首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphoglucomutase (EC 2.7.5.1, PGM) was purified to homogeneity from maize (Zea mays L.) leaves. The enzyme had specific activity 11. 7 U/mg protein and molecular mass (determined by gel-chromatography) of 133 +/- 4 kD. The molecular mass of PGM subunits determined by SDS-electrophoresis was 66 +/- 3 kD. The enzyme had Km for glucose-1-phosphate and glucose-1,6-diphosphate of 20.0 +/- 0.9 and 16.0 +/- 0.8 &mgr;M, respectively. Concentrations of glucose-1-phosphate and glucose-1,6-diphosphate above 3 and 0.4 mM, respectively, cause substrate inhibition. The enzyme activity was maximal at pH 8.0 and temperature 35 degreesC. Magnesium ions activate the enzyme and manganese ions inhibit it. 3-Phosphoglycerate is an uncompetitive inhibitor of the enzyme (Ki = 1.22 +/- 0.05 mM). Fructose-6-phosphate, 6-phosphogluconate, and ADP activate PGM, whereas ATP, UTP, and AMP inhibit the enzyme. Citrate was also a potent inhibitor, inhibitory effects of isocitrate and cis-aconitate being less pronounced.  相似文献   

2.
A homogeneous preparation of glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) with a specific activity of 3.88 U/mg protein was isolated from pea (Pisum sativum L.) leaves. The molecular mass of the G6PDH is 79 +/- 2 kD. According to SDS-PAGE, the molecular mass of the enzyme subunit is 40 +/- 3 kD. The Km values for glucose-6-phosphate and NADP are 2 and 0.5 mM, respectively. The enzyme has a pH optimum of 8.0. Mg2+, Mn2+, and Ca2+ activate the enzyme at concentrations above 1 mM. Galactose-6-phosphate and fructose-6-phosphate inhibit the G6PDH from pea leaves. Fructose-1, 6-bisphosphate and galactose-1-phosphate are enzyme activators. NADPH is a competitive inhibitor of the G6PDH with respect to glucose-6-phosphate (Ki = 0.027 mM). ATP, ADP, AMP, UTP, NAD, and NADH have no effect on the activity of the enzyme.  相似文献   

3.
Partial purification and in vitro inactivation of glucose-6-phosphate dehydrogenase from the yeast Saccharomyces cerevisiae in the Fe2+/H2O2 oxidation system were conducted. At the protein concentration 1.5 mg/ml, the enzyme lost 50% of activity within 5 minutes of incubation in presence of 2 mM hydrogen peroxide and 3 mM ferrous sulphate. The inactivation extent depended on time and concentrations of FeSO4 and H2O2. EDTA, ADP and ATP at concentration 0.5 mM enhanced inactivation. At the same time, the presence of 0.5 mM NADPH, 1 mM glucose-6-phosphate, 10 mM mannitol, 30 mM dimethylsulphoxide or 20 mM urea diminished this process. In comparison with native enzyme, index S(0,5) of the partially inactivated enzyme for glucose-6-phosphate was 2.1-fold higher, but for NADP it was 1,6-fold lower. Maximal activity of the partially inactivated enzyme was 3-5-fold lower than that of native one.  相似文献   

4.
Glucose-6-phosphate dehydrogenase from sporangiophores of Phycomyces blakesleeanus NRRL 1555 (-) was partially purified. The enzyme showed a molecular weight of 85 700 as determined by gel-filtration. NADP+ protected the enzyme from inactivation. Magnesium ions did not affect the enzyme activity. Glucose-6-phosphate dehydrogenase was specific for NADP+ as coenzyme. The reaction rates were hyperbolic functions of substrate and coenzyme concentrations. The Km values for NADP+ and glucose 6-phosphate were 39.8 and 154.4 microM, respectively. The kinetic patterns, with respect to coenzyme and substrate, indicated a sequential mechanism. NADPH was a competitive inhibitor with respect to NADP+ (Ki = 45.5 microM) and a non-competitive inhibitor with respect to glucose 6-phosphate. ATP inhibited the activity of glucose-6-phosphate dehydrogenase. The inhibition was of the linear-mixed type with respect to NADP+, the dissociation constant of the enzyme-ATP complex being 2.6 mM, and the enzyme-NADP+-ATP dissociation constant 12.8 mM.  相似文献   

