首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleotide sequence of cDNA for rabbit liver cytochrome P-450 (laurate (omega-1) hydroxylase) was replaced with that for rabbit liver cytochrome P-450 (testosterone 16 alpha-hydroxylase) in various regions coding for the amino acid sequence between residues 43 and 261. Six chimeric cDNAs thus constructed were cloned into expression vector pAAH5, and expressed in Saccharomyces cerevisiae AH22 cells under the control of yeast ADH1 promoter. Chimeric P-450s synthesized in the transformed yeast cells were purified partially and their catalytic and spectral properties were examined and compared with those of the chimeric P-450 which is considered to possess the same catalytic properties as the wild-type P-450. In the oxidized state the chimeric P-450s exhibited a low-and high-spin mixed-type absorption spectrum of cytochrome P-450 and the spectrum was converted to a typical high-spin type on addition of laurate or caprate, indicating the binding of the fatty acids to the substrate site of the chimeric P-450s. However the affinities of the fatty acids for the chimeras devoid of the sequence of P-450 (laurate (omega-1)-hydroxylase) in either of the regions spanning residues 90-125 and 210-261 were 10 to 20 times lower than those for the chimeras containing the sequence of the wild-type P-450 in both regions. The latter chimeras have about the same affinities as the chimera which is essentially the wild-type P-450.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Resonance Raman spectra were observed for the threonine-301 to serine or valine mutant as well as the wild type of rabbit liver microsomal cytochrome P-450 [laurate(omega-1)-hydroxylase] (P-450(omega-1], which were prepared through site-directed mutagenesis. The high-spin marker resonance Raman (RR) bands became similarly stronger for all the P-450s examined in the oxidized form upon addition of laurate, and the RR spectra in the higher frequency region of the oxidized, reduced and CO-adduct forms did not distinctly differ among the P-450s examined. Nevertheless, the Fe-CO stretching mode (vFe-CO) of the CO adduct exhibited an upshift for the valine mutant, suggesting positional proximity of Thr-301 to bound CO like Thr-252 of P-450cam, in agreement with the expectation from the sequence analysis. The vFe-CO band was shifted to higher frequency upon binding of normal alkyl fatty acids with C10 or longer alkyl chain but little affected by binding of shorter fatty acids.  相似文献   

3.
cDNA for chimeric P-450 consisting of the amino-terminal 462 residues of P-450 (laurate (omega-1)-hydroxylase) and the remaining 28 residues of P-450 (testosterone 16 alpha-hydroxylase) was constructed and expressed in yeast cells. The resulting chimera could catalyze laurate (omega-1)-hydroxylation and benzphetamine N-demethylation at much higher rates than the parental P-450s, but exhibited the same specificity towards fatty acid substrates as the wild-type laurate hydroxylase. When testosterone was examined as a substrate, the 16 beta-hydroxylated product, which cannot be formed by either of the parental P-450s, was detected, suggesting that the laurate hydroxylase contains a structure that is capable of binding testosterone at a proper orientation so that it can be hydroxylated at the 16 beta position.  相似文献   

4.
Y Imai  M Nakamura 《FEBS letters》1988,234(2):313-315
Threonine-301 from rabbit liver cytochromes P-450 (laurate (omega-1)-hydroxylase and testosterone 16 alpha-hydroxylase) has been replaced by histidine via site-directed mutagenesis. In the oxidized state the mutant P-450s exhibited typical low-spin type absorption spectra of P-450 and their reduced CO complexes showed a Soret peak at 450 nm. However, no spectral change was induced on addition of substrates for their wild-type counterparts. The mutant P-450s were also completely devoid of the hydroxylase activity. These findings suggest that threonine-301, which is highly conserved in P-450s and located at the distal heme surface, plays an important role in substrate binding.  相似文献   

