首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tissue culture methods for improvement of cotton has lagged seriously compared to other major crops. A method for regeneration of cotton which includes a morphogenetically competent cell suspension was needed to facilitate selection of stress-resistant variants and gene manipulation. Preliminary screening of eight strains of Gossypium hirsutum L. for embryogenic potential resulted in the production of somatic embryos in all strains. Coker 312 was selected for use in the development of a model regeneration system for G. hirsutum. Calli were initiated from hypocotyl tissues of 3-day-old-seedlings. Globular embryos were present after six weeks in culture. Calli were subcultured to liquid suspension in growth regulator-free medium. After three to four weeks, suspensions were sieved to collect globular and heart stage embryos. Collected embryos developed further when plated onto semi-solid medium. To induce germination and plantlet growth, mature embryos were placed on sterile vermiculite saturated with medium. Upon development of roots and two true leaves, plantlets were potted in peat and sand, and hardened. Mature plants and progeny have been obtained with this procedure. A high percentage of infertile plants was observed among the regenerants.Abbreviations NAA 1 naphthaleneacetic acid - IAA indole-3-acetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid - MS Murashige and Skoog - BA 6 benzylamino purine - 2i P N6-(2-isopentenyladenine  相似文献   

2.
Calli of cotton (Gossypium hirsutum L.) initiated from seedling hypocotyl tissue were placed in liquid suspension and maintained by serial subculture in hormone-free Murashige and Skoog (MS) medium. Suspensions were sieved and globular embryos collected, washed, resuspended in basal medium and plated onto various semi-solid media. High inorganic salts (MS), low salt (2/3 MS), excess KNO3, and the growth regulators napthaleneacetic acid (NAA), gibberellic acid (GA3) and kinetin were tested for their effects on somatic embryo maturation. Long-term embryo proliferation and maturation were best on medium containing MS plus 1.9g/l KNO3. Embryos 3 mm to 10 mm in size were removed from this plating medium and placed on sterile vermiculite saturated with Stewart and Hsu's medium plus 0.1 mg/l indoleacetic acid (IAA). Plants were recovered from 10.6% of the embryos. When 5 mm embryos were placed on this medium, 30% of the embryos formed plants within six weeks. Smaller embryos required a longer period of development on the vermiculite and the addition of fresh medium supplemented with 0.1 mg/l GA3. Plants with an extensive root system and two true leaves were removed from sterile culture and potted in either one-to-one peat and sand, or vermiculite. Eighty percent of the regenerants were successfully hardened when glass beakers of increasing size (10 to 150 ml) were sequentially placed over the young plants during a two-week period.  相似文献   

3.
Plant regeneration via somatic embryogenesis in cotton   总被引:6,自引:0,他引:6  
An efficient in vitro plant regeneration system characterized by rapid and continuous production of somatic embryos using leaf and stem explants of abnormal seedling as an explant have been developed in Gossypium hirsutum L. Embryogenic callus and somatic embryos have been obtained directly from the explants of cotton abnormal seedlings. Plant growth regulators influenced the induction of cotton somatic embryogenesis. The optimal medium for direct somatic embryogenesis was modified MS medium supplemented with 0.1 mg l-1 ZT and 2 g l-1 activated carbon. On this medium, an average of 28.0 and 28.1 matured somatic embryos formed from per leaf and stem explants respectively. The highest frequency of somatic embryogenesis was 100%. The somatic embryos were converted into normal plantlets when cultured on modified MS medium supplemented with 0.1 mg l-1 ZT. Upon transfer to soil, plants grew well and appeared normal. Plants could be regenerated within 60–80 days. The system of cotton somatic embryogenesis and plant regeneration described here will facilitate the application of plant tissue culture and genetic engineering on cotton genetic improvement. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Optimal media for induction of somatic embryogenesis from mature and immature tissues ofG. hirsutum L. cv Coker 312 were determined. Explants of three-day-old seedlings form somatic embryos in 100% of cultures when treated with 0.1 mg/1 2,4-dichlorophenoxyacetic acid plus 0.5 mg/1 kinetin. Mature tissues are more recalcitrant than immature tissues and formed somatic embryos on a limited number of hormone treatments. Stem tissue is most readily induced to form somatic embryos by 2 mg/1 napthaleneacetic acid plus 0.1 mg/1 kinetin, whereas leaf tissue formed embryos best when treated with 0.1 mg/1 2,4-dichlorophenoxyacetic acid plus 1.0 mg/1 (2-isopentyl)-adenine, or 1.0 mg/1 napthaleneacetic acid plus 0.5 mg/1 (2-isopentyl)-adenine.  相似文献   