5.
The kinetic properties of placental glucose-6-phosphate dehydrogenase were studied, since this enzyme is expected to be an important component of the placental protection system. In this capacity it is also very important for the health of the fetus. The placental enzyme obeyed "Rapid Equilibrium Ordered Bi Bi" sequential kinetics with K(m) values of 40+/-8 microM for glucose-6-phosphate and 20+/-10 microM for NADP. Glucose-6-phosphate, 2-deoxyglucose-6-phosphate and galactose-6-phosphate were used with catalytic efficiencies (k(cat)/K(m)) of 7.4 x 10(6), 4.89 x 10(4) and 1.57 x 10(4) M(-1).s(-1), respectively. The K(m)app values for galactose-6-phosphate and for 2-deoxyglucose-6-phosphate were 10+/-2 and 0.87+/-0.06 mM. With galactose-6-phosphate as substrate, the same K(m) value for NADP as glucose-6-phosphate was obtained and it was independent of galactose-6-phosphate concentration. On the other hand, when 2-deoxyglucose-6-phosphate used as substrate, the K(m) for NADP decreased from 30+/-6 to 10+/-2 microM as the substrate concentration was increased from 0.3 to 1.5 mM. Deamino-NADP, but not NAD, was a coenzyme for placental glucose-6-phosphate dehydrogenase. The catalytic efficiencies of NADP and deamino-NADP (glucose-6-phosphate as substrate) were 1.48 x 10(7) and 4.80 x 10(6) M(-1)s(-1), respectively. With both coenzymes, a hyperbolic saturation and an inhibition above 300 microM coenzyme concentration, was observed. Human placental glucose-6-phosphate dehydrogenase was inhibited competitively by 2,3-diphosphoglycerate (K(i)=15+/-3 mM) and NADPH (K(i)=17.1+/-3.2 microM). The small dissociation constant for the G6PD:NADPH complex pointed to tight enzyme:NADPH binding and the important role of NADPH in the regulation of the pentose phosphate pathway.  相似文献   

6.
Cloned myo-inositol-1-phpsphate synthase (INOS) of Drosophila melanogaster was expressed in Escherichia coli, and purified using a His-affinity column. The purified INOS required NAD+ for the conversion of glucose-6-phosphate to inositol-1-phosphate. The optimum pH for myo-inositol-1-phosphate synthase is 7.5, and the maximum activity was measured at 40 degrees C. The molecular weight of the native enzyme, as determined by gel filtration, was approximately Mr 271,000 +/- 15,000. A single subunit of approximately Mr 62,000 +/- 5,000 was detected upon SDS-polyacrylamide gel electrophoresis. The Michaelis (Km) and dissociation constants for glucose-6-phosphate were 3.5 and 3.7 mM, whereas for the cofactor NAD+ these were 0.42 and 0.4 mM, respectively.  相似文献   

7.
Chen L  Zhou C  Yang H  Roberts MF 《Biochemistry》2000,39(40):12415-12423
A gene putatively identified as the Archaeoglobus fulgidus inositol-1-phosphate synthase (IPS) gene was overexpressed to high level (about 30-40% of total soluble cellular proteins) in Escherichia coli. The recombinant protein was purified to homogeneity by heat treatment followed by two column chromatographic steps. The native enzyme was a tetramer of 168 +/- 4 kDa (subunit molecular mass of 44 kDa). At 90 degrees C the K(m) values for glucose-6-phosphate and NAD(+) were estimated as 0.12 +/- 0.04 mM and 5.1 +/- 0.9 microM, respectively. Use of (D)-[5-(13)C]glucose-6-phosphate as a substrate confirmed that the stereochemistry of the product of the IPS reaction was L-myo-inositol-1-phosphate. This archaeal enzyme, with the highest activity at its optimum growth temperature among all IPS reported (k(cat) = 9.6 +/- 0.4 s(-1) with an estimated activation energy of 69 kJ/mol), was extremely heat stable. However, the most unique feature of A. fulgidus IPS was that it absolutely required divalent metal ions for activity. Zn(2+) and Mn(2+) were the best activators with K(D) approximately 1 microM, while NH(4)(+) (a critical activator for all the other characterized IPS enzymes) had no effect on the enzyme. These properties suggested that this archaeal IPS was a class II aldolase. In support of this, stoichiometric reduction of NAD(+) to NADH could be followed spectrophotometrically when EDTA was present along with glucose-6-phosphate.  相似文献   