5.
Two forms of cytochrome P-450 (P-450), designated P-450 k-1 and P-450 k-2, have been purified about 100-fold from rat kidney cortex microsomes. P-450 k-1 and P-450 k-2 have monomeric molecular weights of 51,500 and 52,000, respectively, on sodium dodecyl sulfate(SDS)-polyacrylamide gel electrophoresis. Absolute spectra of the oxidized forms indicate that P-450 k-1 is largely in the low-spin state and partly in the high-spin state, and that P-450 k-2 is essentially all in the former. The absorption maxima in reduced carbon monoxide difference spectra are at 450.5 and 451 nm with P-450 k-1 and P-450 k-2, respectively. The two P-450s catalyze the omega- and (omega-1)-hydroxylation of fatty acids such as caprate, laurate, myristate, and palmitate, although P-450 k-1 exhibits a higher specific activity with all fatty acids tested. In addition, P-450 k-1 is capable of hydroxylating prostaglandin (PG) A1 and A2 at the omega-position, whereas P-450 k-2 has no activity toward PGs. These activities are all stimulated by addition of cytochrome b5. The two P-450s give different peptide map patterns when partially digested with Staphylococcus aureus V8 protease or papain.  相似文献   

6.
Three cytochrome P-450 preparations, designated as cytochrome P-450ca, cytochrome P-450cb, and cytochrome P-448c fraction, were separated and purified about 23-, 50-, and 29-fold, respectively, from the cholate extracts of rabbit colon mucosa microsomes. Their specific contents were 1.2, 2.6, and 1.5 nmol of cytochrome P-450 per mg of protein, respectively. Cytochrome P-450ca and cytochrome P-450cb migrated as heme-containing polypeptide bands with molecular weights of about 53,000 and 57,000, respectively, on SDS-polyacrylamide gel electrophoresis. The CO-reduced difference spectra of cytochrome P-450ca, cytochrome P-450cb, and cytochrome P-448c fraction showed maxima at 451, 450, and 449 nm, respectively. Cytochrome P-450ca efficiently catalyzed the omega-hydroxylation of prostaglandin A1 (PGA1) and the omega- and (omega-1)-hydroxylation of caprate, laurate, and myristate in the reconstituted system containing cytochrome P-450ca, NADPH-cytochrome P-450 reductase, cytochrome b5, and phosphatidylcholine. In contrast, cytochrome P-450cb and cytochrome P-448c fraction had no detectable activity toward PGA1 and fatty acids. Both catalyzed aminopyrine and benzphetamine N-demethylation. Cytochrome P-448c fraction also hydroxylated benzo(a)pyrene, and phosphatidylinositol or phosphatidylserine exhibited a stimulatory effect on this activity. The results show that rabbit colon microsomes contain catalytically different cytochrome P-450, one of which is specialized for the omega-oxidation prostaglandins, the others being involved in the metabolism of exogenous compounds such as drugs and polycyclic hydrocarbons.  相似文献   

7.
cDNAs for various chimeras between P450 2C2, P450 2C14, P450 2B5, and P450 2E1 were constructed, the chimeric P450s were expressed in yeast cells, and their catalytic activities were compared in the reconstituted system containing partially purified P450 preparations. The chimera P450(2Hc3), consisting of the 462 amino-terminal residues of P450 2C2 and the remaining 28 residues of P450 2C14, had testosterone 16 beta-hydroxylase activity, which is not seen in either of the parental P450s, in addition to higher activities of laurate (omega-1)-hydroxylation and benzphetamine N-demethylation than the parental P450s [Uno, T. et al. (1990) Biochem. Biophys. Res. Commun. 167, 498-503]. When either of the segments from P450 2C2 and P450 2C14 in this chimera was replaced with the corresponding sequences of P450 2E1 or when the 35 carboxy-terminal residues of P450(2Hc3) were replaced with those of P450 2B5, the 16 beta-hydroxylase activity disappeared. When the 262 amino-terminal residues, except for residues 90-125 (region 90-125), of P450(2Hc3) were replaced with those of P450 2C14, the resulting chimera retained both testosterone 16 beta- and laurate (omega-1)-hydroxylase activities. Further replacing the region 90-125 with that of P450 2C14 resulted in disappearance of the 16 beta-hydroxylase activity and profound decrease in the (omega-1)-hydroxylase activity. Testosterone 16 beta-hydroxylation was inhibited by laurate and laurate (omega-1)-hydroxylation by testosterone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
omega-Hydroxylation of leukotriene B4 (LTB4) has been reported in human and rodent polymorphonuclear leukocytes; preliminary information indicates that this metabolism is cytochrome P-450 dependent. Therefore, these studies were initiated to characterize the cytochrome P-450-dependent metabolism of LTB4 in other tissues. LTB4 was metabolized by rat hepatic microsomes to two products, 20-hydroxy(omega)-LTB4 and 19-hydroxy(omega-1)-LTB4. The formation of these metabolites was both oxygen and NADPH dependent indicating that a monooxygenase(s) was responsible for these reactions. The apparent Km and Vmax for LTB4 omega-hydroxylase were 40.28 microM and 1202 pmol/min/mg of protein, respectively. In contrast, the apparent Km and Vmax for LTB4 (omega-1)-hydroxylase were 61.52 microM and 73.50 pmol/min/mg of protein, respectively. Both LTB4 omega- and (omega-1)-hydroxylases were inhibited by metyrapone in a concentration-dependent fashion. However, SK&F 525A inhibited LTB4 (omega-1)- but not omega-hydroxylase. In contrast, alpha-naphthoflavone decreased LTB4 omega- but not (omega-1)-hydroxylase activities. The differences in the Km apparent for substrate as well as the differential inhibition by inhibitors of cytochrome P-450 suggest that the omega- and (omega-1)-hydroxylations of LTB4 in hepatic microsomes are mediated by different isozymes of P-450. Furthermore, several additional characteristics of LTB4 hydroxylases indicate that these isozymes of P-450 may be different from those which catalyze similar reactions on medium-chain fatty acids, such as laurate and prostaglandins.  相似文献   

