首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure-function relationship of Rous sarcoma virus leader RNA.   总被引:24,自引:4,他引:20       下载免费PDF全文
J L Darlix  M Zuker    P F Spahr 《Nucleic acids research》1982,10(17):5183-5196
Cells infected by RSV synthesize viral 35S RNA as well as subgenomic 28S and 22S RNAs coding for the Env and Src genes respectively. In addition, at least the 5' 101 nucleotides of the leader are also conserved and we have shown previously that this sequence contains a strong ribosome binding site (J.-L. Darlix et al., J. Virol. 29, 597). We now report the RNA sequence of Rous Sarcoma virus (RSV) leader RNA and propose a folding of this 5' untranslated region which brings the Cap, the initiation codon for Gag and the strong ribosome binding site close to each other. We also show that ribosomes protect a sequence just upstream from initiator Aug of Gag in vitro, and believed to interact with part of the strong ribosome binding site according to the folding proposed for the leader RNA.  相似文献   

2.
The protein environment of mRNA 3' of the A-site codon (the decoding site) in the human 80S ribosome was studied using a set of oligoribonucleotide derivatives bearing a UUU triplet at the 5'-end and a perfluoroarylazide group at one of the nucleotide residues at the 3'-end of this triplet. Analogues of mRNA were phased into the ribosome using binding at the tRNAPhe P-site, which recognizes the UUU codon. Mild UV irradiation of ribosome complexes with tRNAPhe and mRNA analogues resulted in the predominant crosslinking of the analogues with the 40S subunit components, mainly with proteins and, to a lesser extent, with rRNA. Among the 40S subunit ribosomal proteins, the S3 protein was the main target for modification in all cases. In addition, minor crosslinking with the S2 protein was observed. The crosslinking with the S3 and S2 proteins occurred both in triple complexes and in the absence of tRNA. Within triple complexes, crosslinking with S15 protein was also found, its efficiency considerably falling when the modified nucleotide was moved from positions +5 to +12 relative to the first codon nucleotide in the P-site. In some cases, crosslinking with the S30 protein was observed, it was most efficient for the derivative containing a photoreactive group at the +7 adenosine residue. The results indicate that the S3 protein in the human ribosome plays a key role in the formation of the mRNA binding site 3' of the codon in the decoding site.  相似文献   

3.
The secondary structure of the Escherichia coli alpha mRNA leader sequence has been determined using nucleases specific for single- or double-stranded RNA. Three different length alpha RNA fragments were studied at 0 degrees C and 37 degrees C. A very stable eight base-pair helix forms upstream from the ribosome initiation site, defining a 29 base loop. There is evidence for base-pairing between nucleotides within this loop and for a "pseudo-knot" interaction of some loop bases with nucleotides just 3' to the initiation codon, forming a region of complex structure. A weak helix also pairs sequences near the 5' terminus of the alpha mRNA with bases near the Shine-Dalgarno sequence. Affinity constants for the translational repressor S4 binding different length alpha mRNA fragments indicate that most of the S4 recognition features must be contained within the main helix and hairpin regions. Binding of S4 to the alpha mRNA alters the structure of the 29 base hairpin region, and probably melts the weak pairing between the 5' and 3' termini of the leader. The pseudo-knot structure and the conformational changes associated with it provide a link between the structures of the S4 binding site and the ribosome binding site. The alpha mRNA may therefore play an active role in mediating translational repression.  相似文献   

4.
The 16S rRNA species in bacterial precursor rRNAs is followed by two evolutionarily conserved features: (i) a double-stranded stem formed by complementary sequences adjacent to the 5' and 3' ends of the 16S rRNA; and (ii) a 3'-transfer RNA sequence. To assess the possible role of these features, plasmid constructs with precursor-specific features deleted were tested for their capacity to form mature rRNA. Stem-forming sequences were dispensable for both 5' and 3' terminus formation; whereas an intact spacer tRNA positioned greater than 24 nucleotides downstream of the 16S RNA sequence was required for correct 3'-end maturation. These results suggest that spacer tRNA at an appropriate location helps form a conformation obligate for pre-rRNA processing, perhaps by binding to a nascent binding site in preribosomes. Thus, spacer tRNAs may be an obligate participant in ribosome formation.  相似文献   