8.
Glucose stimulation of islets is coupled with the rapid intracellular release of myo-inositol 1,4,5-trisphosphate (IP3) and arachidonic acid which in turn mobilize Ca2+ stored in the endoplasmic reticulum (ER). The metabolism of glucose is required for insulin secretion although the link between glucose metabolism and the cellular events resulting in insulin release is unknown. In digitonin-permeabilized islets, glucose 6-phosphate (0.5-4 mM) increased significantly the ATP-dependent Ca2+ content of the ER at a free Ca2+ concentration of 1 microM. At 0.2 microM free Ca2+, glucose 6-phosphate (2-10 mM) had a smaller effect. Glucose, phosphate, mannose 6-phosphate, and fructose 1,6-diphosphate had no effect on the ATP-dependent Ca2+ content of the ER. Glucose 1-phosphate and fructose 6-phosphate also increased ATP-dependent Ca2+ content of the ER, presumably due to conversion to glucose 6-phosphate by islet phosphoglucomutase and phosphoglucoisomerase, respectively. The glucose 6-phosphate increase in the ATP-dependent Ca2+ content of the ER was shown to be mediated by glucose 6-phosphatase localized to the ER. Both arachidonic acid (10 microM) and the Ca2+ ionophore A23187 (2 microM) mobilized Ca2+ stored in the ER by glucose 6-phosphate. However, IP3-induced (10 microM) Ca2+ release from the ER was abolished in the presence of glucose 6-phosphate (0.5-10 mM). We propose that glucose 6-phosphate could provide a regulatory link between glucose metabolism and intracellular Ca2+ regulation by augmenting Ca2+ sequestered in the ER as well as attenuating IP3-induced Ca2+ release. Thus, glucose 6-phosphate would serve as an "off" signal leading to a decrease in intracellular Ca2+ when both the free Ca2+ and glucose 6-phosphate concentrations have increased following glucose stimulus.  相似文献   

9.
T Chase  Jr 《The Biochemical journal》1986,239(2):435-443
Mannitol-1-phosphate dehydrogenase was purified to homogeneity, and some chemical and physical properties were examined. The isoelectric point is 4.19. Amino acid analysis and polyacrylamide-gel electrophoresis in presence of SDS indicate a subunit Mr of about 22,000, whereas gel filtration and electrophoresis of the native enzyme indicate an Mr of 45,000. Thus the enzyme is a dimer. Amino acid analysis showed cysteine, tyrosine, histidine and tryptophan to be present in low quantities, one, three, four and four residues per subunit respectively. The zinc content is not significant to activity. The enzyme is inactivated (greater than 99%) by reaction of 5,5'-dithiobis-(2-nitrobenzoate) with the single thiol group; the inactivation rate depends hyperbolically on reagent concentration, indicating non-covalent binding of the reagent before covalent modification. The pH-dependence indicated a pKa greater than 10.5 for the thiol group. Coenzymes (NAD+ and NADH) at saturating concentrations protect completely against reaction with 5,5'-dithiobis-(2-nitrobenzoate), and substrates (mannitol 1-phosphate, fructose 6-phosphate) protect strongly but not completely. These results suggest that the thiol group is near the catalytic site, and indicate that substrates as well as coenzymes bind to free enzyme. Dissociation constants were determined from these protective effects: 0.6 +/- 0.1 microM for NADH, 0.2 +/- 0.03 mM for NAD+, 9 +/- 3 microM for mannitol 1-phosphate, 0.06 +/- 0.03 mM for fructose 6-phosphate. The binding order for reaction thus may be random for mannitol 1-phosphate oxidation, though ordered for fructose 6-phosphate reduction. Coenzyme and substrate binding in the E X NADH-mannitol 1-phosphate complex is weaker than in the binary complexes, though in the E X NADH+-fructose 6-phosphate complex binding is stronger.  相似文献   

