共查询到20条相似文献,搜索用时 15 毫秒
1.
F Schneider H Heimann R Mattes W Lutzenberger N Birbaumer 《Biofeedback and self-regulation》1992,17(3):203-214
Findings on depressive patients indicate that depressives have electrophysiological characteristics similar to those of schizophrenics, in that they exhibit reduced Contingent Negative Variation (CNV) amplitudes and more distinct Postimperative Negative Variations (PINVs) than normal controls. In a biofeedback experiment, 8 medicated male inpatients with the DSM III-R diagnosis of "Bipolar Disorder, Depressive," and "Major Depression" demonstrated no impairment in the self-regulation of Slow Cortical Potentials (SCP) in comparison to schizophrenics in terms of increasing and suppressing negativity. Continuous visual SCP feedback is presented to the patient as a horizontally moving rocket in a video game format. The direction changes of the rocket represented SCP changes at each point in time, recorded by the central EEG (based on the pretrial baseline). Depressives demonstrated SCP self-regulation across 20 sessions, although with many between-and-within variations. The 8 male controls were unable to regulate their SCPs across 5 sessions. This result contradicts other findings of our laboratory on normal controls. Motivational factors and insufficient operant reinforcement (financial reward) may have facilitated this effect. 相似文献
2.
F Schneider B Rockstroh H Heimann W Lutzenberger R Mattes T Elbert N Birbaumer M Bartels 《Biofeedback and self-regulation》1992,17(4):277-292
Slow cortical potentials (SCPs) are considered to reflect the regulation of attention resources and cortical excitability in cortical neuronal networks. Impaired attentional functioning, as found in patients with schizophrenic disorders, may covary with impaired SCP regulation. This hypothesis was tested using a self-regulation paradigm. Twelve medicated male schizophrenic inpatients and 12 healthy male controls received continuous feedback of their SCPs, during intervals of 8 s each, by means of a visual stimulus (a stylized rocket) moving horizontally across a TV screen. The position of the feedback stimulus was a linear function of the integrated SCP at each point in time during the feedback interval. Subjects were required to increase or reduce negative SCPs (referred to pretrial baseline) depending on the presentation of a discriminative stimulus. The correct response was indicated by the amount of forward movement of the feedback stimulus and by monetary rewards. Schizophrenics participated in 20 sessions (each comprising 110 trials), while controls participated in 5 sessions. Compared with the healthy controls, schizophrenics showed no significant differentiation between negativity increase and negativity suppression during the first sessions. However, in the last 3 sessions, patients achieved differentiation similar to controls, demonstrating the acquisition of SCP control after extensive training. 相似文献
3.
Dr. Frank Schneider Hans Heimann Regina Mattes Werner Lutzenberger Niels Birbaumer 《Applied psychophysiology and biofeedback》1992,17(3):203-214
Findings on depressive patients indicate that depressives have electrophysiological characteristics similar to those of schizophrenics, in that they exhibit reduced Contingent Negative Variation (CNV) amplitudes and more distinct Postimperative Negative Variations (PINVs) than normal controls. In a biofeedback experiment, 8 medicated male inpatients with the DSM III-R diagnosis of “Bipolar Disorder, Depressive,” and “Major Depression” demonstrated no impairment in the self-regulation of Slow Cortical Potentials (SCP) in comparison to schizophrenics in terms of increasing and suppressing negativity. Continuous visual SCP feedback is presented to the patient as a horizontally moving rocket in a video game format. The direction changes of the rocket represented SCP changes at each point in time, recorded by the central EEG (based on the pretrial baseline). Depressives demonstrated SCP self-regulation across 20 sessions, although with many between-and-within variations. The 8 male controls were unable to regulate their SCPs across 5 sessions. This result contradicts other findings of our laboratory on normal controls. Motivational factors and insufficient operant reinforcement (financial reward) may have facilitated this effect. 相似文献
4.