5.
D Robbins  B Hardesty 《Biochemistry》1983,22(24):5675-5679
Distances were measured by nonradiative energy transfer from fluorescent probes specifically located on one of three points of yeast or Escherichia coli Phe-tRNAPhe enzymatically bound to the entry site or to the acceptor site of E. coli 70S ribosomes to energy-accepting probes on the 3' end of the 16S ribonucleic acid (RNA) of the 30S subunit. The Y base in the anticodon loop of yeast tRNAPhe was replaced by proflavin. Fluorescein isothiocyanate was attached to the X base (position 47) of E. coli tRNAPhe. E. coli tRNAPhe which had been photochemically cross-linked between positions 8 and 13 followed by chemical reduction to form a fluorescent probe was also used. Labeled tRNAs were aminoacylated and enzymatically bound to the ribosome in the presence of elongation factor Tu and guanosine 5'-triphosphate (acceptor-site binding) or a nonhydrolyzable analogue (entry-site binding). Nonradiative energy transfer measurements were made of the distances between fluorophores located on the Phe-tRNA and the fluorophore at the 3' end of 16S RNA. Calculations were based on comparison of the fluorescence lifetime of the energy donor, located on the Phe-tRNA, in the absence and presence of an energy acceptor on the 3' end of the 16S RNA. Under both sets of binding conditions, the distances to the 3' end of 16S RNA were found to be the following: cross-linked tRNA, greater than 69 A; Y base of tRNA, greater than 61 A. The distance between the 3' end of 16S RNA and the X base of tRNA was found to be 81 A under acceptor-site binding conditions but greater than 86 A under entry-site binding conditions.  相似文献   

6.
M A Peters  T A Walker  N R Pace 《Biochemistry》1982,21(10):2329-2335
Limited digestion of mouse 5.8S ribosomal RNA (rRNA) with RNase T2 generates 5'- and 3'-terminal "half-molecules". These fragments are capable of independently and specifically binding to 28S rRNA, so there exist at least two contacts in the 5.8S rRNA for the 28S rRNA. The dissociation constants for the 5.8S/28S, 5' 5.8S fragment/28S, and 3' 5.8S fragment/28S complexes are 9 x 10(-8) M, 6 x 10(-8) M, and 13 x 10(-8) M, respectively. Thus, each of the fragment binding sites contributes about equally to the overall binding energy of the 5.8S/28S rRNA complex, and the binding sites act independently, rather than cooperatively. The dissociation constants suggest that the 5.8S rRNA termini from short, irregular helices with 28S rRNA. Thermal denaturation data on complexes containing 28S rRNA and each of the half-molecules of 5.8S rRNA indicate that the 5'-terminal binding site(s) exist(s) in a single conformation while the 3'-terminal site exhibits two conformational alternatives. The functional significance of the different conformational states is presently indeterminate, but the possibility they may represent alternative forms of a conformational switch operative during ribosome function is discussed.  相似文献   

7.
The genome of a lipid-containing phage, PRD1, is replicated by a protein-priming mechanism. We have determined the nucleotide sequence of the PRD1 gene 8 which specifies the terminal protein, the protein primer for DNA synthesis. The coding region is 780 base pairs long and encodes for 259 amino acids (29,326 daltons). The predicted amino acid sequence of the PRD1 terminal protein reveals no substantial homology with that of any known terminal protein. However, hydropathy profiles of the PRD1, phi 29, and Nf terminal proteins are remarkably similar, suggesting a common evolutionary origin. A particular tyrosine residue is predicted to be covalently linked to the 5' end of the PRD1 DNA. The initiation codon ATG of gene 8 is preceded by the identifiable ribosome binding site, and putative promoter sequences. There are unique palindromic sequences between the ribosome binding site and "-10" region.  相似文献   

8.
Gene expression can be regulated at the level of initiation of protein biosynthesis via structural elements present at the 5' untranslated region of mRNAs. These folded mRNA segments may bind to the ribosome, thus blocking translation until the mRNA unfolds. Here, we report a series of cryo-electron microscopy snapshots of ribosomal complexes directly visualizing either the mRNA structure blocked by repressor protein S15 or the unfolded, active mRNA. In the stalled state, the folded mRNA prevents the start codon from reaching the peptidyl-tRNA (P) site inside the ribosome. Upon repressor release, the mRNA unfolds and moves into the mRNA channel allowing translation initiation. A comparative structure and sequence analysis suggests the existence of a universal stand-by site on the ribosome (the 30S platform) dedicated for binding regulatory 5' mRNA elements. Different types of mRNA structures may be accommodated during translation preinitiation and regulate gene expression by transiently stalling the ribosome.  相似文献   