10.
An enzyme activity capable of converting fructose-1,6-diphosphate to fructose-6-phosphate was demonstrated to present in crude tissue extracts from brown adipose tissue of the rat. Mg2+ was essential for the expression of activity. EDTA (0.5 mM) increased the activity by 30%. Fructose-1,6-diphosphate in concentrations of 1 and 10 mM inhibits activity by 30% and 60% respectively. A 65% inhibition was observed in the presence of 0.2 micrometer 5' AMP. The activity of the enzyme was measured in rat brown adipose tissue at different stages of development. It rises sharply between day 2 and day 6 and continues to increase reaching a maximum between 6 and 11 days. Thereafter the activity gradually declines to values observed prenatally. The normal developmental rise in activity could be prevented by chemical sympathectomy on day 2. This procedure had no effect when carried out on day 9. There was a significant increase in enzyme activity after cold adaptation. The possible physiological significance of this enzyme in brown adipose tissue is discussed.  相似文献   

11.
The activity of phosphoglucose isomerase, its kinetic properties, and the effect of 6-phosphogluconate on its activity in the forward (glucose 6-phosphate----fructose 6-phosphate) and the reverse (fructose 6-phosphate----glucose 6-phosphate) reactions were determined in adult rat brain in vitro. The activity of phosphoglucose isomerase (in nmol/min/mg of whole brain protein) was 1,865 +/- 20 in the forward reaction and 1,756 +/- 32 in the reverse reaction at pH 7.5. It was 1,992 +/- 28 and 2,620 +/- 46, respectively, at pH 8.5. The apparent Km and Vmax of phosphoglucose isomerase were 0.593 +/- 0.031 mM and 2,291 +/- 61 nmol/min/mg of protein, respectively, for glucose 6-phosphate and 0.095 +/- 0.013 mM and 2,035 +/- 98 nmol/min/mg of protein, respectively, for fructose 6-phosphate. The activity of phosphoglucose isomerase was inhibited intensely and competitively by 6-phosphogluconate, with an apparent Ki of 0.048 +/- 0.005 mM for glucose 6-phosphate and 0.042 +/- 0.004 mM for fructose 6-phosphate as the substrate. With glucose 6-phosphate as the substrate, at concentrations from 0.05 to 0.5 mM, the activity of the enzyme was inhibited completely in the presence of 0.5-2.0 mM 6-phosphogluconate. With 0.05-0.2 mM fructose 6-phosphate as the substrate, it was inhibited greater than or equal to 85% at the same concentrations of the inhibitor. No significant changes were observed in the values of Km, Vmax, and Ki for phosphoglucose isomerase in the brain of 6-aminonicotinamide-treated rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The kinetics of rat liver L-type pyruvate kinase (EC 2.7.1.40), phosphorylated with cyclic AMP-stimulated protein kinase from the same source, and the unphosphorylated enzyme have been compared. The effects of pH and various concentrations of substrates, Mg2+, K+ and modifiers were studied. In the absence of fructose 1, 6-diphosphate at pH 7.3, the phosphorylated pyruvate kinase appeared to have a lower affinity for phosphoenolpyruvate (K0.5=0.8 mM) than the unphosphorylated enzyme (K0.5=0.3 mM). The enzyme activity vs. phosphoenolpyruvate concentration curve was more sigmoidal for the phosphorylated enzyme with a Hill coefficient of 2.6 compared to 1.6 for the unphosphorylated enzyme. Fructose 1, 6-diphosphate increased the apparent affinity of both enzyme forms for phosphoenolpyruvate. At saturating concentrations of this activator, the kinetics of both enzyme forms were transformed to approximately the same hyperbolic curve, with a Hill coefficient of 1.0 and K0.5 of about 0.04 mM for phosphoenolpyruvate. The apparent affinity of the enzyme for fructose 1, 6-diphosphate was high at 0.2 mM phosphoenolpyruvate with a K0.5=0.06 muM for the unphosphorylated pyruvate kinase and 0.13 muM for the phosphorylated enzyme. However, in the presence of 0.5 mM alanine plus 1.5 mM ATP, a higher fructose 1, 6-diphosphate concentration was needed for activation, with K0.5 of 0.4 muM for the unphosphorylated enzyme and of 1.4 muM for the phosphorylated enzyme. The results obtained strongly indicate that phosphorylation of pyruvate kinase may also inhibit the enzyme in vivo. Such an inhibition should be important during gluconeogenesis.  相似文献   