Dr. Frank Schneider Brigitte Rockstroh Hans Heimann Werner Lutzenberger Regina Mattes Thomas Elbert Niels Birbaumer Mathias Bartels 《Applied psychophysiology and biofeedback》1992,17(4):277-292
Slow cortical potentials (SCPs) are considered to reflect the regulation of attention resources and cortical excitability in cortical neuronal networks. Impaired attentional functioning, as found in patients with schizophrenic disorders, may covary with impaired SCP regulation. This hypothesis was tested using a self-regulation paradigm. Twelve medicated male schizophrenic inpatients and 12 healthy male controls received continuous feedback of their SCPs, during intervals of 8 s each, by means of a visual stimulus (a stylized rocket) moving horizontally across a TV screen. The position of the feedback stimulus was a linear function of the integrated SCP at each point in time during the feedback interval. Subjects were required to increase or reduce negative SCPs (referred to pretrial baseline) depending on the presentation of a discriminative stimulus. The correct response was indicated by the amount of forward movement of the feedback stimulus and by monetary rewards. Schizophrenics participated in 20 sessions (each comprising 110 trials), while controls participated in 5 sessions. Compared with the healthy controls, schizophrenics showed no significant differentiation between negativity increase and negativity suppression during the first sessions. However, in the last 3 sessions, patients achieved differentiation similar to controls, demonstrating the acquisition of SCP control after extensive training. 相似文献
5.
Dr. Frank Schneider Thomas Elbert Hans Heimann Andreas Welker Friedhelm Stetter Regina Mattes Niels Birbaumer Karl Mann 《Applied psychophysiology and biofeedback》1993,18(1):23-32
Ten unmedicated alcohol-dependent male inpatients participated in a Slow Cortical Potential (SCP) self-regulation task utilizing biofeedback and instrumental conditioning. These patients were hospitalized for treatment of alcohol dependency after chronic abuse of alcoholic beverages. Somatic withdrawal symptomatology had occurred recently and the patients were free of any withdrawal symptoms of the autonomic nervous system. Immediately after hospitalization patients were unable to control their SCPs without the reinforcement of immediate feedback across 4 sessions. Seven patients participated in a fifth session an average of 4 months later. Six out of these 7 patients had not had a relapse at the follow-up. In the fifth session these patients were immediately able to differentiate between the required negativity and negativity suppression, whereas the seventh patient, who had relapsed, was unable to control his brain potentials successfully. Results are further evidence that some of the frontocortical dysfunctions in alcohol-dependent patients are reversible. This could covary with a morphological restitution of the cortex. 相似文献
6.
7.
8.
The electrokinetic model developed in Part 1 of this paper is used to characterize the electromechanical effect in cortical bone. Low frequency characteristics of stress-generated potentials are measured to provide insight into the origin and generation of these potentials induced in fluid-filled cortical bone. The results support the proposed model and indicate that fluid movement within the microporosity of bone is responsible for observed potentials whose origin is electrokinetic. The microporosity in bone, composed of the fluid spaces in and around mineral crystals encrusting collagen fibrils, constitutes an enormous surface area and appears to dominate surface-related phenomena at low frequencies. Previous experimental results, reported by many researchers, are also supported by this mechanism. 相似文献
9.
The development of the contra- and ipsilateral cortical potential evoked by electrical sciatic nerve stimulation was studied in 77 male albino rats aged 5 to 45 days. A contralateral response was already recorded, as double negativity, in the youngest animals, while an ipsilateral evoked potential was not reliably present until the 10th day. At this time, however, both responses started with an inconstant positive wave and their shape was practically the same. During subsequent development the responses differed only in respect to their dominant component: in the contralateral response, the N1 wave had the highest amplitude for most of the time, while in the ipsilateral response the delayed N2 wave was the largest component. The latent periods of contralateral responses were somewhat shorter than those of ipsilateral evoked potentials. During development we noticed a phase of abrupt shortening of the latent period, which took place before the 15th day in the contralateral response and before the 20th day in the ipsilateral response. We also found a difference in the fatigability of the responses, which was greater in immature rats than in adult animals; in the ipsilateral evoked potential it approached adult values more slowly. The development of the ipsilateral response is thus delayed compared with the development of the contralateral response. 相似文献
10.