9.
A new form of cytochrome P-450 was partially purified from hepatic microsomes of neonatally imprinted rats (adult male and adult male castrated at four weeks of age). This new form of cytochrome P-450 appears to have an apparent molecular weight of approximately 50,000 daltons as judged by sodium dodecyl sulfate polyacrylamide gel electrophoresis. It appears that this form of cytochrome P-450 is either absent or present in low concentrations in cytochrome P-450 preparations isolated from neonatally nonimprinted rats (adult female and adult male castrated at birth). Reconstitution of testosterone hydroxylase and benzphetamine N-demethylase activities of this partially purified cytochrome P-450 revealed that the presence of testosterone 16α-hydroxylase activity, an imprintable microsomal enzyme, was in parallel with the imprinting status of the animals; a significantly higher activity was detected in the neonatally imprinted than that of the nonimprinted animals. This was in contrast to the nonimprintable benzphetamine N-demethylase, testosterone 7α-and 6β-hydroxylase activities which exhibited no correlation with the imprinting status of the animals. We have prepared antisera from rabbits using the partially purified cytochrome P-450 preparations from adult male rats as antigens. These antisera inhibited microsomal testosterone 16α- and 7α-hydroxylase activities in a concentration-dependent manner, without impairing 6β-hydroxylase activity. These data suggest that the partially purified cytochrome P-450 from adult male rats consists of both imprintable (16α-) and nonimprintable (7α-) testosterone hydroxylase activities. The antisera formed immunoprecipitant lines in the Ouchterlony double diffusion plates with partially purified cytochrome P-450 from both neonatally imprinted and nonimprinted adult rats. The immunoprecipitant lines, as stained by coomassie blue, suggest the homology of the cytochrome P-450 preparations from neonatally imprinted and nonimprinted rats. Immunoabsorption of the antisera against neonatally nonimprinted, partially purified cytochrome P-450 completely removed the immunoprecipitant lines without appreciably impairing the inhibitory effects of antisera on the microsomal testosterone 16α-and 7α-hydroxylase activities. In contrast, immunoabsorption of the antisera against partially purified cytochrome P-450 from adult male rats (imprinted) abolished completely both the immunoprecipitant lines and the inhibition on microsomal testosterone hydroxylation reaction (16α and 7α). The inhibitory actin of antisera on testosterone hydroxyulation was also abolished upon boiling the antisera at 100°C for 5 minutes. The biochemical and immunochemical data in this study suggest that the neonatally imprintable form or forms of hepatic microsomal cytochrome P-450 accounts for a small fraction of the bulk of total cytochrome P-450. However, the existence of this form of cytochrome P-450 is regulated by gonadal hormones during the neonatal period and accounts for the major imprintable sex difference in drug and steroid metabolism in adulthood.  相似文献   