13.
Summary To determine the mechanism of the glucose stimulation, glucose or glucose-6-phospate was added to dilute heart extracts in the presence or absence of AMP. The intracellular glucose, tissue glucose-6-phosphate, and tissue AMP concentrations were also determined in 24-h starved animals given glucose; 24-h starved animals given insulin as well as diabetic starved and diabetic starved insulin-treated animals were also studied.The A0.5 for glucose stimulation of cardiac phosphorylase phosphatase activity was approximately 1 .2 mM. The A0.5 for glucose-6-phosphate was approximately 0.02 mM. The glucose-6-phosphate concentration in all animals exceeded the Ao.5 by 10-fold. However, the intracellular glucose concentration in the glucose-treated, insulin-treated, diabetic, and diabetic insulin-treated rats was in the range of the A0.5 for stimulation of phosphorylase phosphatase activity. AMP completely inhibited phosphorylase phosphatase activity at a concentration of 0.2 mM. Physiological concentrations of glucose and glucose-6-phosphate partially reversed this inhibition. Administration of glucose or insulin resulted in an increase in intracellular glucose concentration, an increase in tissue glucose-6-phosphate and a decrease in tissue AMP concentrations. These data suggest that glucose may be a physiological regulator of phosphorylase phosphatase in heart muscle as it is in liver.Recipient ofaMedical InvestigatorshipAward from theVeterans Administration.  相似文献   

14.
The kinetic properties of phosphofructokinase from muscle of the giant cirripede Austromegabalanus psittacus were characterized, after partial purification by ion exchange chromatography on DEAE-cellulose. This enzyme showed differences regarding PFKs from other marine invertebrates: the affinity for fructose 6-phosphate (Fru 6-P) was very low, with an S(0.5) of 22.6+/-1.4 mM (mean+/-S.D., n=3), and a high cooperativity (n(H) of 2.90+/-0.21; mean+/-S.D., n=3). The barnacle PFK showed hyperbolic saturation kinetics for ATP (apparent K(m ATP)=70 microM, at 5 mM Fru 6-P, in the presence of 2 mM ammonium sulfate). ATP concentrations higher than 1 mM inhibited the enzyme. Ammonium sulfate activated the PFK several folds, increasing the affinity of the enzyme for Fru 6-P and V(max). 5'-AMP (0.2 mM) increased the affinity for Fru 6-P (S(0.5) of 6.2 mM). Fructose 2,6-bisphosphate activated the PFK, with a maximal activation at concentrations higher than 2 microM. Citrate reverted the activation of PFK produced by 0.2 mM 5'-AMP (IC(50 citrate)=2.0 mM), producing a higher inhibition than that exerted on other invertebrate PFKs. Barnacle muscular PFK was activated in vitro after exposure to exogenous cyclic-AMP (0.1 mM) as well as by phosphatidylserine (50 microg/ml), indicating a possible control by protein kinase A and a phospholipid dependent protein kinase (PKC). The results suggest a highly regulated enzyme in vivo, by allosteric mechanisms and also by protein phosphorylation.  相似文献   