An electrokinetic model to characterize the electromechanical effect in cortical bone has been developed using the basic principles of the biphasic theory of porous materials and a simple model for permeability and charge distribution for cortical bone. The model is developed analytically in Part I of this paper and is shown to account qualitatively for the principal experimental results reported to date. Part II of this paper concerns experimental analysis of this model, reporting results of low frequency testing of the dynamic characteristics of stress-generated potentials. Quantitative analysis of these results indicates that the microporosity of bone, made up of the channels around the hydroxyapatite encrusting the collagen matrix, is the compartment responsible for the electromechanical effects in fluid-saturated cortical bone. This microporous compartment would seem to be the obvious source of the electrokinetic effect, because it has the greatest surface area in bone and constitutes the rate limiting fluid flow compartment in deformation-induced fluid flow at low frequency. 相似文献
11.
Slow Ca-dependent action potentials were studied in skeletal muscle fibers from different Neuromuscular Diseases (NMD). Biopsies were obtained from: 3 myopathies [Fascioscapulohumeral Dystrophy (FSH) and Polymyositis (PM)], 6 patients with other diseases (CD) [Amyotrophic Lateral Sclerosis (ALS), Central Core Disease, Mitochondrial Myopathy, Polyneuritis (PN), von Eulenberg's Paramyotonia], and 8 normal control muscles. Experiments were carried out in muscle fibers under current-clamp conditions. Membrane currents other than Ca ones were abolished or greatly diminished. Muscle fibers produced any of 3 types of responses, when stimulated by depolarizing pulses: fully developed Ca-action potentials (CaAP), abortive non-regenerative Ca responses (NrR), or only capacitive passive responses (WR). The 3 types of responses were not dependent on the basal conditions of the fibers. The frequency of observation of CaAPs was significantly higher in myopathic disease. In myopathies, 46% of the muscle fibers had CaAPs, while only 22% of fibers from CD and 15% of the fibers from normal muscles showed CaAPs. No differences were observed in the resting constants as well as in the CaAPs parameters between normal and diseased muscle fibers. 相似文献
12.
13.
Kenneth D. Roeder 《Journal of insect physiology》1973,19(8):1591-1601
A method is described for measuring small differences in the acoustic sensitivity of protocerebral interneurons on one side of the noctuid brain when ultrasonic pulses are directed first at one tympanic organ and then at the other. In 23 preparations ipsilateral sensitivity of the brain interneurons was consistently greater by 3 to 4 dB (range 0–7 dB). The spike response of protocerebral interneurons to tympanic stimulation was accompanied by a negative potential having a time course of 40 to 50 msec in response to a 10 msec stimulus pulse. The consistent positive ipsilateral bias in the sensitivity of brain interneurons is much less than the increased sensitivity of the tympanic organ when sounds originate on the ipsilateral side as compared with its sensitivity to sounds directed at the contralateral side. A possible neural mechanism and the behavioural significance of this arrangement are discussed. 相似文献
14.
15.
A mathematical model is derived from physiological considerations for slow potential waves (called spreading depression) in cortical neuronal structures. The variables taken into account are the intra- and extracellular concentrations of Na+, Cl-, K+, and Ca++, together with excitatory and inhibitor transmitter substances. The general model includes conductance changes for these various ions, which may occur at nonsynaptic and synaptic membrane together with active transport mechanisms (pumps). A detailed consideration of only the conductance changes due to transmitter release leads to a system of nonlinear diffusion equations coupled with a system or ordinary differential equations. We obtain numerical solutions of a set of simplified model equations involving only K+ and Ca++ concentrations. The solutions agree qualitatively with experimentally obtained time-courses of these two ionic concentrations during spreading depression. The numerical solutions exhibit the observed phenomena of solitary waves and annihilation of colliding waves. 相似文献
16.