10.
We have previously reported the isolation of two forms of cytochrome P-450 (P-450) with omega-hydroxylase activities toward prostaglandin A (PGA) and fatty acids, designated as P-450ka-1 and P-450ka-2, from kidney cortex microsomes of rabbits treated with di(2-ethylhexyl)phthalate [Kusunose, E. et al. (1989) J. Biochem. 106, 194-196]. In the present work, we have purified and characterized two additional forms of rabbit kidney fatty acid omega-hydroxylase, designated as P-450kc and P-450kd. The purified P-450kc and P-450kd had specific contents of 13 and 16 nmol of P-450/mg of protein, with apparent molecular weights of 52,000 and 55,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), respectively. Both the forms showed absorption maxima at 450 nm in the carbon monoxide-difference spectra for their reduced forms. These P-450s efficiently catalyzed the omega- and (omega-1)-hydroxylation of fatty acids such as caprate, laurate, myristate, and palmitate, in a reconstituted system containing P-450, NADPH-P-450 reductase, and phosphatidylcholine. Cytochrome b5 stimulated the reactions to only a slight extent. They had no detectable activity toward PGA and several xenobiotics tested. The two P-450s showed different peptide map patterns after limited proteolysis with papain or Staphylococcus aureus V8 protease.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Microsomes from liver or kidney of untreated rainbow trout hydroxylated lauric acid specifically at the (omega-1) position. Turnover numbers for liver (2.72 min-1) and kidney (14.1 min-1) were decreased seven- and twofold, respectively, following treatment with beta-naphthoflavone. Laurate hydroxylation activity from untreated trout hepatic microsomes was sensitive to inhibition by SKF-525A, but was not sensitive to metyrapone and only partially inhibited by alpha-naphthoflavone. The temperature optimum of laurate (omega-1) hydroxylation in trout liver microsomes was 25-30 degrees C. The Km and Vmax for (omega-1)- hydroxylaurate formation was 50 microM and 1.63 nmol min-1 mg-1, respectively, in liver and 20 microM and 3.95 nmol min-1 mg-1, respectively, in kidney from untreated trout microsomes. (omega-1) Hydroxylation of laurate, in both liver and kidney microsomes, was sensitive to an antibody raised against a previously purified cytochrome P-450 isozyme (LM2) of trout liver microsomes, which has been shown to be active towards aflatoxin B1. Antibody to the major isozyme of cytochrome P-450 ( LM4b , active towards benzo(a)pyrene) induced by beta-naphthoflavone did not inhibit (omega-1) hydroxylation of laurate in microsomes from untreated or beta-naphthoflavone-treated trout.  相似文献   

12.
The microsomes of placenta and uterus from pregnant rabbits have been found to catalyze the omega-hydroxylation of PGE1, PGE2, PGF2 alpha, and PGA1 as well as the omega- and (omega-1)-hydroxylation of palmitate and myristate in the presence of NADPH. These activities were greatly inhibited by carbon monoxide, indicating the involvement of cytochrome P-450. The apparent Km for PGE1 was 2.38 microM and 2.1 microM with the placental and uterus microsomes, respectively. Cytochrome P-450 has been solubilized with 1% cholate from the placental microsomes, and partially purified by chromatography on 6-amino-n-hexyl Sepharose 4B, DEAE-Sephadex A-50 and hydroxylapatite columns. The partially purified cytochrome P-450 efficiently catalyzed the omega-hydroxylation of various prostaglandins such as PGE1, PGE2, PGF2 alpha, PGD2, and PGA1 in a reconstituted system containing NADPH-cytochrome P-450 reductase, cytochrome b5, and phosphatidylcholine. The reconstituted system also hydroxylated palmitate and myristate at the omega- and (omega-1)-position, but could not hydroxylate laurate. These catalytic properties resemble those of a new form of cytochrome P-450 highly purified from the lung microsomes of progesterone-treated rabbits (Yamamoto, S., Kusunose, E., Ogita, K., Kaku, M., Ichihara, K., and Kusunose, M. (1984) J. Biochem. 96, 593-603). This type of cytochrome P-450, viz., cytochrome P-450 with high prostaglandin omega-hydroxylase activity may play a role in the regulation of prostaglandin levels in pregnancy.  相似文献   