15.
K B Busch  H Fromm 《Plant physiology》1999,121(2):589-597
Succinic semialdehyde dehydrogenase (SSADH) is one of three enzymes constituting the gamma-aminobutyric acid shunt. We have cloned the cDNA for SSADH from Arabidopsis, which we designated SSADH1. SSADH1 cDNA encodes a protein of 528 amino acids (56 kD) with high similarity to SSADH from Escherichia coli and human (>59% identity). A sequence similar to a mitochondrial protease cleavage site is present 33 amino acids from the N terminus, indicating that the mature mitochondrial protein may contain 495 amino acids (53 kD). The native recombinant enzyme and the plant mitochondrial protein have a tetrameric molecular mass of 197 kD. Fractionation of plant mitochondria revealed its localization in the matrix. The purified recombinant enzyme showed maximal activity at pH 9.0 to 9.5, was specific for succinic semialdehyde (K(0.5) = 15 microM), and exclusively used NAD+ as a cofactor (Km = 130 +/- 77 microM). NADH was a competitive inhibitor with respect to NAD+ (Ki = 122 +/- 86 microM). AMP, ADP, and ATP inhibited the activity of SSADH (Ki = 2.5-8 mM). The mechanism of inhibition was competitive for AMP, noncompetitive for ATP, and mixed competitive for ADP with respect to NAD+. Plant SSADH may be responsive to mitochondrial energy charge and reducing potential in controlling metabolism of gamma-aminobutyric acid.  相似文献   

16.
The human placental glucose-6-P-dependent form of glycogen synthase, in the absence of glucose-6-P, can be activated by MnSO4. Separately, Mn2+ and SO4(2-) have no significant effect. In the presence of glucose-6-P, Mn2+ activates the enzyme, but SO4(2-) inhibits; MnSO4 synergetically increases the enzyme activity. Mn2+ reduces the Ka for glucose-6-P to one-tenth of the control value; SO4(2-) increases the Ka 5-fold; however, MnSO4 has no effect on Ka. MnSO4, like glucose-6-P, increases the Vmax of the enzyme in the presence of its substrate, UDP-glucose; it slightly increases the Km for UDP-glucose. In the presence of glucose-6-P, Mn2+ increases and SO4(2-) decreases the Vmax of the enzyme, but neither has an effect on the Km for UDP-glucose. At physiological concentrations of UDP-glucose and glucose-6-P, either Mn2+ or MnSO4 at concentrations less than 1 mM increases the enzyme activity as much as 8 mM glucose-6-P does. At physiological concentrations of UDP-glucose and glucose-6-P, Mn2+ or MnSO4 reverses the inhibition of the enzyme by ATP.  相似文献   

17.
1. Glucose-6-phosphate and 6-phosphogluconate dehydrogenases have been found in homogenates of Arbacia eggs; 95 per cent of the activity toward each substrate is recovered in the supernatant fraction after centrifuging at 20,000 g for 30 minutes. 2. With glucose-6-phosphate as substrate) the rate of TPN reduction by the supernatant fraction from 1 gm. wet weight unfertilized or fertilized eggs was 1.8 to 3.0 micromoles per minute; this rate is sufficient to support a rate of oxygen consumption 24 times that observed for unfertilized, and 6 times that for fertilized, eggs. Pentose was formed from glucose-6-phosphate at a rate 0.3 to 0.5 that of TPN reduction, when both rates were expressed as micromoles per minute. 3. The concentrations of glucose-6-phosphate and 6-phosphogluconate for half maximal activity were each approximately 0.00004 M for the respective enzymes in the supernatant fraction. Maximal activity toward 6-phosphogluconate was 50 to 60 per cent of that toward glucose-6-phosphate. Glucose-6-phosphate dehydrogenase activity was 50 per cent inhibited in presence of 0.00006 M 2,4,5-trichlorophenol. 4. Reduction of DPN by the supernatant fraction in presence of fructose-1,6-diphosphate and ADP was 0.1 to 0.2 micromoles per minute per gm. wet eggs, indicating that the glycolytic pathway can metabolize glucose-6-phosphate at about 5 per cent the rate at which it can be oxidized by the TPN system from unfertilized or fertilized Arbacia eggs. 5. Phosphoglucomutase, hexose isomerase, and a phosphatase for fructose-1,6-diphosphate also appear to be present in Arbacia eggs.  相似文献   