9.
Plus-strand RNA viruses without 5' caps require noncanonical mechanisms for ribosome recruitment. A translational enhancer in the 3' untranslated region (UTR) of Turnip crinkle virus (TCV) contains an internal T-shaped structure (TSS) that binds to 60S ribosomal subunits. We now report that the 63-nucleotide (nt) 5' UTR of TCV contains a 19-nt pyrimidine-rich element near the initiation codon that supports translation of an internal open reading frame (ORF) independent of upstream 5' UTR sequences. Addition of 80S ribosomes to the 5' UTR reduced the flexibility of the polypyrimidine residues and generated a toeprint consistent with binding to this region. Binding of salt-washed 40S ribosomal subunits was reduced 6-fold when the pyrimidine-rich sequence was mutated. 40S subunit binding generated the same toeprint as 80S ribosomes but also additional ones near the 5' end. Generation of out-of-frame AUGs upstream of the polypyrimidine region reduced translation, which suggests that 5'-terminal entry of 40S subunits is followed by scanning and that the polypyrimidine region is needed for an alternative function that requires ribosome binding. No evidence for RNA-RNA interactions between 5' and 3' sequences was found, suggesting that TCV utilizes an alternative means for circularizing its genome. Combining 5' and 3' UTR fragments in vitro had no discernible effect on the structures of the RNAs. In contrast, when 80S ribosomes were added to both fragments, structural changes were found in the 5' UTR polypyrimidine tract that were not evident when ribosomes interacted with the individual fragments. This suggests that ribosomes can promote an interaction between the 5' and 3' UTRs of TCV.  相似文献   

10.
Huang SW  Chan MY  Hsu WL  Huang CC  Tsai CH 《PloS one》2012,7(3):e33764
The 3' untranslated region (UTR) is usually involved in the switch of the translation and replication for a positive-sense RNA virus. To understand the 3' UTR involved in an internal ribosome entry site (IRES)-mediated translation in Classical swine fever virus (CSFV), we first confirmed the predicted secondary structure (designated as SLI, SLII, SLIII, and SLIV) by enzymatic probing. Using a reporter assay in which the luciferase expression is under the control of CSFV 5' and 3' UTRs, we found that the 3' UTR harbors the positive and negative regulatory elements for translational control. Unlike other stem loops, SLI acts as a repressor for expression of the reporter gene. The negative cis-acting element in SLI is further mapped to the very 3'-end hexamer CGGCCC sequence. Further, the CSFV IRES-mediated translation can be enhanced by the heterologous 3'-ends such as the poly(A) or the 3' UTR of Hepatitis C virus (HCV). Interestingly, such an enhancement was repressed by flanking this hexamer to the end of poly(A) or HCV 3' UTR. After sequence comparison and alignment, we have found that this hexamer sequence could hypothetically base pair with the sequence in the IRES IIId1, the 40 S ribosomal subunit binding site for the translational initiation, located at the 5' UTR. In conclusion, we have found that the 3'-end terminal sequence can play a role in regulating the translation of CSFV.  相似文献   

11.
The 3' noncoding region element (AUUUA)n specifically targets many short-lived mRNAs for degradation. Although the mechanism by which this sequence functions is not yet understood, a potential link between facilitated mRNA turnover and translation has been implied by the stabilization of cellular mRNAs in the presence of protein synthesis inhibitors. We therefore directly investigated the role of translation on mRNA stability. We demonstrate that mRNAs which are poorly translated through the introduction of stable secondary structure in the 5' noncoding region are not efficiently targeted for selective destabilization by the (AUUUA)n element. These results suggest that AUUUA-mediated degradation involves either a 5'-->3' exonuclease or is coupled to ongoing translation of the mRNA. To distinguish between these two possibilities, we inserted the poliovirus internal ribosome entry site, which promotes internal ribosome initiation, downstream of the 5' secondary structure. Translation directed by internal ribosome binding was found to fully restore targeted destabilization of AUUUA-containing mRNAs despite the presence of 5' secondary structure. This study therefore demonstrates that selective degradation mediated by the (AUUUA)n element is coupled to ribosome binding or ongoing translation of the mRNA and does not involve 5'-to-3' exonuclease activity.  相似文献   