5.
Sun Y  Zhang X  Huang C  Guo X  Nie Y 《Plant cell reports》2006,25(4):289-296
Calli were successfully induced from hypocotyls of eight wild diploid cotton species (Gossypium) on MSB (MS salts and B5 vitamins) medium supplemented with 0.09 μM 2,4-D (2,4-dichlorophenoxyacetic acid) and 2.32 μM KT (kinetin). Plant growth regulator (PGR) combinations, adding GA3 (Gibberellic acid), high inorganic salt stress, and PGR-free media were used to induce embryogenic calli from nonembryogenic calli. Embryogenic cultures were induced from G. aridum S. (D4 genome), G. davidsonii K. (D3-d genome), G. klotzschianum A. (D3-k genome), G. raimondii U. (D5 genome), and G. stocksii M. (E1 genome). We then observed somatic embryogenesis in the five species while calli of G. africanum V. (A1-2 genome), G. anomalum W. (B1 genome), and G. bickii P. (G genome) remained nonembryogenic. Somatic embryogenesis was adjusted by changing sugar sources, regulating combinations of PGRs, and using cell suspension culture. Embryos at various developmental stages produced mature and germinating embryos when cultured on filter paper placed on the media containing different sugar sources. The utility of different sugar sources promoted globular embryos developing into cotyledonary stage and increased the frequency of cotyledonary embryos developing into normal plants. Normal plantlets were regenerated from G. davidsonii, G. klotzschianum, G. raimondii, and G. stocksii. Only abnormal plantlets were obtained in G. aridum. This work will contribute to broadening the number of regenerable cotton species and provide foundations for somatic hybridization in cotton to create new germplasm.  相似文献   

6.
Summary Embryogenic callus was formed from several cultivars of cotton (Gossypium hirsutum L.) when sections of hypocotyl and cotyledon were cultured on medium supplemented with 5 mg/liter 6-(γ, γ-dimethylallyl-amino)-purine (2iP) and 0.1 mg/liter α-naphthaleneacetic acid (NAA) for callus initiation and proliferation, and subcultured on medium supplemented with 5 mg/liter NAA and 0.1 to 1 mg/liter 2iP for embryogenic callus induction. It seems that a high 2iP:auxin ratio is preferred for callus initiation and proliferation, but should be exchanged with a higher NAA:cytokinin ratio before differentiation will occur. Embryogenic calluses were recovered at a frequency of 2 to 85% depending on the cultivar used. Coker cultivars produced embryogenic callus faster and at higher frequencies than other cultivars. Embryogenic callus produced somatic embryos on phytohormone-free medium. This medium was used to maintain and proliferate embryogenic callus for a perid of 18 to 24 mo. Somatic embryos were converted to plants on a lower ionic strength medium supplemented with 0.1 mg/liter gibberellic acid (GA3) and 0.01 mg/liter NAA. Glucose was the only carbohydrate used through all phases of tissue culture and was much better than sucrose, on which phenolic production was very high. High temperature (30° C) and low light intensity (9 μE · m−2 · s−1) were optimal conditions for callus initiation, embryogenic callus induction, and maintenance, whereas lower temperature (25° C) and high light intensity (90 μE · m−2 s−1) were the optimal conditions for somatic embryo maturation, germination, and plantlet development. Plants could be regenerated within 10 to 12 wk in Cokers or 7 to 8 mo. in others.  相似文献   