18.
K. J. Lendzian 《Planta》1978,141(1):105-110
Glucose-6-phosphate dehydrogenase (EC 1.1.1.49) from spinach chloroplasts is strongly affected by interactions between Mg2+, proton, and substrate concentrations. Mg2+ activates the enzyme to different degrees; however, it is not essential for enzyme activity. The Mg2+-dependent activation follows a maximum curve, magnitude and position of the maximum being dependent on pH and NADPH/NADP+ ratios. At a ratio of zero and pH 7.2, maximum activity is observed at 10 mM Mg2+. Increasing the NADPH/NADP+ ratio up to 1.7 (a ratio measured in the stroma during a light period), maximum activity is shifted to much lower Mg2+ concentrations. At pH 8.2 (corresponding to the pH of the stroma in the light) and at a high NADPH/NADP+ ratio, enzyme activity is not affected by the Mg2+ ion. The results are discussed in relation to dark-light-dark regulation of the oxidative pentose phosphate cycle in spinach chloroplasts.Abbreviations DTT dithiothreitol - G-6-P glucose-6-phosphate - G-6-PDH glucose-6-phosphate dehydrogenase (EC 1.1.1.49) - PPC pentose phosphate cycle  相似文献   

19.
Regulatory properties of human erythrocyte hexokinase during cell ageing   总被引:2,自引:0,他引:2  
Human red blood cell hexokinase exists in multiple molecular forms with different isoelectric points but similar kinetic and regulatory properties. All three major isoenzymes (HK Ia, Ib, and Ic) are inhibited competitively with respect to Mg.ATP by glucose 6-phosphate (Ki = 15 microM), glucose 1,6-diphosphate (Ki - 22 microM), 2,3-diphosphoglycerate (Ki = 4 mM), ATP (Ki = 1.5 mM), and reduced glutathione (Ki = 3 mM). All these compounds are present in the human erythrocyte at concentrations able to modify the hexokinase reaction velocity. However, the oxygenation state of hemoglobin significantly modifies their free concentrations and the formation of the Mg complexes. The calculated rate of glucose phosphorylation, in the presence of the mentioned compounds, is practically identical to the measured rate of glucose utilization by intact erythrocytes (1.43 +/- 0.15 mumol h-1 ml red blood cells-1). Hexokinase in young red blood cells is fivefold higher when compared with the old ones, but the concentration of many inhibitors of the enzyme is also cell age-dependent. Glucose 6-phosphate, glucose 1,6-diphosphate, 2,3-diphosphoglycerate, ATP, and Mg all decay during cell ageing but at different rates. The free concentrations and the hemoglobin and Mg complexes of both ATP and 2,3-diphosphoglycerate with hemoglobin in the oxy and deoxy forms have been calculated. This information was utilized in the calculation of glucose phosphorylation rate during cell ageing. The results obtained agree with the measured glycolytic rates and suggest that the decay of hexokinase during cell ageing could play a critical role in the process of cell senescence and destruction.  相似文献   

20.
1. Activation of glucose 6-phosphate is one of the unique properties of pyruvate kinase from Mycobacterium smegmatis. 2. Pyruvate kinase, partially purified from ultrasonic extracts of the mycobacteria by (NH4)2SO4 fractionation, exhibited sigmoidal kinetics at various concentrations of phosphoenolpyruvate, with a high degree of co-operativity (Hill coefficient, h = 3.7) and S0.5 value of 1.0 mM. 3. In the presence of glucose 6-phosphate, the degree of co-operativity shown by the phosphoenolpyruvate saturation curve was decreased to h = 2.33 and the S0.5 value was lowered to 0.47 mM. 4. The enzyme was activated by AMP and ribose 5-phosphate also, but the activation constant was lowest with glucose 6-phosphate (0.24 mM). 5. The enzyme was strongly inhibited by ATP at all phosphoenolpyruvate concentrations. The concentrations of ATP required to produce half-maximal inhibition of enzyme activity at non-saturating (0.2 mM) and saturating (2 mM) phosphoenolpyruvate concentrations were 1.1 mM and 3 mM respectively. 6. The inhibition of ATP was partially relieved by glucose 6-phosphate. 7. The enzyme exhibited Michaelis-Menten kinetics with ADP as the variable substrate, with an apparent Km of 0.66 mM. 8. The enzyme required Mg2+ or Mn2+ ions for activity. It was not activated by univalent cations. 9. The kinetic data indicate that under physiological conditions glucose 6-phosphate probably plays a significant role in the regulation of pyruvate kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号