13.
Terminal acetylenic fatty acid mechanism-based inhibitors (Ortiz de Montellano, P. R., and Reich, N. O. (1984) J. Biol. Chem. 259, 4136-4141) were used as probes in determining the substrate specificity of rabbit lung cytochrome P-450 isozymes of pregnant animals in both microsomes and reconstituted systems. Lung microsomal and reconstituted P-450 form 5-catalyzed lauric acid omega- and (omega-1)-hydroxylase activities were inhibited by a 12-carbon terminal acetylenic fatty acid, 11-dodecynoic acid (11-DDYA), and an 18-carbon terminal acetylenic fatty acid, 17-octadecynoic acid (17-ODYA). Rabbit lung microsomal lauric acid omega-hydroxylase activity was more sensitive to inhibition by 11-DDYA than was (omega-1)-hydroxylase activity. In reconstituted systems containing purified P-450 form 5, both omega- and (omega-1)-hydroxylation of lauric acid were inhibited in parallel when either 11-DDYA or 17-ODYA was used. These data suggest the presence of at least two P-450 isozymes in rabbit lung microsomes capable of lauric acid omega-hydroxylation. This is the first report indicating the multiplicity of lauric acid hydroxylases in lung microsomes. Lung microsomal prostaglandin omega-hydroxylation, mediated by the pregnancy-inducible P-450PG-omega (Williams, D. E., Hale, S. E., Okita, R. T., and Masters, B. S. S. (1984) J. Biol. Chem. 259, 14600-14608) was subject to inhibition by 17-ODYA only, whereas 11-DDYA acid was not an effective inhibitor of this hydroxylase. We have recently developed a new terminal acetylenic fatty acid, 12-hydroxy-16-heptadecynoic acid (12-HHDYA), that contains a hydroxyl group at the omega-6 position. We show that 12-HHDYA possesses a high degree of selectivity for the inactivation of rabbit lung microsomal prostaglandin omega-hydroxylase activity which cannot be obtained with the long chain acetylenic inhibitor, 17-ODYA. In addition, 12-HHDYA has no effect on lauric acid omega- or omega-1-hydroxylation or on benzphetamine N-demethylation. The development of this new terminal acetylenic fatty acid inhibitor provides us with a useful tool with which to study the physiological role of prostaglandin omega-hydroxylation in the rabbit lung during pregnancy.  相似文献   

14.
The pathways of testosterone oxidation catalyzed by purified and membrane-bound forms of rat liver microsomal cytochrome P-450 were examined with an HPLC system capable of resolving 14 potential hydroxylated metabolites of testosterone and androstenedione. Seven pathways of testosterone oxidation, namely the 2 alpha-, 2 beta-, 6 beta-, 15 beta-, 16 alpha-, and 18-hydroxylation of testosterone and 17-oxidation to androstenedione, were sexually differentiated in mature rats (male/female = 7-200 fold) but not in immature rats. Developmental changes in two cytochrome P-450 isozymes largely accounted for this sexual differentiation. The selective expression of cytochrome P-450h in mature male rats largely accounted for the male-specific, postpubertal increase in the rate of testosterone 2 alpha-, 16 alpha, and 17-oxidation, whereas the selective repression of cytochrome P-450p in female rats accounted for the female-specific, postpubertal decline in testosterone 2 beta-, 6 beta-, 15 beta-, and 18-hydroxylase activity. A variety of cytochrome P-450p inducers, when administered to mature female rats, markedly increased (up to 130-fold) the rate of testosterone 2 beta-, 6 beta-, 15 beta-, and 18-hydroxylation. These four pathways of testosterone hydroxylation were catalyzed by partially purified cytochrome P-450p, and were selectively stimulated when liver microsomes from troleandomycin- or erythromycin estolate-induced rats were treated with potassium ferricyanide, which dissociates the complex between cytochrome P-450p and these macrolide antibiotics. Just as the testosterone 2 beta-, 6 beta-, 15 beta-, and 18-hydroxylase activity reflected the levels of cytochrome P-450p in rat liver microsomes, so testosterone 7 alpha-hydroxylase activity reflected the levels of cytochrome P-450a; 16 beta-hydroxylase activity the levels of cytochrome P-450b; and 2 alpha-hydroxylase activity the levels of cytochrome P-450h. It is concluded that the regio- and stereoselective hydroxylation of testosterone provides a functional basis to study simultaneously the regulation of several distinct isozymes of rat liver microsomal cytochrome P-450.  相似文献   