7.
A protocol was developed for the induction, maturation and germination of somatic embryos from leaf tissue of jojoba [Simmondsia chinensis (Link) Schneider]. Explants were placed on their adaxial sides in Petri dishes and maintained in darkness on half-strength Murashige and Skoog basal medium (MS/2). Combinations of 2,4-dichlorophenoxyacetic acid (1.35–4.52 μM) with 6-benzylaminopurine (1.33–4.43μM) and 2 synthetic cytokinins, N-(2-chloro-4pyridyl)-N′-phenylurea (1.21–4.03μM) or (E)-6-[3-(trifluoromethyl)-but-2-enylamino] purine (1.11–3.71μM) resulted in formation of embryogenic cultures and somatic embryos. After two 30-day subcultures, embryogenic cultures were transferred onto MS/2 medium supplemented with different auxins and cytokinins. Somatic embryo maturation, germination and plantlet formation were achieved using 1-naphthaleneacetic acid (3.75μM) or indole-3-butyric acid (3.44μM) in combination with BA (0.44 or 1.33μM) or F3iP (0.37 or 1.11μM). Histology confirmed each stage of development. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Summary We describe a tissue culture procedure for somatic embryogenesis and plantlet regeneration in cotton (Gossypium hirsutum L. cv. Coker 312). Callused explants or individual globular embryos were transferred to basal media to induce somatic embryogenesis. To determine characteristic early indicators of successful germination and conversion, we identified six types of embryos that developed on basal media. Two of the six embryo types, designated as tulip-shaped and trumpet-shaped, could undergo conversion in preliminary tests, whereas the others had little or no developmental potential. Several media treatments designed to enhance the maturation of globular somatic embryos failed to increase the fraction of embryos which matured to form recoverable types. In efforts to improve plantlet recovery, tulip-shaped embryos were used in limited trials to contrast the effects of chemical and physical desiccation treatments on germination and conversion. The selective use of tulip-shaped somatic embryos, coupled with partial desiccation, seems to have augmented plant recovery. Growth habit, flowering, seed set, and lint production of most of the regenerated plants were comparable to seed-derived plants grown under the same conditions. Partial research support was provided by state and federal funds appropriated to the Ohio Agricultural Research and Development Center, The Ohio State University.  相似文献   

9.
Summary A protocol of somatic embryogenesis and plant regeneration from petiole segments of Parthenocissus tricuspidata Planch. has been developed. Embryogenic tissue was induced on B5 (Gamborg) basal medium supplemented with 2.25–9.0 μM 2,4-dichlorophenoxyacetic acid, 500 mg l−1 casein hydrolysate (CH), and 0.1 gl−1 activated charcoal. Somatic embryos were induced on B5 medium containing various concentrations of benzyladenine (BA) (4.44, 6.66, and 8.88 μM) and α-naphthaleneacetic acid (NAA) (0, 0.54, and 1.61 μM) plus 500 mg l−1 CH. Ninety percent of normal somatic embryos were converted into plantlets directly on Murashige and Skoog (MS) medium free of plant growth regulators. Shoots could be induced from abnormal somatic embryos on MS medium containing 4.44 μM BA, 0.05 μM NAA, and 500 mg l−1 CH. Genotypic differences were found in the process of somatic embryogenesis and plant regeneration. Histological analysis confirmed the process of somatic embryogenesis. Regenerated plantlets with well-developed roots were successfully acclimatized in greenhouse and all plants showed normal morphological characteristics.  相似文献   

10.
Summary Media for induction of somatic embryogenesis from immature cotyledonary tissues ofAzadirachta indica (Neem) were determined. Callus was initiated on Murashige and Skoog medium supplemented with 0.5 mg·liter−1 of indol-3 acetic acid, 1.0 mg·liter−1 of 6-benzyl amino purine, and 1000 mg·liter−1 of casein hydrolysate. Effect of kinetin was also studied for embryo induction. Carbohydrate source in the form of sucrose and glucose alone and in combination was tested for embryogenic efficiency. Seventy percent embryos showed germination. Healthy plants were potted in sand and soil. Histologic studies confirmed indirect somatic embryogenesis.  相似文献   

11.
Callus cultures with globular proembryogenic structures were induced from zygotic embryos and hypocotyl segments of Cyphomandra betacea on MS medium supplemented with 2,4-D. Proembryogenic structures produced somatic embryos and plantlets on regulator-free basal medium. Pieces of embryogenic callus subcultured on medium with the same original composition gave rise to new globular structures and the potential for plantlet regeneration has been maintained for over a year. The histological examination of these proembryogenic structures suggested that somatic embryos arise from single cells. Regenerated plants are phenotypically normal, having diploid chromosome numbers (2n = 24).  相似文献   

