首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hsp70 is induced by hypoxia in most mammalian cell types and contributes to their ability to survive hypoxic episodes. However, little is known about Hsp70 expression in the hypoxia-tolerant endothelial cells (ECs). We investigated the effect of hypoxia on Hsp70 in human microvascular endothelial HMEC-1 cells. Reduction of pO(2) to 2.5% of normal for 20 h stimulated lactate production and the activity of glycolytic enzymes. This metabolic adaptation to hypoxia was accompanied by a remarkable reduction of Hsp70 on the protein level and on the mRNA level. Approximately 12 h after the hypoxic period Hsp70 expression reached pre-hypoxia levels again. Since ECs are adapted to the low oxygen tension of the vasculature they are confronted with a supraphysiological oxygen level during in vitro culture. We suppose that the high Hsp70 under these conditions reflects a stress response which disappears at the more physiological reduced oxygen tension during hypoxia.  相似文献   

2.
Hypoxia results in adaptationally appropriate alterations of gene expression through the activation of hypoxia-inducible factor (HIF)-1 to overcome any shortage of oxygen. Peripheral blood mononuclear cells may be exposed to low oxygen tensions for different times as they migrate between blood and various tissues. We and others have previously shown that T-cell adaptation to hypoxia is characterized by a modulation of cytokine expression and an inhibition of T-cell activation. We have recently demonstrated that the adaptor protein p66Shc negatively regulates T-cell activation and survival. We here show that hypoxia enhances HIF-1alpha accumulation and vascular endothelial growth factor production in T cells. Hypoxic T cells expressed high levels of p21(WAF1/CIP1), of the pro-apoptotic molecules BNIP3, a classic HIF target gene, and BAX, as well as low levels of the anti-apoptotic molecule BCLxl, associated with an induction of cell death. We found out that hypoxic T cells expressed p66Shc. Furthermore, using T-cell transfectants expressing p66Shc, as well as T cells derived from mice p66Shc-/-, we defined a role of p66Shc in T-cell responses to hypoxia. Of interest, hypoxic p66Shc-positive transfectants expressed higher level of HIF-1alpha than negative controls. Thus, p66Shc may play an important role in downstream hypoxic signaling, involving HIF-1alpha protein accumulation and cell death in T lymphocytes.  相似文献   

3.
4.
Our previous studies using oxygen microelectrodes showed that the thymus is grossly hypoxic under normal physiological conditions. We now have investigated how oxygen tension affects the thymus at the cellular and molecular level. Adducts of the hypoxia marker drug pimonidazole accumulated in foci within the cortex and medulla and at the corticomedullary junction, consistent with the presence of widespread cellular hypoxia in the normal thymus. Hypoxia-associated pimonidazole accumulation was decreased but not abrogated by oxygen administration. Genes previously reported to be induced by hypoxia were expressed at baseline levels in the normal thymus, indicating that physiological adaptation to hypoxia occurred. Despite changes in thymus size and cellularity, thymic PO(2) did not change with age. Combined assays for hypoxia and cell death showed that hypoxia achieved using either hypoxic gas mixtures or high-density culture in normoxia decreased spontaneous thymocyte apoptosis in vitro. Taken together, these data suggest that regulatory mechanisms exist to maintain thymic cellular hypoxia in vivo and that oxygen tension may regulate thymocyte survival both in vitro and in vivo.  相似文献   

5.
6.
7.
8.
Numerous studies have demonstrated the critical role of angiogenesis for successful osteogenesis during endochondral ossification and fracture repair. Vascular endothelial growth factor (VEGF), a potent endothelial cell-specific cytokine, has been shown to be mitogenic and chemotactic for endothelial cells in vitro and angiogenic in many in vivo models. Based on previous work that (1) VEGF is up-regulated during membranous fracture healing, (2) the fracture site contains a hypoxic gradient, (3) VEGF is up-regulated in a variety of cells in response to hypoxia, and (4) VEGF is expressed by isolated osteoblasts in vitro stimulated by other fracture cytokines, the hypothesis that hypoxia may regulate the expression of VEGF by osteoblasts was formulated. This hypothesis was tested in a series of in vitro studies in which VEGF mRNA and protein expression was assessed after exposure of osteoblast-like cells to hypoxic stimuli. In addition, the effects of a hypoxic microenvironment on osteoblast proliferation and differentiation in vitro was analyzed. These results demonstrate that hypoxia does, indeed, regulate expression of VEGF in osteoblast-like cells in a dose-dependent fashion. In addition, it is demonstrated that hypoxia results in decreased cellular proliferation, decreased expression of proliferating cell nuclear antigen, and increased alkaline phosphatase (a marker of osteoblast differentiation). Taken together, these data suggest that osteoblasts, through the expression of VEGF, may be in part responsible for angiogenesis and the resultant increased blood flow to fractured bone segments. In addition, these data provide evidence that osteoblasts have oxygen-sensing mechanisms and that decreased oxygen tension can regulate gene expression, cellular proliferation, and cellular differentiation.  相似文献   