15.
The differences in the levels of cytochrome P-450s in hepatic and renal microsomes between spontaneously hypertensive rats (SHR) and normotensive control rats (Wistar Kyoto rats, WKY) were investigated by Western blotting with a specific antibody. Differences in the metabolic activity of the microsomes were also studied. In hepatic microsomes, the content of P450 PB-1 (IIIA2) was 140% higher in SHR than in WKY and the content of P450 IF-3 (IIA1) in SHR was one-seventh that in WKY. The differences reflected the increase in testosterone 6 beta-hydroxylation activity and decrease in testosterone 7 alpha-hydroxylation activity in hepatic microsomes of SHR. The level of P450 K-5 (IVA2) in hepatic microsomes of SHR was 4-times that in microsomes of WKY. The levels of other cytochrome P-450s in SHR were not very different from those in WKY. In renal microsomes, the levels of three renal cytochrome P-450s, P450 K-2, K-4, and K-5, were measured. The level of P450 K-5 (fatty acid omega-hydroxylase) in SHR was 50% higher than that in WKY and the difference reflected the increase in lauric acid omega- and (omega-1)-hydroxylation activities of the renal microsomes of SHR. The levels of P450 K-2 and K-4 did not differ in both rats.  相似文献   

16.
Rat cytochrome P-450(M-1) cDNA was expressed in Saccharomyces cerevisiae TD1 cells by using a yeast-Escherichia coli shuttle vector consisting of P-450(M-1) cDNA, yeast alcohol dehydrogenase promoter and yeast cytochrome c terminator. The yeast cells synthesized up to 2 X 10(5) molecules of P-450(M-1) per cell. The microsomal fraction prepared from the transformed cells contained 0.1 nmol of cytochrome P-450 per mg of protein. The expressed cytochrome P-450 catalyzed 16 alpha- and 2 alpha-hydroxylations of testosterone in accordance with the catalytic activity of P-450(M-1), but did not hydroxylate vitamin D3 or 1 alpha-hydroxycholecalciferol at the 25 position. The expressed cytochrome P-450 also catalyzed the oxidation of several drugs and did not show 25-hydroxylation activity toward 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol. However, it cross-reacted with the polyclonal and monoclonal antibodies elicited against purified P-450cc25 which catalyzed the 25-hydroxylation of vitamin D3. These results indicated that P-450(M-1) cDNA coded the 2 alpha- and 16 alpha-hydroxylase of testosterone, and that these two positions of testosterone are hydroxylated by a single form of cytochrome P-450. Vitamin D3 25-hydroxylase and testosterone 16 alpha- and 2 alpha-hydroxylase are different gene products, although these two hydroxylase activities are immunochemically indistinguishable.  相似文献   

17.
The cell-free extract of a cytochrome P-450-producing fungus, Fusarium oxysporum, was found to catalyze the hydroxylation of fatty acids. Three product isomers were formed from a single fatty acid. The products from lauric acid were identified by mass-spectrometry as 9-, 10-, and 11-hydroxydodecanoic acids, and those from palmitic acid as 13-, 14-, and 15-hydroxyhexadecanoic acids. The ratio of the isomers formed was 50 : 36 : 14 in the case of laurate hydroxylation, and 37 : 47 : 16 in the case of palmitate. The reaction was dependent on both NADPH (or NADH) and molecular oxygen,and was strongly inhibited by carbon monoxide, menadione, or the antibody to purified Fusarium P-450. Further, lauric acid induced a type I spectral change in purified Fusarium P-450. Further, lauric acid induced a type I spectral change in purified Fusarium P-450 with an apparent Kd of 0.3 mM. The hydroxylase activity together with cytochrome P-450 could be detected in both the soluble and microsome fractions, and the activity was almost proportional to the amount of cytochrome P-450 reducible with NADPH. It can be concluded from these results that Fusarium P-450 reducible with NADPH. It can be concluded from these results that Fusarium P-450 is involved in the (omega-1)-, (omega-2)-, and (omega-3)-hydroxylation of fatty acids catalyzed by the cell-free extract of the fungus.  相似文献   