12.
Plants were obtained via somatic embryogenesis in callus derived from in vitro raised leaf and petiole explants of Aconitum heterophyllum Wall. Callus was induced on a Murashige-Skoog medium supplemented with either 2,4-dichlorophenoxy acetic acid (2,4-d 1 mg l-1) and kinetin (KN 0.5 mg l-1) with coconut water (CW 10% v/v) or naphthalene acetic acid (NAA 5 mg l-1) and benzylaminopurine (BAP 1 mg l-1). Somatic embryos appeared after 2–3 months or 2 subculture passages when 2,4-d or NAA induced source of the callus was transferred to a MS medium containing BAP (1 mg l-1) and NAA (0.1 mg l-1). For successful plantlet formation, the somatic embryos were transferred to a medium containing 1/4 strength MS nutrient with indole-3-butyric acid (IBA 1 mg l-1). Alternatively, the somatic embryos were dipped in a concentrated solution of IBA for 5 min and placed on a hormone free medium. Complete plantlets were formed after 4 weeks and were transferred successfully to soil.CIMAP Publication No. 1020.  相似文献   

13.
Callus cultures were initiated from mature excised caryopses of bahiagrass (Paspalum notatum Flugge) on Murashige & Skoog medium supplemented with 20 gl–1 sucrose and 2 mg l–1 2,4-D. Excised mature caryopses readily germinated and callus developed at the base of coleoptiles. There was considerable variation in the amount of non-embryogenic callus among the cultures. Most of the explants produced non-embryogenic translucent callus consisting of thin-walled cells and unorganized tissue. Some of these calli gave rise only to roots. Other explants formed embryogenic calli which were distinguished morphologically as white, globular and friable. Somatic embryos developed and germinated precociously when embryogenic calli were transferred to a 2,4-D-free medium. Somatic embryogenesis was confirmed by histological sections and scanning electron microscopy. Of the 300 cultures, 35 were embryogenic but only 10 produced plants that were successfully grown to maturity.  相似文献   

14.
Summary A procedure for the regeneration of cacao (Theobroma cacao) plants from staminode explants via somatic embryogenesis was developed. Rapidly growing calli were induced by culturing staminode explants on a DKW salts-based primary callus growth (PCG) medium supplemented with 20 g glucose per L, 9 μM 2,4-D, and thidiazuron (TDZ) at various concentrations. Calli were subcultured onto a WPM salts-based secondary callus growth medium supplemented with 20 g glucose per L, 9 μM 2,4-D, and 1.4 nM kinetin. Somatic embryos were formed from embryogenic calli following transfer to a hormone-free DKW salts-based embryo development medium containing sucrose. The concentration of TDZ used in PCG medium significantly affected the rate of callus growth, the frequency of embryogenesis, and the number of somatic embryos produced from each responsive explant. A TDZ concentration of 22.7 nM was found to be the optimal concentration for effective induction of somatic embryos from various cacao genotypes. Using this procedure, we recovered somatic embryos from all 19 tested cacao genotypes, representing three major genetic group types. However, among these genotypes, a wide range of variation was observed in both the frequency of embryogenesis, which ranged from 1 to 100%, and the average number of somatic embryos produced from each responsive explant, which ranged from 2 to 46. Two types of somatic embryos were identified on the basis of their visual appearance and growth behavior. A large number of cacao plants have been regenerated from somatic embryos and established in soil in a greenhouse. Plants showed morphological and growth characteristics similar to those of seed-derived plants. The described procedure may allow for the practical use of somatic embryogenesis for clonal propagation of elite cacao clones and other applications that require the production of a large number of plants from limited source materials.  相似文献   

15.
Somatic embryoids differentiated in suspension cultures of G. klotzschianum after 3–4 weeks of culture in a liquid medium containing glutamine (optimally, 10–15 mM). Embryogenesis occurred after a preculture of callus on a medium containing 10 mg/l of the cytokinin, 2iP. The embryoids had meristematic regions, a well formed epidermis, and formed roots and vestigial leaves. Asparagine was much less effective than glutamine in promoting embryoid differentiation. The presence of 2,4-D in the medium resulted in increased vigor of the suspension cultures and subsequently in the formation of many embryoids, but does not seem to be necessary for somatic embryogenesis in cotton.Technical Article 14646 from the Texas Agricultural Experiment Station  相似文献   