9.
10.
Low oxygen tension is thought to be an integral component of the human mesenchymal stem cell (hMSC) native bone marrow microenvironment. HMSC were cultured under physiologically relevant oxygen environments (2% O2) in three-dimensional (3D) constructs for up to 1 month in order to investigate the combined effects of chronic hypoxia and 3D architecture on hMSC tissue-development patterns. Hypoxic hMSC exhibited an extended lag phase in order to acclimatize to culture conditions. However, they subsequently proliferated continuously throughout the culture period, while maintaining significantly higher colony-forming unit capabilities and expressing higher levels of stem cell genes than hMSC cultured at 20% O2 (normoxic) conditions. Upon induction, hypoxic hMSC also expressed higher levels of osteoblastic and adipocytic differentiation markers than normoxic controls. Hypoxia induced increased total protein levels in hMSC throughout the culture period, as well as significantly different fibronectin expression patterns suggesting that oxygen levels can significantly affect tissue-development patterns. Importantly, hMSC maintained the ability to thrive in prolonged hypoxic conditions suggesting that hypoxia may be an essential element of the in vivo hMSC niche. Further studies are required to determine how variations in cellular characteristics and ECM expression impact on the physiological properties of the engineered tissue, yet these results strongly indicate that oxygen tension is a key parameter that influences the in vitro characteristics of hMSC and their development into tissues.  相似文献   

11.
12.
Three long-term clonally derived cytotoxic lines have been established from isolates of murine intraepithelial lymphocytes (IEL). All three lines were selected for with antigen and represent two allospecific cytotoxic T lymphocyte (CTL) clones and a major histocompatibility complex (MHC)-restricted clone specific for a murine minor histocompatibility antigen. On long-term in vitro culture, IEL clones gradually lost antigen-specific lytic activity and simultaneously acquired the capacity to lyse natural killer (NK)-sensitive target cells which, in some cases, required high-level lymphokine activation. Of interest was the finding that, despite changes in lytic specificity, IEL clones remained strictly antigen-dependent for proliferation. A murine CTL clone of splenic origin, which was propagated under culture conditions identical to those used for IEL, did not exhibit changes in lytic specificity, suggesting that acquired changes in IEL function cannot be attributed solely to the influence of in vitro culture. Phenotypic analyses of IEL clones with altered lytic specificity revealed that all lines remained Thy-1+, Lyt-2+, L3T4-, with or without lytic activation by lymphokines. The expression of CT-1, a murine CTL activation antigen, and asialo GM1, a murine NK cell marker, were variable on IEL clones, and their presence did not correlate with the changes in lytic behavior. Collectively, these findings provide evidence, at the clonal level, that at least some NK activity present in isolates of murine IEL may originate from antigen-specific CTL. The data also indicate that, on binding antigen, different signals are conveyed to T cells, resulting in proliferation or target cell lysis.  相似文献   

13.
14.
Thy-1+, Lyt-1-,2+, asialo GM1+ cytotoxic T lymphocyte (CTL) clones have been isolated from the intestinal mucosa of mice primed with alloantigens. Two different types of cytotoxic clones have been obtained. The first type is functionally similar to most splenic and lymph node-derived CTL clones in that they are strictly antigen specific with respect to proliferation and cytolytic activity. The second type of CTL clone has several unique characteristics. Although these clones are also antigen specific with regard to proliferation, they are not cytolytic under standard growth conditions in medium containing 4% rat concanavalin A-induced spleen cell supernatant. After culture for 4 days in the presence of high concentrations of interleukin 2, cells become activated and exhibit broad lytic potential. Moreover, during the activation process, these CTL begin to express a murine T cell surface antigen, CT-1, which is associated with activated cytotoxic cells. The findings reported in this report should now allow us to precisely define, both phenotypically and functionally, specific lymphocyte populations that make up the gut-associated lymphoid tissues. These data also describe a new type of effector CTL that differs from other cytotoxic cells reported to date, because it is antigen dependent for proliferation, but requires signals mediated by lymphokines for lytic activation.  相似文献   