Cortical spreading depression (CSD) has been employed in unanesthetized curarized rats, in order to analyse the role of the cerebral cortex in the generation of epileptic self-sustained parozysms produced by direct cortical electrical stimulation. CSD was preferred because it is reversible and may be repeated several times in the same animal. CSD evoked in the hemisphere contralateral to the stimulated cortex decreased the duration of the afterdischarge by 40% and modified its form and amplitude both at the cortical and reticular levels. The possible role of cortical and subcortical structures in the development of after-discharges is discussed. 相似文献
17.
Slow waves constitute the main signature of sleep in the electroencephalogram (EEG). They reflect alternating periods of neuronal hyperpolarization and depolarization in cortical networks. While recent findings have demonstrated their functional role in shaping and strengthening neuronal networks, a large-scale characterization of these two processes remains elusive in the human brain. In this study, by using simultaneous scalp EEG and intracranial recordings in 10 epileptic subjects, we examined the dynamics of hyperpolarization and depolarization waves over a large extent of the human cortex. We report that both hyperpolarization and depolarization processes can occur with two different characteristic time durations which are consistent across all subjects. For both hyperpolarization and depolarization waves, their average speed over the cortex was estimated to be approximately 1 m/s. Finally, we characterized their propagation pathways by studying the preferential trajectories between most involved intracranial contacts. For both waves, although single events could begin in almost all investigated sites across the entire cortex, we found that the majority of the preferential starting locations were located in frontal regions of the brain while they had a tendency to end in posterior and temporal regions. 相似文献
18.
19.
Slow Ca-action potentials (CaAP) were studied in normal human skeletal muscle fibers obtained during surgery (fibers with both ends cut). Control studies also were carried out with intact as well as cut rat skeletal muscle fibers. Experiments were performed in hypertonic Cl-free saline with 10 or 84 mM Ca and K-channel blockers; muscles were preincubated in a saline containing Cs and tetraethylammonium. A current-clamp technique with two intracellular microelectrodes was used. In human muscle, 14.5% of the fibers showed fully developed CaAPs, 21% displayed nonregenerative Ca responses, and 64.5% showed only passive responses; CaAPs were never observed in 10 mM Ca. In rat muscle, nearly 90% of the fibers showed CaAPs, which were not affected by the cut-end condition. Human and rat muscle fibers had similar membrane potential and conductance in the resting state. In human muscle (22-32 degrees C, 84 mM Ca), the threshold and peak potential during a CaAP were +26 +/- 6 mV and +70 +/- 3 mV, respectively, and the duration measured at threshold level was 1.7 +/- 0.5 sec. In rat muscle, the duration was four times longer. During a CaAP, membrane conductance was assumed to be a leak conductance in parallel with a Ca and a K conductance. In human muscle (22-32 degrees C, 84 mM Ca, 40 micron fiber diameter), values were 0.4 +/- 0.1 microS, 1.1 +/- 0.7 microS, and 0.9 +/- 0.4 microS, respectively. Rat muscle (22-24 degrees C, 84 mM Ca) showed leak and K conductances similar to those found in human fibers. Ca-conductance in rat muscle was double the values obtained in human muscle fibers. 相似文献
20.
J W Phillis J P Edstrom S W Ellis J R Kirkpatrick 《Canadian journal of physiology and pharmacology》1979,57(8):917-920
Intravenously administered theophylline (50--100 mg/kg) antagonized the depressant actions of adenosine and flurazepam on rat cerebral cortical neurons. When assessed in conjunction with recent reports that theophylline competes with diazepam for binding sites in brain tissue, this finding suggests that one action of the benzodiazepines may be exerted at a purinergic receptor associated with central neurons. 相似文献