16.
Plants of two accessions of Arachis glabrata were regenerated via somatic embryogenesis. Embryogenic calli were initiated from leaflet explants on Murashige and Skoog medium supplemented with picloram alone or picloram in combination with 6-benzylaminopurine. Leaflets of accession A6138 induced the highest percentage of somatic embryos in media composed of 10 mg dm−3 and 15 mg dm−3 picloram. In contrast, 5 mg dm−3 picloram with 0.1 mg dm−3 6-benzylaminopurine was one of the most effective combinations in accession AF385. MS medium supplemented with 2 g dm−3 activated charcoal (AC) used for 30 days was the most effective for embryo maturation. After 20 days of culture on MS medium devoid of growth regulators, 6 % of embryos converted into plantlets in accession A6138.  相似文献   

17.
Somatic embryogenesis and plantlet formation were obtained from callus and cell suspension cultures of 40-year- old Himalayan Poplar (Populus ciliata Wall ex Royle). Callus and cell suspensions were obtained by transfer of inoculum of semiorganized leaf cultures, which were maintained on Murashige and Skoog (MS) medium supplemented with benzylaminopurine (BAP), to MS with 2,4-dichlorophenoxyacetic acid (2,4-D). Reduction of 2,4-D concentration during subsequent subculture of cell suspensions resulted in the formation of embryoids. These embryoids developed further only after being transferred to agar-based MS medium supplemented with BAP and naphthalene acetic acid. Loss of embryogenic potential was observed in cell suspensions after 6 subcultures. However, callus cultures retained the embryogenic potential even after repeated subcultures for more than a year. Plantlets could be successfully hardened and grown in natural outdoor conditions.Abbreviations BAP 6-benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - NAA 1-naphthalene acetic acid - MS Murashige and Skoog (1962) medium  相似文献   

18.
A sunflower genotype (Helianthus annuus L. cv. Florom-328) able to regenerate plants from in vitro cultures was identified by screening hybrids and inbred lines. Protoplasts of this genotype were isolated from dark grown hypocotyls and were cultured in droplets of agarose-solidified V-KM medium covered by liquid V-KM supplemented with naphthaleneacetic acid (NAA) and benzylaminopurine (BAP). One week later colonies were subjected to 2,4-dichlorophenoxyaceticacid for a one week period. Further culture in V-KM with reduced concentrations of NAA and BAP resulted in the appearence of somatic embryos. Maturation of embryos was achieved by culture on MS medium supplemented with NAA, BAP, gibberellic acid A3 and the ethylene inhibitor AgNO3. Embryos were then transferred onto hormone free MS medium for germination. The frequency of shoot formation in the best case was 9.6 percent of viable colonies (1.3 percent of protoplasts plated). Some of the shoots with roots could be transplanted into soil, others were grafted on hypocotyls of in vivo germinated seedlings. Eighty percent of grafted shoots and over 95 percent of rooted shoots survived. The plants flowered and produced 5 to 10 seeds each. Factors affecting the frequency of embryo formation and plant regeneration are discussed.Abbreviations BAP 6-benzylaminopurine - GA3 gibberellic acid - MES morpholinoethanesulfonic acid - MS Murashige and Skoog medium - NAA naphthaleneacetic acid - V-KM protoplast culture medium of Binding and Nehls - 2,4D 2,4-dichlorophenoxyacetic acid  相似文献   

19.
Summary Friable embryogenic callus and somatic embryos of 4 Gladiolus cultivars were obtained on Murashige and Skoog (MS) medium with various concentration of auxins from the following explants: corm slices, young leaf bases and whole, intact plantlets. Somatic embryos transferred on MS hormone-free medium regenerated into plantlets. All plantlets obtained through embryogenesis did not differ phenotypically from the parental clones. The embryogenic friable callus has been maintained for over 2 years in culture and has retained a very high regeneration capacity.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - KIN kinetin - NAA naphthaleneacetic acid - MS Murashige and Skoog Medium (1962) - E embryogenic callus - NE non-embryogenic callus  相似文献   

20.
Summary A procedure for the regeneration of ‘paradise tree’ (Melia azedarach, Meliaceae) plants from immature zygotic embryos via somatic embryogenesis was developed. Somatic embryos were induced from explants cultured on Murashige and Skoog medium supplemented with 0.45, 4.54, or 13.62 μM thidiazuron. Histological examination revealed that somatic embryos were induced directly from the explants. Further development of somatic embryos was accomplished with Murashige and Skoog medium at quarter-strength with 3% sucrose. A large number of plants were regenerated from somatic embryos and successfully established in soil in a greenhouse. These plants are morphologically similar to those of seed-derived plants. This system may be beneficial for mass propagation as well as for genetic manipulation of the ‘paradise tree’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号