulum (SR), and ryanodine, which prevents Ca2+ retention by the SR. The effect of increasing [Ca2+]i on diaphragmatic contraction was assessed by comparing contractions induced by 120 mM K+ in the small muscle strips before and after the addition of ouabain or monensin. Monensin (20 microM) and ouabain (1-100 microM) augmented contractions up to threefold. Treatment of diaphragm strips with 3 nM ryanodine increased baseline tension 360% above the original resting tension but only if the diaphragm was electrically stimulated concurrently; 100 microM ryanodine induced contracture in quiescent tissue. High K+ contractures were of greater magnitude in the presence of ryanodine compared with control, and relaxation time was prolonged by greater than 200%. Ca(2+)-free conditions ameliorated these actions of ryanodine. Ryanodine reduced contractions induced by 10 mM caffeine and nearly abolished them in Ca(2+)-free solution. The data demonstrate that extracellular Ca2+ is important in certain types of contractile responses of the diaphragm and suggest that the processes necessary to utilize extracellular Ca2+ are present in the diaphragm.  相似文献   

15.
Results obtained with adipocyte ghosts indicated that the relative pumping activities of the alpha 1 and alpha 2 isoforms of the (Na+,K+) pump depend strongly on intracellular sodium concentration, [Na+]i (McGill, D. (1991) J. Biol. Chem. 266, 15817-15823). Accordingly, [Na+]i was determined in rat adipocytes as a function of ouabain concentration and found to increase gradually as the concentration of ouabain increased. Incubation conditions were therefore designed such that the [Na+]i at 0 M and 10(-5) M ouabain were identical, in order to study the activities of both forms of the pump under identical conditions. Under these conditions, the alpha 2 isozyme accounts for 42% of the total pumping activity; these data prove that the activity of the alpha 2 isozyme is suppressed to a much greater extent than that of the alpha 1 isozyme, in relation to maximally obtainable activities measured in plasma membranes (Lytton J., Lin, J.C., and Guidotti, G. (1985) J. Biol. Chem. 260, 1177-1184). Furthermore, insulin stimulation of 86Rb+/K+ uptake in adipocytes results from a 58 and a 128% increase in the activities of the alpha 1 and alpha 2 isozymes (Na+,K+) pump, respectively. In addition, it is shown that under the conditions used to determine the [Na+]i dependence of 86Rb+/K+ uptake into adipocytes (0 mM KCl, various [NaCl]), [Na+]i decreases rapidly upon the addition of KCl/86RbCl for the initiation of the uptake measurement. By making uptake measurements quickly after the addition of KCl to eliminate the effect of a decreasing [Na+]i, we demonstrate that the stimulation of the alpha 1 isozyme is due to a small decrease in the K0.5Na+ whereas the stimulation of the alpha 2 isozyme results from a decrease in the K0.5Na+ and an increase in the Vmax.  相似文献   

16.
Thin strips of guinea pig tenia cecum were loaded with the Mg2+ indicator furaptra, and the indicator fluorescence signals measured in Ca2+-free condition were converted to cytoplasmic-free Mg2+ concentration ([Mg2+]i). Lowering the extracellular Na+ concentration ([Na+]o) caused a reversible increase in [Mg2+]i, consistent with the inhibition of Na+ gradient-dependent extrusion of cellular Mg2+ (Na+-Mg2+ exchange). Curve-fitting analysis indicated that the relation between [Na+]o and the rate of rise in [Mg2+], had a Hill coefficient of approximately 3, a [Na+]o at the half-maximal rate of rise of approximately 30 mM, and a maximal rate of 0.16 +/- 0.01 microM/s (mean +/- SE, n = 6). Depolarization with 56 mM K+ shifted the curve slightly toward higher [Na+]o without significantly changing the maximal rate, suggesting that the Na+-Mg2+ exchange was inhibited by depolarization. The maximal rate would correspond to a flux of 0.15-0.4 pmol/cm2/s, if cytoplasmic Mg2+ buffering power (defined as the ratio of the changes in total Mg2+ and free Mg2+ concentrations) is assumed to be 2-5. Ouabain (1-5 microM) increased the intracellular Na+ concentration, as assessed with fluorescence of SBFI (sodium-binding benzofuran isophthalate, a Na+ indicator), and elevated [Mg2+]i. In ouabain-treated preparations, removal of extracellular Na+ rapidly increased [Mg2+]i, with an initial rate of rise roughly proportional to the degree of the Mg2+ load, and, probably, to the Na+ load caused by ouabain. The enhanced rate of rise in [Mg2+]i (up to approximately 1 microM/s) could be attributed to the Mg2+ influx as a result of the reversed Na+-Mg2+ exchange. Our results support the presence of a reversible and possibly electrogenic Na+-Mg2+ exchange in the smooth muscle cells of tenia cecum.  相似文献   