15.
16.
The ability of stem/progenitor cells to migrate and engraft into host tissues is key to their potential use in gene and cell therapy. Among the cells of interest are the adherent cells from bone marrow, referred to as mesenchymal stem cells or multipotent stromal cells (MSC). Since the bone marrow environment is hypoxic, with oxygen tensions ranging from 1% to 7%, we decided to test whether hypoxia can upregulate chemokine receptors and enhance the ability of human MSCs to engraft in vivo. Short-term exposure of MSCs to 1% oxygen increased expression of the chemokine receptors CX3CR1and CXCR4, both as mRNA and as protein. After 1-day exposure to low oxygen, MSCs increased in vitro migration in response to the fractalkine and SDF-1alpha in a dose dependent manner. Blocking antibodies for the chemokine receptors significantly decreased the migration. Xenotypic grafting into early chick embryos demonstrated cells from hypoxic cultures engrafted more efficiently than cells from normoxic cultures and generated a variety of cell types in host tissues. The results suggest that short-term culture of MSCs under hypoxic conditions may provide a general method of enhancing their engraftment in vivo into a variety of tissues.  相似文献   

17.
Signal transduction pathways leading to angiopoietin 1 (Ang1)-induced capillary morphogenesis by endothelial cells remain poorly defined. Angiogenic cellular responses by endothelial cells may be modulated in vivo by chronic hypoxia, such as that induced by tumors. Here, we studied Ang1-induced capillary morphogenesis in human umbilical-vein endothelial cells (HUVECs) cultured chronically under normoxic (21% oxygen) or hypoxic (1.5% oxygen) conditions. Downregulation of Src using a small interfering RNA (siRNA) inhibited Ang1-induced capillary morphogenesis of HUVECs cultured under both conditions by blocking cell spreading and protrusion. Ang1 upregulated the Src-dependent secretion of vascular endothelial growth factor-A (VEGF-A). Blockade of endogenous VEGF-A also inhibited Ang1-induced capillary morphogenesis. Addition of exogenous VEGF-A restored cell spreading and protrusion, leading to Ang1-induced capillary morphogenesis of Src siRNA-treated HUVECs, suggesting that Ang1-induced VEGF-A secretion through Src was required for capillary morphogenesis. PP2 inhibited both Ang1-induced capillary morphogenesis and Src activation in HUVECs cultured under normoxic conditions, but the PP2 activity was significantly impaired in HUVECs cultured under hypoxic conditions. Expression of multidrug resistance-associated protein 1 (MRP 1) was upregulated in hypoxic HUVECs, and treatment with MRP 1 siRNA restored the inhibitory action of PP2. Taken together, our results suggest that Ang1 induces capillary morphogenesis in HUVECs through Src-dependent upregulation of endogenous VEGF-A. Conditions of chronic hypoxia impaired the effect of PP2, possibly via MRP 1.  相似文献   

18.
19.
20.
A variety of pathologies such as skeletal fracture, neoplasia and inflammation compromise tissue perfusion and thereby decrease tissue oxygen tension. We and others have demonstrated that hypoxia is a potent stimulant for MSC (mesenchymal stem cell) recruitment and differentiation, yet to date little research has focused on the effects of oxygen tension on MSC migration. In the present study, we examined the effects of hypoxia and the potential role of the GTPase RhoA and HIF-1α (hypoxia-inducible factor 1α) on MSC migration. Our results demonstrate that hypoxia decreases MSC migration through an HIF-1α and RhoA-mediated pathway. The active GTP-bound form of RhoA was reduced in 1% oxygen, whereas activation of RhoA under hypoxic conditions rescued migration. Furthermore, stabilization of HIF-1α under normoxic conditions attenuated cell migration similar to that of hypoxia. These results suggest that hypoxia negatively affects MSC migration by regulating activation of GTPases. These results highlight the importance of oxygen in regulating the recruitment of progenitor cells to areas of ischaemic tissue damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号