12.
13.
Tobacco mosaic virus (TMV) RNA with a long 5'-terminal leader sequence, as well as its isolated leader fragment (called omega), can form disome initiation complexes with wheat germ ribosomes. The second ribosome of the disome complex is bound to the leader sequence, upstream of an 80S particle occupying the AUG-containing initiation site [ Filipowicz and Haenni (1979) Proc. Natl Acad. Sci. USA 76, 3111-3115; Konarska et al. (1981) Eur. J. Biochem. 114, 221-227]. In order to identify the parts of omega important for interaction with ribosomes, the 5'-terminally-labelled omega was treated with alkali and the resultant fragments of different lengths were used in binding experiments. A 16-nucleotide-long fragment bearing the AUU sequence at the 3' end is the shortest oligonucleotide capable of forming 80S complexes with wheat germ ribosomes. Full-length (73 nucleotides) omega with AUG at the 3' terminus is the only RNA fragment supporting disome complex formation. Synthetic oligoribonucleotides were prepared for a study of 80S complex assembly at codons other than AUG. Hexadecanucleotide (A) 13A -U-U and, to lesser extent, also (A) 13A -U-C, (A) 13A -U-A and (A) 13A -C-G bind 80S ribosomes. Formation of the (A) 13A -U-U X 80S complex is dependent on the presence of initiator Met- tRNAMerf . Assembly of the 80S particle at the AUU sequence is not an artifact resulting from the terminal position of this triplet. (A) 13A -U-U elongated with over 100 A residues still efficiently binds an 80S ribosome positioned, as established by ribosome protection experiments, at the AUU triplet. The present results support the notion that 80S initiation-like complexes can be formed at sequences containing AUU codons. The possible function of these complexes as intermediates in initiation of translation of some viral RNAs is discussed.  相似文献   

14.
The locations of the 3' ends of RNAs in rat ribosome were studied by a fluorescence-labeling method combined with high hydrostatic pressure and agarose electrophoresis. Under physiological conditions, only the 3' ends of 28 S and 5.8 S RNA in 80 S ribosome could be labeled with a high sensitive fluorescent probe - fluorescein 5-thiosemicarbazide (FTSC), indicating that the 3' termini of 28 S and 5.8 S RNA were located on or near the surface of 80 S ribosome. The 3' terminus of 5 S RNA could be attacked by FTSC only in the case of the dissociation of the 80 S ribosome into two subunits induced by high salt concentration (1 M KCl) or at high hydrostatic pressure, showing that the 3' end of 5 S RNA was located on the interface of two subunits. However, no fluorescence-labeled 18 S RNA could be detected under all the conditions studied, suggesting that the 3' end of 18 S RNA was either located deeply inside ribosome or on the surface but protected by proteins. It was interesting to note that modifications of the 3' ends of ribosomal RNAs including oxidation with NaIO4, reduction with KBH4 and labeling with fluorescent probe did not destroy the translation activity of ribosome, indicating that the 3' ends of RNAs were not involved in the translation activity of ribosome.  相似文献   

15.
70 S Escherichia coli ribosomes were reacted with the fluorescent dye N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonic acid for 10 min under mild conditions. The resulting ribosomes were fully active. 30 S subunits isolated from these particles were also fully active. They contain approximately 0.7 eq of fluorescent dye. Nearly all of it is attached to protein S18. Competitive reaction with N-ethylmaleimide implies that the fluorescent dye is located at cysteine 10 of the protein. The labeled 30 S particles will recombine with 50 S subunits to form stable 70 S particles. Thus the procedures we have developed allow the large scale preparation of an active fluorescent conjugate of the 70 S ribosome. The fluorescence of the 70 S particles is sensitive to the binding of mRNA, showing both quenching and a shift in emission spectra. Thus it affords a simple way to quantitate mRNA binding directly. In pilot studies without tRNA, the binding constant of the initiation triplet codon adenylyl-(3' leads to 5')-uridylyl-(3' leads to 5')-guanosine to 70 S ribosome was found to be an order of magnitude larger than that of polyuridylic acid.  相似文献   