18.
We resolved four cytochrome P-450s, designated as P450 K-2, K-3, K-4, and K-5, from the renal microsomes of untreated male rats by high-performance liquid chromatography (HPLC) and investigated the lauric acid and arachidonic acid hydroxylation activities of these fractions. P450 K-4 and K-5 had high omega- and (omega-1)-hydroxylation activities toward lauric acid. The ratio of the omega-/(omega-1)-hydroxylation activity of P450 K-4 and K-5 was 3 and 6, respectively. Also, P450 K-4 and K-5 effectively catalyzed the omega- and (omega-1)-hydroxylation of arachidonic acid. P450 K-3 was not efficient in the hydroxylation of either lauric acid or arachidonic acid. P450 K-2 had low omega- and (omega-1)-hydroxylation activities toward arachidonic acid, and efficiently catalyzed the hydroxylation of lauric acid at the (omega-1)-position only, not at the omega-position.  相似文献   

19.
Three cDNAs for chimeras between cytochrome P-450s (pHP3 and pHP2-1) were constructed and inserted between the alcohol dehydrogenase promoter and terminator regions of the yeast expression vector pAAH5 to form expression plasmids, pAH3P2, pAH3E2, and pAH3A2. pAH3P2 contained the entire coding sequence of cytochrome P-450 (pHP2-1) except for the 3rd, the 8th, the 36th, and the 42nd residues of the total of 490 amino acids. Nucleotide sequences of pAH3P2 were replaced with those of cytochrome P-450 (pHP3) in the region coding for the NH2-terminal 210 and 262 amino acid residues to yield pAH3E2 and pAH3A2, respectively. The three expression plasmids were introduced into Saccharomyces cerevisiae AH22 cells and cytochrome P-450 s (3P2, 3E2, and 3A2) were purified from the microsomal fractions of the transformed yeast cells. In the oxidized state either of the cytochromes exhibited a low- and high-spin mixed-type spectrum of cytochrome P-450. The reduced CO complex of the cytochromes showed a Soret absorption maximum at 450 nm. When laurate or caprate was added to ferric cytochrome P-450 s (3P2 and 3E2), the spectrum was converted to that of the typical high-spin type, indicating the binding of the fatty acids to the substrate site of the cytochromes. On the other hand, the addition of the fatty acids to ferric cytochrome P-450 (3A2) induced no spectral change. Only chemicals having a carboxyl group caused such spectral conversion of cytochrome P-450 (3P2) among dodecyl compounds examined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
To characterize 25-hydroxyvitamin D3 24-hydroxylase and 25-hydroxyvitamin D3 1-hydroxylase, the activities of the two enzymes were measured in the presence of two types of inhibitors. The effect of protein synthesis inhibitors on 25-hydroxyvitamin D3-stimulated 24-hydroxylase activity in 1-hydroxylating rat kidneys perfused in vitro was tested. Actinomycin D (4 microM) and cycloheximide (10 microM) each abolished 25-hydroxyvitamin D3 24-hydroxylase synthesis when added at the start of perfusion but not when added 4 h later; they did not affect 25-hydroxyvitamin D3 1-hydroxylase activity. The effects of cytochrome P-450 inhibitors on the two enzyme activities were then studied in vivo. Metyrapone and SKF-525A (50 mg/kg body weight) each inhibited 25-hydroxyvitamin D3 24-hydroxylase at 6 and 24 h; in contrast 1-hydroxylase increased and was 5 times the control value at 24 h. Finally, the in vitro effects of six cytochrome P-450 inhibitors at concentrations ranging from 10(-7) to 10(-3) M on enzyme activities in renal mitochondrial preparations were compared. Both enzymes were inhibited by all of the inhibitors, but inhibition of 25-hydroxyvitamin D3 24-hydroxylase was consistently greater than that of 25-hydroxyvitamin D3 1-hydroxylase. These studies demonstrate that 24-hydroxylation and 1-hydroxylation respond differently to protein synthesis inhibitors and to cytochrome P-450 inhibitors. The findings are consistent with the hypothesis that the two enzyme activities are associated with different cytochrome P-450 moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号