17.
We examined the role of the monovalent cations Na+ and K+ in the events encompassing the release of O-2 by alveolar macrophages after stimulation with formyl methionyl phenylalanine (FMP). This was accomplished by determining the effect of changing the extracellular [Na+] and/or [K+] on FMP-stimulated O-2 production; and measuring 22Na+, 42K+ and 86Rb+ influx and efflux and intracellular [K+] for control and FMP-stimulated alveolar macrophages. Stimulated O-2 production was relatively insensitive to changes in extracellular K+ or Na+ concentrations until the [Na+] was decreased below 35 mM. At 4 mM [Na+], the rate of O-2 production remained at 75% of the maximal rate observed at physiological concentrations of [Na+]. Both influx and efflux of 22Na+ were stimulated above control rates by FMP. The increased rates of fluxes lasted for a few minutes suggesting a transient increase in membrane permeability to Na+. Ouabain partially inhibited 22Na+ efflux but had no effect on O-2 release. The influx of 86Rb+ and 42K+ was not altered by the addition of FMP but was virtually abolished in the presence of 10 microM ouabain or 1 mM quinine. In the presence of extracellular calcium, FMP-stimulated a prolonged (greater than 20 minutes) increase in 86Rb+ or 42K+ efflux which was inhibitable by 1 mM quinine. In the absence of extracellular calcium, FMP stimulation of K+ efflux was greatly diminished and was not affected by quinine, although quinine still inhibited O-2 production under these conditions. It was also observed that there was a loss of intracellular K+ when cells were stimulated by FMP in the presence of Ca+2, but not in the absence of Ca+2. Taken together, these results suggest a minimal direct role, if any, for K+ in the events that lead to FMP-stimulated O-2 release by alveolar macrophages.  相似文献   

18.
The influence of the transmembrane Na+ gradient on the intracellular free calcium concentration, [Ca2+]i, was studied in Sepharose gel-filtered platelets from healthy human subjects, using the Ca-sensitive fluorescent dye, fura-2. Raising the internal Na+ concentration, [Na+]i, by Na+ pump inhibition with 0.05 mM ouabain, without changing external Na+ did not cause a significant increase in [Ca2+]i. Substitution of extracellular Na+ by iso-osmolar sucrose induced a rapid (half-time about 2 min) and significant rise in [Ca2+]i; this effect was amplified in Na-loaded platelets. Partial restitution of external Na+ in these cells with increased [Ca2+]i promoted a significant and rapid Na+ concentration-dependent fall in [Ca2+]i; little decline in [Ca2+]i was observed if K+ was used instead of Na+. These observations represent in vitro evidence for the existence of a Na/Ca exchange mechanism in human platelets that may, in vivo, participate in the control of [Ca2+]i.  相似文献   

19.
The regulation of [Ca2+]i in rat pinealocytes was studied using the fluorescent indicator quin2. Pinealocyte resting [Ca2+]i was approximately 100 nM; this rapidly decreased in low Ca2+ medium (approximately 10 microM), indicating there was a high turnover of [Ca2+]i in these cells. Norepinephrine (NE, 10(-6) M) increased [Ca2+]i to approximately 350 nM within 1 min; [Ca2+]i then remained elevated for 30 min. The relative potency of adrenergic agonists was NE greater than phenylephrine much greater than isoproterenol. Phentolamine (10(-6) M) and prazosin (10(-8) M) blocked the effects of adrenergic agonists; in contrast, propranolol (10(-6) M) or yohimbine (10(-6) M) had little or no effect. These observations indicate NE acts via alpha 1-adrenoceptors to elevate [Ca2+]i. The [Ca2+]i response to NE did not occur when [Ca2+]e was reduced to approximately 10 microM by adding EGTA 5s before NE, indicating an increase in net Ca2+ influx is involved rather than mobilization of Ca2+ from intracellular stores. The effect of NE was not blocked by nifedipine (10(-6) M), which did block a K+-induced increase in [Ca2+]i, presumably involving voltage-sensitive channels. Ouabain (10(-5) M) caused a gradual increase in [Ca2+]i; this increase was not blocked by nifedipine. Together these data indicate that pinealocyte [Ca2+]i may be influenced by mechanisms regulated by alpha 1-adrenoceptors, voltage-dependent Ca2+ channels, and perhaps a Na+/Ca2+ exchange mechanism stimulated by ouabain. These studies indicate that the pinealocyte is an interesting model to use to study the adrenergic regulation of [Ca2+]i because of the rapid and prolonged changes in [Ca2+]i produced by alpha 1-adrenoceptor activation.  相似文献   

20.
The new fluorescent Na+ indicator sodium-binding benzofuran isophthalate (SBFI) was used for determination of the cytosolic free Na+ concentration, [Na+]i, in human platelets. The dye could be loaded into platelets in the form of its acetoxymethyl ester (SBFI-AM). Calibration of the fluorescence in terms of [Na+]i was done by measuring the 345/385 nm excitation ratio (emission 490 nm) at various extracellular Na+ concentrations, [Na+]o, in the presence of gramicidin D. The 345/385 intensity ratio increased almost linearly when [Na+]i was stepwise raised from 20 to 60 mM. The basal value for [Na+]i was found to be 26.0 +/- 4.5 mM (n = 15). Incubation of platelets in Na(+)-free buffer decreased [Na+]i, whereas inhibition of the (Na+ + K+)-ATPase by 0.5 mM ouabain increased [Na+]i to 56 +/- 4 mM (n = 4) within 60 min. Activation of Na+/H+ exchange by exposing platelets to propionic acid also raised [Na+]i, and a comparable effect was produced by the Na+/H+ ionophore monensin. Activation of platelets with thrombin (0.1-0.5 unit/ml) also increased the 345/385 nm intensity ratio, an effect that was not seen in Na(+)-free buffer or after raising intracellular cAMP by treatment of platelets with prostaglandin E1. On the average, [Na+]i was raised to 59.5 +/- 5.3 mM (n = 15) at 10 min after addition of thrombin without a significant decrease for further 10 min. An increase in [Na+]i was also seen when platelets were challenged with the Ca2+ ionophore ionomycin, an effect that did not occur in the absence of Na+o. Our findings confirm earlier reports which demonstrated a rise in [Na+]i in stimulated platelets and show that SBFI is a useful tool for determination of [Na+]i in resting and stimulated platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号