16.
17.
Protein synthesis initiation on prokaryotic mRNAs involves base-pairing of a site preceding the initiation codon with the 3' terminal sequence of 16 S rRNA. It has been suggested that a similar situation may prevail in eukaryotic mRNAs. This suggestion is not based on experiments, but on observation of complementarities between mRNA 5' noncoding sequences and a conserved sequence near the 18 S rRNA 3' terminus. The hypothesis can be evaluated by comparing the number of potential binding sites found in the 5' noncoding sequences with the number of such sites expected to occur by chance. A method for computing this number is presented. The 5' noncoding sequences contain more binding sites than expected for a random RNA chain, but the same is true for 3' noncoding sequences. The effect can be traced to a clustering of purines and pyrimidines, common to noncoding sequences. In conclusion, a close inspection of the available mRNA sequences does not reveal any indication of a specific base-pairing ability between their 5' noncoding segments and the 18 S rRNA 3' terminus.  相似文献   

18.
K Nagano  H Takagi  M Harel 《Biochimie》1991,73(7-8):947-960
Lim and Spirin [25] proposed a preferable conformation of the nascent peptide during the ribosomal transpeptidation. Spirin and Lim [26] excluded the possibilities of the side-by-side model proposed by Johnson et al [13] and the three-tRNA binding model (A, P and E sites) of Rheinberger and Nierhaus [3]. However, a slight conformational change at the 3' end regions of both A and P site tRNA molecules can enable the three different tRNA binding models to converge. With a modification of the angles of the ribose rings of both anticodon and mRNA this model can also be related to the model of Sundaralingam et al [19]. In this model of E coli rRNA the 3' end sequence ACCA76 or GCCA76 of P site tRNA is base-paired to UGGU810 of 23S rRNA, while the ACC75 or GCC75 of A site tRNA are base-paired to GGU1621 23S rRNA. The conformation of the A76 of A site tRNA is necessarily different from that of P site tRNA, at least during the course of the transpeptidation. The A76 of A site tRNA overlaps the binding region of puromycin. The C1400 of 16S rRNA in this model is located at a distance of 4 A from the 5' end of the anticodon of P site tRNA [14] and 17 A from the 5' end of the anticodon of A site tRNA [15]. It is also shown that a considerable but reasonable modification in the conformation of the anticodon loops could lead to accommodation of three deacylated tRNA(Phe) molecules at a time on 70S ribosome in the presence of poly(U) as observed experimentally [6]. A sterochemical explanation for the negatively-linked allosteric interactions between the A and E sites is also shown in the present model.  相似文献   

19.
Two analogs of the anticodon arm of yeast tRNAPhe (residues 28-43), in which G43 was replaced by the photoreactive nucleosides 2-azidoadenosine and 8-azidoadenosine, have been used to create 'zero-length' cross-links to ribosomal components at the peptidyl-tRNA binding site (P site) of 30 S subunits from the Escherichia coli ribosome. To prepare the analogs, 2-azidoadenosine and 8-azidoadenosine bisphosphates were first ligated to the 3' end of the anticodon-containing dodecanucleotide ACmUGmAAYA psi m5CUG from yeast tRNAPhe. The trinucleotide CAG was then joined to the 5' end of the resulting tridecanucleotide in a subsequent ligation. Both analogs bound to poly(U)-programmed 30 S subunits with affinities similar to that of the unmodified anticodon arm from yeast tRNAPhe. Irradiation of noncovalent complexes containing the photolabile analogs, poly(U) and 30 S ribosomal subunits with 300 nm light led to the covalent attachment of the anticodon arms to proteins S13 and S19. Further analysis revealed that S13 accounted for about 80%, and S19 for about 20%, of the cross-linked material. Labeling of these two proteins with 'zero-length' cross-linking probes provides useful information about the location and orientation of P site-bound tRNA on the ribosome and permits a test of recently proposed models of the three-dimensional structure of the 30 S subunit.  相似文献   

20.
Promoters of Agrobacterium tumefaciens Ti-plasmid virulence genes.   总被引:36,自引:9,他引:27       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号